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Dpb11 coordinates Mec1 kinase activation
with cell cycle-regulated Rad9 recruitment
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Eukaryotic cells respond to DNA damage by activating

checkpoint signalling pathways. Checkpoint signals are

transduced by a protein kinase cascade that also requires

non-kinase mediator proteins. One such mediator is the

Saccharomyces cerevisiae Dpb11 protein, which binds to

and activates the apical checkpoint kinase, Mec1. Here, we

show that a ternary complex of Dpb11, Mec1 and another

key mediator protein Rad9 is required for efficient Rad9

phosphorylation by Mec1 in vitro, and for checkpoint

activation in vivo. Phosphorylation of Rad9 by cyclin-

dependent kinase (CDK) on two key residues generates a

binding site for tandem BRCT repeats of Dpb11, and is

thereby required for Rad9 recruitment into the ternary

complex. Checkpoint signalling via Dpb11, therefore, does

not efficiently occur during G1 phase when CDK is inac-

tive. Thus, Dpb11 coordinates checkpoint signal transduc-

tion both temporally and spatially, ensuring the initiator

kinase is specifically activated in proximity of one of its

critical substrates.
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Introduction

Lesions in DNA arising from extrinsic and intrinsic sources

can compromise the integrity of genetic information and

cause cell death. In eukaryotes, the DNA damage checkpoint

modulates many aspects of the cellular program in response

to DNA lesions (Melo and Toczyski, 2002; Harrison and

Haber, 2006). Checkpoint signalling involves a protein kinase

cascade initiated by one of the two apical kinases of the

phosphoinositide 3 kinase-related kinases (PIKK) family. In

Saccharomyces cerevisiae, these kinases are Mec1 and Tel1

(homologous to vertebrate ATR and ATM, respectively). They

phosphorylate and activate the effector kinases Rad53

(in vertebrates, Chk2) and Chk1. Conserved, non-kinase

mediator proteins of the DNA damage checkpoint pathway

include the BRCT domain-containing Rad9 and Dpb11 pro-

teins and the PCNA-like Ddc1–Mec3–Rad17 (9-1-1) complex

(Parrilla-Castellar et al, 2004; Garcia et al, 2005; FitzGerald

et al, 2009).

The DNA damage checkpoint must respond to a very wide

variety of DNA lesions. The apical kinases, however, do not

sense lesions directly, but are recruited via interactions with

other proteins that either bind directly to lesions or to

processed intermediates. Mec1 is recruited to ssDNA at

stalled replication forks or resected DSBs by interactions

with RPA (Rouse and Jackson, 2002; Zou and Elledge, 2003;

Ball et al, 2005, 2007). Separately, the 9-1-1 complex is loaded

at ss-ds-DNA junctions by the Rad24-clamp loader complex

(Ellison and Stillman, 2003; Majka and Burgers, 2003; Majka

et al, 2006a) where it acts as a co-sensor of DNA damage

(Bonilla et al, 2008).

Mediators are recruited to sites of DNA damage by a

complex network of interactions. The 9-1-1 complex plays a

role in recruiting Dpb11 and its orthologues to sites of DNA

damage (Furuya et al, 2004; Delacroix et al, 2007; Lee et al,

2007; Puddu et al, 2008). In budding yeast, this recruitment

involves Mