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While the pro-differentiation and tumour suppressive func-

tions of Notch signalling in keratinocytes are well estab-

lished, the underlying mechanisms remain poorly

understood. We report here that interferon regulatory fac-

tor 6 (IRF6), an IRF family member with an essential role in

epidermal development, is induced in differentiation

through a Notch-dependent mechanism and is a primary

Notch target in keratinocytes and keratinocyte-derived SCC

cells. Increased IRF6 expression contributes to the impact

of Notch activation on growth/differentiation-related genes,

while it is not required for induction of ‘canonical’ Notch

targets like p21WAF1/Cip1, Hes1 and Hey1. Down-modulation

of IRF6 counteracts differentiation of primary human ker-

atinocytes in vitro and in vivo, promoting ras-induced

tumour formation. The clinical relevance of these findings

is illustrated by the strikingly opposite pattern of expres-

sion of Notch1 and IRF6 versus epidermal growth factor

receptor in a cohort of clinical SCCs, as a function of their

grade of differentiation. Thus, IRF6 is a primary Notch

target in keratinocytes, which contributes to the role of

this pathway in differentiation and tumour suppression.
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Introduction

Notch signalling is an important form of intercellular com-

munication with a key role in cell-fate determination and

differentiation (Bray, 2006). In many mammalian systems,

this pathway enhances stem cell potential and suppresses

differentiation, while in others, notably keratinocytes, it

exerts an opposite role suppressing tumour development

(Dotto, 2008). The Notch gene family encodes evolutionarily

conserved type-1 transmembrane receptors that are activated

by ligand binding and proteolytic cleavage, with release of the

Notch intracellular domain (Artavanis-Tsakonas et al, 1999).

The ‘canonical’ pathway involves translocation of the acti-

vated Notch cytoplasmic domain to the nucleus, where it

associates with the DNA-binding protein CSL (CBF-1 in

human and RBP-Jk in mouse) and an ancillary protein,

Mastermind-like 1 (MamL1) or related family members

(Nam et al, 2006; Wilson and Kovall, 2006), forming a

complex that is required for CSL-dependent transcription.

The best-characterized targets of Notch/CSL/MamL-

mediated activation are members of the HES and HERP

families of bHLH transcriptional repressors (Iso et al, 2003).

However, a number of other direct targets of Notch/CSL

transcription have been identified, which can be induced by

Notch activation in a cell-type-specific manner.

Keratinocytes express mainly Notch1 and Notch2 recep-

tors. Deletion of the Notch1 gene is by itself sufficient to alter

keratinocyte growth/differentiation (Rangarajan et al, 2001)

and enhance susceptibility to skin cancer formation (Nicolas

et al, 2003). While loss of the Notch2 gene by itself does not

result in any detectable skin phenotype, together with loss of

Notch1 it elicits a dramatic hair follicle/skin phenotype (Pan

et al, 2004) that recapitulates to a large extent that caused by

deletion of the CSL/RBP-Jk gene (Yamamoto et al, 2003;

Blanpain et al, 2006). Combined Notch1 and Notch2 dele-

tions result in alterations of both intracellular and paracrine

control mechanisms, with a defective skin barrier function

and increased inflammatory reaction (Demehri et al, 2009;

Dumortier et al, 2010). In embryonic skin, the differentiation-

promoting function of Notch signalling has been implicated

downstream of the establishment of asymmetric cell division

(Williams et al, 2011) and of cilia formation (Ezratty et al,

2011). In the mature epidermis, expression of Notch ligands

of the Delta-like family in putative keratinocyte stem cell

populations can promote neighbouring Notch1-expressing

cells to enter a ‘transit amplifying’ phenotype and commit

to differentiation (Lowell et al, 2000; Estrach et al, 2008). On

the other hand, concomitantly increased expression of Notch

receptors and ligands of the Jagged family in the suprabasal

epidermal layers can be part of a positive-reinforcement

paracrine mechanism for synchronization of differentiation

and skin homeostasis (Rangarajan et al, 2001; Nickoloff et al,

2002; Ambler and Watt, 2010).

The molecular mechanisms downstream of Notch activa-

tion that elicit differentiation remain elusive. Previous work
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showed that activation of Notch signalling in mouse kerati-

nocytes is associated with suppression of specific Wnt family

members, through CSL/RBP-Jk-dependent up-regulation of

p21WAF1/Cip1 (Devgan et al, 2005). However, in human kera-

tinocytes (HKCs), Notch1 activation leads to a lesser increase

of p21WAF1/Cip1 expression, and causes more long-term sup-

pression of growth and induction of differentiation that can

be explained, in part, by decreased expression of p63

(Nguyen et al, 2006), a p53 family member with a master

regulatory function in epidermal development, morphogen-

esis and/or stem cell maintenance (Koster and Roop, 2004;

McKeon, 2004). Increased Notch signalling in keratinocytes

down-modulates p63 gene expression through an indirect

mechanism independent of ‘canonical’ targets like Hes/Hey

family members and p21Waf1/Cip1. Suppression of p63 de-

pends instead on the down-modulation by Notch of interfer-

on responsive factors, specifically interferon regulatory

factor (IRF)3 and IRF7, through an as yet uncharacterized

mechanism (Nguyen et al, 2006).

Nine members of the interferon regulatory family of tran-

scription factors (IRFs) have been identified (see for review

Taniguchi et al, 2001). All IRFs share similar helix-loop-helix

domains, in their N-terminal regions, that recognize common

DNA-binding elements called IRF elements (IRF-E) and inter-

feron-stimulated response elements (ISRE), present in a wide

variety of genes with different functions. The C-terminal

region of IRFs is less conserved and mediates their different

interactions with other family members, unrelated transcrip-

tion factors, co-activators and co-repressors (Taniguchi et al,

2001).

IRF function is best understood in the context of innate

immunity and interferon signalling. However, a number of

these transcription factors, including IRF1, 2, 3 and 7, have

also been implicated in control of cell proliferation and

tumour development, in a context- and cell-type-specific

fashion (Tamura et al, 2008). Another family member, IRF6,

appears without function in innate immunity and interferon

signalling, but is essential for normal epidermal development

and differentiation (Ingraham et al, 2006; Richardson et al,

2006). Mutations of this gene have been found in two human

syndromes: Van der Woude and popliteal pterygium syn-

drome, which are characterized by cleft palate and lip pits,

skin folds, syndactyly and oral adhesions (Kondo et al, 2002).

In mice, homozygous loss-of-function mutations of IRF6

result in severe defects in limb and skin development with

compromised differentiation of keratinocytes in the interfol-

licular epidermis (Ingraham et al, 2006; Richardson et al,

2006). A link between p63 and IRF6 has been established in

epidermal development, with p63 binding to an IRF6 enhan-

cer and positively controlling its expression, while IRF6

negatively regulates p63 levels (Moretti et al, 2010). A basic

function of IRF6 in suppressing growth and promoting differ-

entiation of keratinocytes has also been indicated by in vitro

and in vivo studies (Moretti et al, 2010; Thomason et al,

2010), and it has been extended to mammary carcinoma cells,

in connection with Maspin, a protease implicated in cancer

progression (Bailey et al, 2005, 2008).

In the present communication, we show that IRF6 is a

primary Notch target in keratinocytes, which is involved in its

more indirect ‘non-canonical’ effects on differentiation, in-

cluding induction of terminal differentiation markers and

suppression of pro-proliferative genes like p63 and integrins.

These findings are of likely clinical significance, as suppres-

sion of IRF6 expression promotes oncogenic behaviour of

ras-expressing human primary keratinocytes, and expression

of this gene in cutaneous SCCs parallels that of Notch1 as a

function of differentiation.

Results

The IRF6 gene is under positive Notch control in

keratinocytes

Notch signalling promotes commitment of keratinocytes to-

wards differentiation through a mechanism that depends, in

part, on down-modulation of IRF3 and IRF7 expression

(Nguyen et al, 2006). The essential and specific role of IRF6

in epidermal development (Ingraham et al, 2006; Richardson

et al, 2006) suggested that this gene may also be involved in

this context.

Double immunofluorescence analysis of human skin

showed coincidentally increased expression of the Notch1

and IRF6 proteins in the upper layers of the epidermis

(Figure 1A, upper panels). Consistent with the previous

reports (Rangarajan et al, 2001; Ingraham et al, 2006;

Richardson et al, 2006; Bailey et al, 2008), the two proteins

were found to localize to the cytoplasm, as both are subject to

rapid degradation upon nuclear entry (Bailey and Hendrix,

2008; Kopan and Ilagan, 2009). However, in some cells of the

suprabasal layers, nuclear localization of IRF6 could also be

detected (Figure 1A, lower panels; Supplementary Figure S1).

As an alternative biochemical method to assess levels of

IRF6 expression, keratinocytes from freshly dissociated

human epidermis were separated on the basis of their rate

of attachment to the substrate, which can enrich for undiffer-

entiated keratinocytes with high self-renewal potential

(quickly adhering) versus cells at an intermediate or late

stage of differentiation (adhering after longer time or failing

to adhere) (Jones and Watt, 1993; Dazard et al, 2000).

Immediate RNA preparation without culturing and real-time

RT–PCR analysis showed markedly higher expression of IRF6

in the differentiating versus proliferative populations, which

paralleled the up-regulation of differentiation marker expres-

sion (keratin 1 and loricrin) and the down-regulation of the

basal layer integrin b4 (Figure 1B).

Consistent with previous work (Moretti et al, 2010),

expression of IRF6, as well as the differentiation marker

keratin 1 and the Notch target gene HES1, was also up-

regulated in cultured primary HKCs upon induction of differ-

entiation by suspension or high density conditions. Induction

of these genes was suppressed by treatment with DAPT, a g-

secretase inhibitor that is widely used to suppress endogen-

ous Notch activation (Rizzo et al, 2008) (Figure 1C and D).

Even in mouse primary keratinocytes (MKCs) induced to

differentiate by increased extracellular calcium, enhanced

IRF6 expression was counteracted by DAPT treatment

(Figure 1E). A genetic link between Notch and IRF6 expres-

sion was further indicated by analysis of mice with keratino-

cyte-specific deletion of the Notch1 and Notch2 genes

(Dumortier et al, 2010). A drastic reduction of IRF6 expres-

sion was found in the epidermis of these mice relative

to wild-type littermate controls (Figure 1F).

To assess whether activation of endogenous Notch signal-

ling is sufficient to induce IRF6 expression, HKCs were

co-cultured with fibroblasts expressing the Jagged2 ligand

IRF6 mediates Notch function in keratinocytes
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Figure 1 IRF6 is induced during keratinocyte differentiation through a Notch-dependent mechanism. (A) Confocal double-immunofluores-
cence analysis of Notch1 and IRF6 expression in human skin. (Upper panels) Representative low-magnification images showing concomitantly
increased expression of the proteins in the suprabasal epidermal layers. (Lower panels) High-magnification images showing prevalent
cytoplasmic localization of the two proteins, with nuclear localization of IRF6 being also detectable in some cells of the outer layers (indicated
with arrows). The prevalent cytoplasmic staining of the two proteins is consistent with previous publications (Rangarajan et al, 2001; Ingraham
et al, 2006; Richardson et al, 2006). Images are representative of several independent fields. The IRF6 results were confirmed by additional
immunofluorescence/confocal imaging analysis of human skin (Supplementary Figure S1). Bars¼ 30 and 9.1mm, upper and lower panels,
respectively. (B) Stem cell (SC), transit amplifying cell (TAC) and terminally differentiated cell (TDC) populations were isolated from human
epidermis as described in Materials and methods and expression of the indicated genes was determined by real-time RT–PCR, using 36b4 for
normalization. *Po0.002, **Po0.05. Similar results were observed in two other independent experiments using cells from different donors.
(C) HKCs, treated for a total of 3 days with DAPT (10 mM) or DMSO vehicle control were either kept under growing conditions (att.) or induced
to differentiate by suspension culture for the last 12 h of the experiment (susp.). Expression of the indicated genes was determined by real-time
RT–PCR, with 36b4 for normalization. *Po0.002, **Po0.01, ***Po0.0001. Induction of IRF6 expression under these conditions was observed
five times, utilizing three independent strains of HKCs, at either RNA or protein level, and the counteracting effects of DAPT were also
confirmed. (D) HKCs treated with DAPT (10mM) or DMSO vehicle control were grown to the indicated densities followed by immunoblot
analysis of IRF6 and involucrin expression using g-tubulin for normalization. Similar results were observed four times, utilizing three
independent strains of HKCs. (E) MKCs were induced to differentiate by increased extracellular calcium (2 mM) plus/minus treatment with
DAPT (20mM), followed by real-time RT–PCR analysis of IRF6 expression, using 36b4 mRNA levels for normalization. *Po0.001. Up-
regulation of IRF6 levels was similarly observed three times, with separate primary mouse keratinocyte preparation, at either RNA or protein
level and counteracting effects of Notch signalling inhibition repeated twice. (F) The epidermis of three mice with keratinocyte-specific
deletion of the Notch1 and Notch2 genes (Notch1loxP�loxP/Notch2loxP�loxP�K5 CreERT) versus three littermate controls (Notch1loxP�loxP/
Notch2loxP�loxP) was analysed for levels of IRF6 mRNA expression by real-time RT–PCR with GAPDH for normalization. To delete the Notch1
and Notch2 genes, mice were given five OH-TAM injections starting at days 6 of age, with skin samples being taken 4 weeks after first injection.
As previously reported, this protocol resulted in 470% deletion of the Notch1 and Notch2 genes (Dumortier et al, 2010). *Po0.05.
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versus controls. Notch activation, as assessed by induction of

the ‘canonical’ target gene HES1 as well as the differentiation

marker involucrin, was paralleled by increased expression of

IRF6 with this up-regulation being counteracted by DAPT

treatment (Figure 2A and B). Similar induction of gene

expression was found with HKCs cultured in presence of

the immobilized Notch ligand Deltaext-myc (Ohishi et al, 2000)

(Figure 2C).

In a number of keratinocyte-derived SCC cell lines, in

which Notch signalling is down-modulated (Lefort et al,

2007; Kolev et al, 2008; Mandinova et al, 2009), IRF6 expres-

sion was significantly decreased (Figure 2D). Constitutive

expression of activated Notch1 in these cells by retroviral

infection caused strong IRF6 induction (Figure 2E). In these

same cells engineered to express a constitutively active form

of Notch1 fused to the oestrogen receptor (rNERT) (Schroeder

and Just, 2000), treatment with 4-hydroxytamoxifen (OH-

TAM) also resulted in a substantial induction of IRF6 expres-

sion, in a dose-dependent manner that paralleled that of

HES1 expression (Figure 2F).

IRF6 is a primary target of Notch/CSL-dependent

transcription

The induction of IRF6 by activated Notch1 in HKCs as well as

in SCC cells was counteracted by siRNA-mediated knock-

down of CSL, implicating the ‘canonical’ pathway of Notch-

dependent transcription (Figure 3A and B). In SCC cells

expressing the rNERT protein, expression of the nascent

IRF6 transcript, as detected by primers corresponding to the

first exon–intron junction, was similarly induced by OH-TAM

treatment in the presence or absence of the cycloheximide

protein synthesis inhibitor, indicating that the IRF6 gene is a
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Figure 2 IRF6 expression is under positive Notch control in keratinocytes. (A) HKCs were co-cultured with either NIH3T3 cells overexpressing
full-length Jagged2 (NIH3T3-J2) or control NIH3T3 cells carrying the empty expression vector (NIH3T3-ctrl) as described in the Materials
and methods. HKCs were collected 48 h later for expression analysis of the indicated genes by real-time RT–PCR. *Po0.0001, **Po0.0005.
(B) HKCs co-cultured as in the previous panel plus/minus treatment with DAPT (20mM) for the last 24 h were analysed by immunoblotting
with antibodies against the indicated proteins. Induction of IRF6 expression similar to the one presented here and in the previous panel was
observed a total of four times, utilizing two independent strains of HKCs. (C) HKCs were plated on dishes coated with increasing concentrations
of purified Delta1 ligand (Deltaext-myc) followed, 72 h later, by real-time RT–PCR analysis of the indicated genes. Similar results were obtained in
a second independent experiment with the Delta1 ligand as well as in an other experiment with a different strain of HKCs plated on dishes
coated with the Notch ligand Jagged1. *Pp0.0001. (D) Early passage HKCs under low-confluency conditions were analysed in parallel with the
indicated keratinocyte-derived SCC cell lines for levels of IRF6 expression by immunoblotting (left panel). The same set of cells was analysed
for levels of IRF6 mRNA by real-time RT–PCR using 36b4 mRNA levels for normalization (right panel). *Po0.0001. Similar down-modulation
of IRF6 expression was observed in two independent sets of freshly excised skin SCC versus normal epidermis as shown in Figure 9A.
(E) SCC13 cells were infected with a recombinant retrovirus expressing constitutively active Notch1 together with GFP (pincoN1), or with a
virus expressing GFP (pincoGFP) alone followed, 72 h later, by immunoblot analysis of IRF6 expression. Similar results were observed three
other times, including an experiment with adenoviral-mediated activated Notch1 expression. (F) SCC13 cells were stably infected with a
retroviral vector expressing a flag-tagged activated Notch1 protein fused to the human oestrogen receptor (rNERT), or empty vector control
(Neo). Cells were subsequently treated with OH-TAM at the indicated concentrations, collected 30 h later and analysed for HES1 and IRF6
expression by real-time RT–PCR. *Po0.0001, **not significant. A similar induction of IRF6 expression in rNERTcells upon OH-TAM treatment
was observed in at least three other independent experiments.
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primary target of Notch/CSL activation (Figure 3C, left

panel). Interestingly, the levels of mature IRF6 mRNA were

up-regulated as a consequence of protein synthesis inhibi-

tion, pointing to an additional post-transcription mode of

IRF6 regulation (Figure 3C, middle panel). In contrast to

IRF6, expression of the involucrin differentiation marker

was not induced in cells concomitantly treated with OH-

TAM and cycloheximide, indicating that up-regulated IRF6

expression by increased Notch activity is not coincidental but

precedes differentiation (Figure 3C, right panel).

Sequence analysis of the proximal region of the human

IRF6 gene promoter revealed the presence of a ‘canonical’

CSL-binding site located at �2.4 kb from the transcription

start site (TSS). A luciferase reporter construct encompassing

this region displayed constitutive high promoter activity that

could not be further modulated by Notch activation or

differentiation. Chromatin configuration and regulatory ele-

ments located at large distance from the TSS play a critical

role in transcription of genes. For insights into regulation of

the IRF6 locus, we analysed publicly available data of chro-

matin immunoprecipitation—high-throughput sequencing

(ChIP-seq) and genome-wide DNase I hypersensitivity map-

ping of human primary keratinocytes (produced by the

ENCODE group at the Broad Institute and Massachusetts

General Hospital and University of Washington, respec-

tively). Because insulator elements restrict enhancer function

and segregate genomic regulatory units (Cuddapah et al,

2009), we focused on an B25 kb region of the IRF6 locus

containing the TSS and delimited by ChIP-seq peaks for the

insulator protein CTCF (Figure 4A, top line, insulator).

Previous studies have demonstrated that distal regulatory

regions (e.g. enhancers) show enrichment for monomethy-

lated histone H3 lysine 4 (H3K4me1), while promoter regions

are enriched for trimethylated histone H3 lysine 4 (H3K4me3)

(Heintzman et al, 2007). As expected, the IRF6 promoter

region showed strong enrichment for H3K4me3 (Figure 4A,

second line from the top, P). Two regions upstream of the

TSS, the first lying between �11.5 and �8.5 kb from the TSS,

and the second from �4.5 to �1 kb, showed strong enrich-

ment for H3K4me1, suggesting that they contain enhancers or

distal promoter regulatory elements acting on IRF6; a third,

weakly H3K4me1-enriched region was also present within

the transcribed region of the IRF6 gene (Figure 4A, third line

from the top, regions A, B, C). Analysis of DNase I hyper-

sensitivity demonstrated sites of increased chromatin acces-

sibility within the promoter and upstream A and B regions,

providing a further indication of their potential regulatory

function (Figure 4A, fourth line from the top).

A motif search identified several consensus CSL-binding

sites within the 25-kb region of the IRF6 locus, with four sites

mapping within the two upstream H3K4me1-enriched

regions, and three of them lying within or adjacent to

DNase I hypersensitivity peaks (Figure 4A, fifth line from

the top). To assess experimentally to which of these sites

Notch1 may bind, we performed ChIP assays with extracts

from human primary keratinocytes under high-confluence
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knockdown were also observed in a second independent experiment with MKCs. (B) SCC13 cells expressing the rNERT protein and control cells
(Neo) were transfected with anti-CSL or scrambled siRNAs for 48 h. Cells were subsequently treated with OH-TAM at the indicated
concentrations for an additional 24 h followed by analysis of IRF6 expression by real-time RT–PCR. *Po0.0001, **Po0.0005, ***P¼ 0.001.
Similar results were observed in a second independent experiment based on SCC13 cells with adenoviral-mediated activated Notch1
expression. (C) SCC13 cells expressing the rNERT protein and control cells (Neo) were treated with cycloheximide (þCHX; 10mM) or
DMSO (�CHX) followed, 2 h later, by OH-TAM treatment at the indicated concentrations for 24 h. Levels of nascent IRF6, mature IRF6 and
involucrin transcripts were assessed by real-time RT–PCR using primers, respectively, for the first exon–intron junction, a downstream coding
exon of IRF6 and for the involucrin gene. *Po0.005, **Po0.001, ***Po0.0001. Similar results were obtained in a similar experiment with
rNERT-expressing HKCs or control cells, plus/minus OH-TAM and cycloheximide treatment.
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differentiating conditions. The analysis showed binding of

the endogenous Notch1 protein at both of the predicted CSL

motifs within region B (�3.6 and �2.4 kb position), with little

or no binding to more distal sites (Figure 4B, left panel).

Positive binding was also found at a TSS proximal site

(þ 0.6 kb position) with little or no binding further down-

stream. Importantly, a similar ChIP assay performed with

extracts of intact human epidermis showed strong Notch1

binding only at the �2.4 kb site (Figure 4B, right panel),

suggesting that this may be the predominant site of Notch1

regulation within the chromatin context of in vivo fully

differentiating keratinocytes.

IRF6 is a mediator of the ‘non-canonical’ Notch

pro-differentiation function

To gain insights into the functional significance of the above

findings, we evaluated the consequences of suppressed and

increased IRF6 expression. As we previously reported for loss

of Notch signalling (Lefort et al, 2007), siRNA-mediated

knockdown of IRF6 in HKCs caused down-modulation of

terminal differentiation markers (involucrin, keratin 1 and

10, loricrin) and up-regulation of markers of the proliferative

compartment (p63, integrin a6/b4) (Figure 5A and B;

Supplementary Figure S2A). In HKCs co-cultured with

Jagged2-expressing fibroblasts, modulation of these markers

by Notch activation was counteracted by IRF6 knockdown

(Figure 5C). Similar effects were observed with IRF6 knock-

down in MKCs. Even in this case, suppression of IRF6

expression caused down-modulation of terminal differentia-

tion markers and up-regulation of markers of the proliferative

compartment, and counteracted their opposite modulation by

activated Notch1 expression (Figure 5D, left and middle

panels). Interestingly, induction of the ‘canonical’ HEY1

and HEY2 targets by activated Notch1 expression was slightly

enhanced, rather than suppressed, by IRF6 knockdown

(Figure 5D, right panel), indicating that IRF6 is not required

for up-regulation of these genes or, if anything, may nega-

tively control it. Similar modulation of differentiation-related

genes with a slight up-regulation of ‘canonical’ Notch targets

(HEY1, p21WAF1/Cip1) was also found in vivo, in the epidermis

of late gestation IRF6 mutant embryos (Richardson et al,

2006) (Figure 5E).

The analysis was extended to SCC cells, which express

lower levels of IRF6 than HKCs. Integrin a6/b4 and p63
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Figure 4 Endogenous Notch1 binds to the IRF6 locus within specific regions of chromatin organization. (A) Diagrammatic illustration of the
ChIP-seq results obtained with human primary keratinocytes with antibodies against the CTCF insulator and the indicated methylated forms of
Histone H3, in parallel with the mapping of DNase I hypersensitivity sites. Note the correspondence between the DNase I hypersensitivity
peaks and ‘dips’ (nucleosome-depleted regions) within the H3K4me1 peaks. Positions of the promoter (P) and putative enhancers (A–C)
regions discussed in the text are indicated, alongside the location of the IRF6 TSS and the predicted CSL-binding motifs (red bars). (B) Human
primary keratinocytes (left panel) or total extracts of human epidermis (right panel) (see Materials and methods) were processed for ChIP
assays using an antibody specific for Notch1, utilizing antibodies preincubated with the corresponding blocking peptide and/or non-immune
IgGs as control. PCR amplification of the various regions of the human IRF6 promoter encompassed the eight following predicted CSL-binding
sites: �11.4 kb: 50-GGGGTGGGAACAG-30; �10.5 kb (two overlapping sites): 50-CATGTGGGAATGTGAGAAAAC-30; �3.6 kb: 50-ATGATGGG
AGCATTG-30; �2.4 kb: 50-GTCATGGGAATTTCA-30; þ 0.6 kb: 50-TTTTGGGAAACTGGAG-30; þ 5.3 kb: 50-GGCCTGGGAATGG-30; þ 5.9 kb: 50-GT
TGTGGGAAAGG-30; þ 6.1 kb: 50-GGGTTGGGAAAGG-30. Un-precipitated chromatin preparations were similarly analysed and used as ‘input
DNA’ control. The nucleotide sequence of the PCR primers is given in Materials and methods. The results are representative of two independent
experiments. The relative amount of precipitated DNA, expressed in arbitrary units, was calculated after normalization for total input
chromatin, according to the following formula (Frank et al, 2001): % total¼ 2DCt� 5 where DCt¼Ct (input)–Ct (immunoprecipitation).
Ct, cycle threshold. Statistical significance of the results was determined by unpaired Student’s t-test, comparing the ratio Notch1/IgG signal for
each binding site relative to the one for the binding site at position �11.4. *Po0.0001, **Po0.05, #not significant. Similar results were
observed in a total of four experiments, with two different strains of cultured HKCs and human epidermal extracts from two different donors.
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expression was up-regulated in SCC13 cells upon further IRF6

knockdown (Figure 6A). In SCC13 cells expressing rNERT,

induction of differentiation markers and down-modulation of

p63 and integrin a6/b4 in response to OH-TAM treatment was

counteracted by IRF6 knockdown (Figure 6B; Supplementary

Figure S2B). Opposite modulation of these genes was caused

by increased IRF6 expression in SCC13 cells, as well as a

second SCC cell line (SCC12) (Figure 6C).

In parallel with effects on differentiation, IRF6 overexpres-

sion in both HKCs and SCC cells led to a significant decrease

in proliferation, as measured by BrdU labelling or Ki67

expression (Figure 6D and E). Conversely, knockdown of

IRF6 expression had a significant positive effect on proliferation

of HKCs under basal conditions as well as when co-cultured

with Jagged2-expressing fibroblasts (Figure 6F).

IRF6 exerts an essential pro-differentiation function in

HKCs in vivo, and contributes to tumour suppression

To assess whether IRF6 plays a similar regulatory function

in vivo, HKCs were transfected with siRNA against IRF6 in

parallel with scrambled siRNA control, followed by intrader-

mal injection into NOD/SCID mice. Under these conditions,

control cells formed large epidermal islands with evident

granular and squamous differentiation 7 days after injection.

By contrast, cells in which IRF6 had been knocked down

remained separated in small nests with no signs of terminal
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Figure 5 IRF6 is a mediator of Notch1 pro-differentiation function in keratinocytes. (A) HKCs were transfected with two different siRNAs
against IRF6 (siIRF6 n11 and n12) in parallel with scrambled siRNA control (siCtrl) for 72 h followed by immunoblot analysis for the indicated
proteins. (B) HKCs were transfected with siRNAs against IRF6 (siIRF6 n11) in parallel with scrambled siRNA control (siCtrl) for 72 h followed
by real-time RT–PCR analysis for the indicated genes. *Pp0.0001, **Po0.02, ***Po0.001, ****Po0.005. Similar results with a second set of
siRNAs (siIRF6 n12) are shown in Supplementary Figure S2A. Results similar to those shown in this and previous panel were observed at least
four times with a total of four different strains of HKCs. (C) HKCs transfected with siRNAs against IRF6 (siIRF6) in parallel with scrambled
siRNA control (siCtrl) were co-cultured with NIH3T3 fibroblasts expressing Jagged2 (NIH3T3-J2) or control fibroblasts (NIH3T3-ctrl) for 48 h.
HKCs were analysed for expression of the indicated genes by real-time RT–PCR. *Pp0.0001. Similar results were observed in second
independent experiment with a different strain of HKCs plus/minus retroviral-mediated activated Notch1 expression. (D) MKCs were
transfected with anti-IRF6 or scrambled siRNAs for 48 h followed by infection with an adenovirus expressing the activated cytoplasmic
form of Notch (AdN1) (Rangarajan et al, 2001) or GFP control (AdGFP) for additional 24 h. Expression of the indicated genes was analysed by
real-time RT–PCR with b-actin for normalization. *Po0.0001, **Po0.01, ***Po0.001, #not significant. Similar results were observed in three
experiments with separate preparations of MKCs, by either RNA or protein analysis. (E) Skin samples from E16.5 mouse embryos wild-type
versus homozygous for the IRF6 mutation R84C (IRF6 R84C/R84C) (Richardson et al, 2006) (white and black bars, respectively) were analysed
by real-time RT–PCR for the indicated genes. Statistical significance of the results was determined for differences in gene expression values in
the mutant versus control mice. *Po0.0001, **Po0.05, ***Po0.005, #not significant. Similar results were observed by analysis of mutant
versus wild-type embryos of younger age (E14).
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Figure 6 IRF6 is a mediator of Notch signalling in SCC cells. (A) SCC13 cells were transfected with siRNA against IRF6 in parallel with
scrambled siRNA control. IRF6 silencing was confirmed by immunoblot (left panel) and the other genes were analysed by real-time RT–PCR
(right panel). *Po0.0001. Similar results were observed in two other independent experiments. (B) SCC13 cells expressing the rNERT protein
and control cells (Neo) were transfected with siRNAs against IRF6 (siIRF6) in parallel with scrambled siRNA control (siCtrl) for 48 h and treated
with 4-hydroxytamoxifen (OH-TAM; 1mM) for additional 24 h. Expression of the indicated genes was analysed by real-time RT–PCR.
*Po0.0001. Similar results were obtained with a second set of siRNA as shown in Supplementary Figure S2B. (C) SCC13 and SCC12 cells
were infected with an IRF6-expressing retrovirus (pincoIRF6) or empty vector control (pincoGFP) for 72 h followed by analysis of the indicated
genes by either real-time RT–PCR or immunoblotting (left and right panels, respectively). *Pp0.0001, **Po0.006. Similar results were
observed in a total of three experiments with SCC13 cells and twice with SCC12 cells. (D) HKCs were infected with an IRF6-expressing
retrovirus (pincoIRF6) or empty vector control (pincoGFP) for 48 h. Cells were analysed by BrdU labelling. **Po0.01. (E) SCC12 and SCC13
cells were infected with an IRF6-expressing retrovirus (pincoIRF6) or empty vector control (pincoGFP) for 48 h and levels of Ki67 expression
were analysed by real-time RT–PCR. *Pp0.0001. (F) HKCs were transfected with siRNAs against IRF6 (siIRF6) in parallel with scrambled
siRNA control (siCtrl) for 48 h (left panel) or HKCs plus/minus siIRF6 were co-cultured with Jagged2 (J2) or control (C) expressing NIH3T3
fibroblast for 48 h (right panel). Levels of Ki67 expression were analysed by real-time RT–PCR. *Po0.0001.
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differentiation (Figure 7). Immunohistochemical analysis

confirmed the IRF6 silencing in the nests formed by HKCs

with IRF6 knockdown, which was associated with elevated

levels of IRF7 and p63 as well as decreased levels of the

differentiation markers keratin 1 and loricrin (Figure 7;

Supplementary Figure S3).

Experiments were complemented by grafting onto nude

mice of human primary keratinocytes plus/minus IRF6

knockdown. Control keratinocytes formed a fully stratified

and differentiated epidermis by 11 days of grafting, whereas

keratinocytes with down-modulation of IRF6 expression

showed no ordered stratification, forming instead nests of

cells that remained separated from each other, and with only

limited signs of suprabasal differentiation marker expression

(Supplementary Figure S4).

To assess the possible consequences of IRF6 down-mod-

ulation on tumour formation, HKCs plus/minus IRF6 knock-

down were infected with an oncogenic H-rasV12-transducing

retrovirus prior to intradermal injection into mice. As we

recently reported (Wu et al, 2010), control ras-expressing

HKCs formed under these conditions only differentiated

squamous cysts. By contrast, cells with concomitant IRF6

knockdown gave rise to cysts with areas of high cellularity,

with defective differentiation marker expression and elevated

expression of proliferation markers like p63 and PCNA

(Figure 8).

To assess the clinical significance of the above findings, we

examined the pattern of expression of the various genes in a

set of clinically occurring tumours versus samples of normal

epidermis. Real-time RT–PCR analysis showed a significant

down-modulation of the IRF6 gene, in parallel with Notch1, in

a set of SCCs versus normal epidermis samples, with an

opposite up-regulation of IRF7, which we previously showed

to be under Notch negative control (Nguyen et al, 2006)

(Figure 9A). The results were complemented by tissue array/

immunohistochemical analysis of a larger cohort of cutaneous

SCCs. In the vast majority of tumours, in the areas of tumours

with greater versus lesser differentiation, there was an inverse

relation between expression of Notch1 and IRF6 versus IRF7

and epidermal growth factor receptor (EGFR), which plays an

opposite role to Notch signalling in keratinocyte proliferation

and tumourigenesis (Kolev et al, 2008) (Figure 9B and C).
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Figure 7 Silencing of IRF6 expression in HKCs alters the differentiation process in vivo. HKCs transfected with siRNA against IRF6 or
scrambled siRNA control for 3 days were collected, admixed with Matrigel and injected intradermally into the skin of NOD/SCID mice. Cells
plus/minus IRF6 knockdown were injected in parallel in the right and left flank of mice, to minimize individual animal variations. A week later,
nodules formed at the sites of injection were excised and tissues were processed for H&E staining and immunohistochemical analysis with
antibodies against the indicated proteins. The results are representative of at least 10 nodules formed by each type of cells. Corresponding high-
magnification images are shown as inserts. Bar¼ 50 mm.
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Discussion

The pro-differentiation and tumour suppressive functions of

Notch signalling in keratinocytes have been well established

(Dotto, 2008; Watt et al, 2008). However, the underlying

mechanisms remain to be clarified. Notch activation has

been proposed to function through both a ‘canonical’ path-

way dependent on CSL, and a ‘non-canonical’ pathway
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Figure 8 Inhibition of IRF6 expression in HKCs promotes tumour formation. HKCs transfected with anti-IRF6 or scrambled siRNAs for 24 h
were subsequently infected with a H-rasV12-transducing retrovirus (LZRS-rasV12) (Lazarov et al, 2002), admixed with Matrigel and injected
intradermally into the skin of NOD/SCID mice. The two types of cells were injected in parallel in the right and left flank of mice, to avoid the
risk of individual animal variations. Nodules formed at the sites of injection were excised 8–10 days later and tissues were processed for H&E
staining. The results are representative of six nodules formed by each type of cells. Retrieved tissues were analysed by immunohistochemistry
with antibodies against the indicated proteins in parallel with HE staining. Upper bar¼ 100mm, lower bar¼ 25 mm.
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independent of this protein (Rangarajan et al, 2001; Blanpain

et al, 2006; Nguyen et al, 2006). However, this is likely to be

an oversimplification, since expression of putative mediators

of the ‘non-canonical’ pathway, like Deltex, can be under CSL

control (Bray, 2006). Thus, a more accurate view of Notch

signalling is one that involves both CSL-direct and indirect

mechanisms. Our previous work established that Notch

activation is involved in cell-cycle control of keratinocytes

with p21WAF1/Cip1 as a direct Notch/CSL target (Rangarajan

et al, 2001). Notch activation induces also differentiation of

these cells through a more indirect mechanism, involving

down-modulation of integrins of the basal layer, p63 as well

as two IRF family members with a widespread role in innate

immunity and growth control, IRF3 and IRF7 (Nguyen et al,

2006). We have shown here that IRF6, another IRF family

member with a specific role in epidermal development and

differentiation (Ingraham et al, 2006; Richardson et al, 2006),

is a primary Notch target in keratinocytes, which is involved

in the more indirect effects of this pathway on control of

differentiation-related genes. This combined Notch-IRF6 reg-

ulatory function extends to in vivo keratinocyte differentia-

tion and SCC formation.

Like p63, IRF6 plays a crucial role in epidermal develop-

ment and a recently described cross-regulation helps to

explain the partially overlapping phenotype of human syn-

dromes resulting from mutation of the two genes (Moretti

et al, 2010; Thomason et al, 2010). In parallel with suppres-

sion of differentiation, loss of IRF6 function results in up-

regulation of p63 expression. In turn, IRF6 expression is

down-regulated as a consequence of p63 deficiency

(Ingraham et al, 2006; Richardson et al, 2006). This occurs

not only in the transition between simple and stratified

epithelium but also in mature keratinocytes, consistent with

previous observations that p63, besides enhancing self-re-

newal of keratinocytes, promotes entry into differentiation

(Nguyen et al, 2006; Truong et al, 2006). However, p63

itself is strongly down-regulated with differentiation and is

up-regulated in SCCs (Westfall and Pietenpol, 2004;

Dotto, 2009), while IRF6 exhibits the opposite pattern

of expression. Therefore, other key determinants of IRF6

expression must exist.

We have shown here that IRF6 gene transcription is

induced in differentiating keratinocytes by a Notch-depen-

dent mechanism. IRF6 nascent transcripts are induced by

Notch activation even under conditions of protein synthesis

inhibition, indicating that this gene is a primary Notch target.

The fact that levels of mature IRF6 mRNA are super-induced

under these conditions points to the possibility of a further

level of regulation, typical of genes regulated at the post-

transcriptional mRNA stability level. In contrast to IRF6,

differentiation marker expression is not induced by increased

Notch activity under conditions of protein synthesis

inhibition. This supports the overall conclusion that IRF6 is

a primary Notch target gene in keratinocytes, which is in turn

involved in control of differentiation. In SCC cells, the

decreased IRF6 levels can be explained by compromised

Notch signalling, with differentiation being a secondary

cause. This however does not rule out the likely possibility

of an amplification mechanism, whereby differentiation is

also reinforcing IRF6 expression and function. In fact, posi-

tive feedback loops of this kind are very often employed in

important cell-fate decisions and, of relevance to the present

situation, expression of Notch1 receptor as well as Jagged1/2

ligands are both under positive control of Notch pathway

activation (Bray, 2006; Yashiro-Ohtani et al, 2009).

We used a combination of multi-modality chromatin ana-

lysis to identify regions of likely regulatory function within

the IRF6 locus. While endogenous Notch1 protein binds to

one such region upstream of the IRF6 promoter (region B in

Figure 5A), our data point to a complex mode of regulation

that depends on overall chromatin configuration and the

concerted action of Notch with other positive and negative

regulators of transcription. Analysis of families with non-

syndromic cleft lip has identified a single-nucleotide poly-

morphism in an enhancer region of the IRF6 gene that

disrupts binding of the AP-2 transcription factor (Rahimov

et al, 2008). Interestingly, this previously established AP-2

binding site maps within one of the putative regulatory

regions that we have identified in our analysis, which is not

bound by Notch1 (region A in Figure 4). This raises the

possibility of a convergent control of IRF6 expression, which

would be consistent with a previous report of a synergistic

function of AP-2 and Notch in keratinocytes (Wang et al,

2008). However, such a mode of regulation may be limited to

development, as knockdown of AP-2 expression in mature

keratinocytes had no effect on IRF6 expression.

In both human primary keratinocytes and SCC cells,

increased IRF6 expression elicits the same modulation of

basal and suprabasal differentiation marker genes as Notch

activation, with the effects of the latter being dependent on

IRF6 expression. IRF3 and IRF7 are two other IRF family

members that can dimerize with each other and form a large

transcriptional complex with NF-kB, AP-1 and CREB tran-

scription factors. Besides their role in innate immunity, these

IRFs have been implicated in oncogenesis (Tamura et al,

2008). As with NF-kB and Notch, they may play a tumour

suppressing or promoting function, depending on cell type

and context. Increased IRF3 expression and activity can

promote apoptosis or inhibit growth of a number of cancer

cell types, while IRF7 is a mediator of the latency and

oncogenic function of EBV latent membrane protein 1

(Zhang and Pagano, 2002). Both transcription factors can

control inflammatory cytokine production, which can have

determining consequences for tumour development in vivo

(Tamura et al, 2008). In keratinocytes, the combined knock-

down of the two proteins suppresses p63 expression, while

persistently elevated IRF7 expression counteracts the down-

modulation of p63 by Notch activation (Nguyen et al, 2006).

A positive role of IRF7 in keratinocyte-derived tumours is

further supported by the strikingly opposite modulation of

IRF7 versus Notch1 and IRF6 in a large set of clinically

occurring SCCs, and the up-regulation of IRF7 that accom-

panies the enhancement of keratinocyte tumour formation by

IRF6 knockdown.

Recent work has showed that the negative regulation of

p63 by Notch is not limited to the keratinocyte system, but

applies also to the mammary gland (Mazzone et al, 2010;

Yalcin-Ozuysal et al, 2010). This gland is composed of two

closely juxtaposed cell types, myoepithelial and luminal, with

increased Notch signalling during development being mu-

tually exclusive with p63 and Notch activation suppressing

p63 expression, as well as p63 controlled proteins like

integrins (Mazzone et al, 2010; Yalcin-Ozuysal et al, 2010).

In another context, secondary palate development, a genetic
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convergence of the IRF6 and Notch signalling, as affected by

Jagged ligand mutations, has also been established, even if

the molecular basis for this interplay remains to be defined

(Richardson et al, 2009).

The mechanism of action of IRF6 remains to be elucidated

(Bailey and Hendrix, 2008). The major phenotypic conse-

quences of genetic single point mutations abrogating its DNA-

binding activity are consistent with IRF6 functioning as a

direct modulator of transcription. However, since a large

fraction of this protein is in the cytoplasm, an attractive

possibility is that it may also affect transcription indirectly,

for instance by preventing other proteins with which it

interacts from entering the nucleus. This could be a phos-

phorylation-regulated phenomenon, as a number of IRFs

need to be phosphorylated for nuclear translocation and

activation and, in the case of IRF6, phosphorylation also

enhances proteosome-dependent degradation (Bailey et al,

2008).

Materials and methods

Cell culture
Conditions for culturing of primary mouse and HKCs and induction
of differentiation were as previously reported (Nguyen et al, 2006).
Stem cell, transit amplifying cell and terminally differentiated cell
populations were isolated as described previously (Dazard et al,
2000). SCCO11, O12, O22 and O28 cells were kindly provided by Dr
J Rocco (Massachusetts General Hospital), and SCC13 and SCC12
cells by Dr J Rheinwald (Brigham and Women’s Hospital), while
other cells were from ATCC. The LZRS-H-rasV12 (Dajee et al, 2003)
retrovirus was provided by Dr P Khavari (Stanford University).
NIH3T3 fibroblasts expressing full-length Jagged2 or carrying an
empty vector control (Luo et al, 1997) and purified IgG-Deltaext-myc

(Ohishi et al, 2000) were generous gifts of J Aster (Brigham and
Women’s Hospital) and I Bernstein (Fred Hutchinson Cancer
Research Center, Seattle), respectively. For co-culture experiments,
NIH3T3 fibroblasts expressing full-length Jagged2 or carrying an
empty vector control were pretreated with mitomycin (5mg/ml) for
2 h before adding HKCs for co-culture as described (Lowell et al,
2000). For plate-bound Delta experiments, plates were preincubated
with 10mg/ml of rabbit anti-human IgG (Sigma), blocked with BSA
2% and incubated with IgG-Deltaext-myc ligand or the control human
IgG at the indicated concentrations for 2 h. Cells were plated on top
for 72 h. DAPT was purchased from Calbiochem. For cell prolifera-
tion measurement, cells were incubated with BrdU (Amersham)
(pulse of 2 h) followed by immunofluorescence analysis with anti-
BrdU antibodies (BD Biosciences) according to the manufacturer’s
instructions.

Plasmids and viruses
The plasmids rNERT-neo and rNeo (Schroeder and Just, 2000) were
kindly provided by Dr U Just (Christian-Albrechts-University of Kiel,
Germany). The pincoNotch1 plasmid was obtained by inserting the
cDNA of activated Notch1 (from digestion of the pcDNA3/hNIC by
BamHI/XhoI) into the BamHI/EcoRI sites of the pincoGFP vector
(Nocentini et al, 1997). The pincoIRF6 plasmid was obtained by
cloning the myc-tagged full-length cDNA of human IRF6 from the
pcDNA3.2-myc-IRF6 plasmid (kindly provided by B Schutte) into the
vector AttR1–AttR2-pinco (kindly provided by C Missero, Naples,
Italy) using the GatewayTM cloning kit (Invitrogen) and the
following primers: 50-CACCATGGAGGAGCAGAAGCTGATCTCAGAGG
AGGA-30 (forward) and 50-TCACTGGGCCAGAGCCTGT-30 (reverse).
The viruses AdGFP, AdNotch1 were previously described (Capobian-
co et al, 1997). Conditions for retrovirus and adenovirus production
and infection were as previously reported (Rangarajan et al, 2001;
Nguyen et al, 2006).

Skin SCC samples
Skin and cutaneous squamous cell carcinoma samples were
obtained at the Department of Dermatology of the Zurich University
Hospital, Switzerland, from clinical biopsies. Parts not needed for

histological diagnosis were further processed with institutional
review board approval. The epidermis was mechanically separated
from the underlying dermis by a brief heat treatment (Kolev et al,
2008). Tissues were homogenized in TRI Reagent (Sigma) for RNA
preparation.

Quantitative real-time RT–PCR
Conditions for RNA preparation and real-time RT–PCR were as
previously described (Lefort et al, 2007). The list of gene-specific
primers is provided in Supplementary Table S1.

Immunodetection techniques and antibodies
Conditions for immunohistochemistry (Rangarajan et al, 2001),
immunoblotting (Lefort et al, 2007) were as described. The
following antibodies were used: p21 (sc-6246), Notch1 (sc-6014),
actin (sc-1616), p63 (sc-8343), PCNA (sc-56) (Santa Cruz),
involucrin (ab68) and IRF3 (ab76409) (Abcam), keratin 1
(PRB149P), loricrin (PRB145P) and keratin 14 (PRB155P) (Cov-
ance), IRF6 (custom ordered from Eurogentec using the two
previously reported KLH-coupled peptides (EDELEQSQHHV-
PIQDTFPF and SPEASWPKTEPLEMEV; Bailey et al, 2005)), IRF7
(LS-B2945) (Lifespan Biosciences), EGFR (ab52894: Abcam) and
g-tubulin (T-6557) (Sigma).

siRNA transfection for in vitro and in vivo assays
Primary HKCs or SCC13 cells were transfected with 200 nM of
Stealth validated siRNAs (Invitrogen) for human IRF6 n11
(HSS105511), IRF6 n12 (HSS105512) and CSL (HSS142635) and
control (45-2001) using lipofectamine reagent (Invitrogen).
Primary mouse keratinocytes were transfected with 200 nM of
validated siRNA (Qiagen) for mouse IRF6 (SI01077762) or control
(SI03650325). For in vivo intradermal and grafting assays, siRNA-
transfected primary HKCs plus/minus infection with the LZRS-H-
rasV12 retrovirus for 16 h were collected, admixed with Matrigel (BD
Biosciences) and injected at the epidermal–dermal junction or into
back-skin implanted graft chambers (2.5�106 cells per injection)
into NOD/SCID mice as previously reported (Wu et al, 2010).

Chromatin configuration analysis
ENCODE ChIP-seq and DNase I hypersensitivity tracks, and CSL
motif locations were mapped to the human genome (NCBI36/hg18)
through the UCSC genome browser. Image post-processing was
performed with Adobe Illustrator. ENCODE data and experimental
protocols are available online (http://genome.ucsc.edu/ENCODE/).

ChIP assays
Human epidermis was separated from the underlying dermis by a
brief heat treatment (Kolev et al, 2008) and was minced finely in
ice-cold PBS. Confluent primary HKCs as well as tissue samples
were then cross-linked with 37% formaldehyde to a final
concentration of 1% for 10 min at RT followed by the addition of
glycine (final concentration 125 mM). After cross-linking, tissues
were washed twice with 10 ml PBS plus protease inhibitors. Tissue
pellets were processed for ChIP assays as previously described
(Lefort et al, 2007) using the rabbit anti-Notch1 antibody (Santa
Cruz, C-20) in parallel with affinity-purified non-immune IgGs.
When specified, anti-Notch1 antibody was preincubated for 2 h at
RT in the presence of neutralizing amounts of the corresponding
blocking peptide (sc-6014P, Santa Cruz). Primers used for real-time
PCR of various regions of the human IRF6 promoter were: 50-TG
GGTGCCCTGTTTTGATGA-30 and 50-ACTTCTAACCCAAGCCTAGC-30

(�11.4 kb); 50-TCCAACCTGACAGACTCCTA-30 and 50-CCTAGAGAAC
TGAGACAGGA-30 (�10.5 kb); 50-TCAATGGAGGGCAAAATGAT-30

and 50-ACGCCTCATCTGCTTGATCT-30 (�3.6 kb); 50-ACCCTCCCAGC
TTGAGTTTT-30 and 50-AAACCCCAGTGGCATACAAG-30 (�2.4 kb);
50-ACTATCCGGTAGAGCTAAAG-30 and 50-CCTCACTCCAGTTTCC-
CAAA-30 (þ 0.6 kb); 50-GAGAGCCCTCTATACCAATC-30 and 50-CTT
GCTATGCAGAGAGTTGC-30 (þ 5.3 kb); 50-AGACAGAAGTAGGTGGA
CAG-30 and 50-AGAAAGAAGCTGGTGTGGAG-30 (þ 5.9 kb); 50-ATGC
TTTGGGTCCTTGCTGA-30 and 50-TGAGTTGGGTGGGAAACATC-30

(þ 6.1 kb). Primers used for a region of the human HES1 promoter
were: 50-CCTCCCATTGGCTGAAAGTT-30 and 50-CCTGGCGG
CCTCTATATATA-30.

Statistics
All statistical evaluations were carried out using GraphPad Prism
5.0. All analyses are paired, two-tailed Student’s t-test unless
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otherwise specified. All real-time RT–PCR samples were tested in
triplicate and error bars represent s.d. P-values of o0.05 were
considered significant.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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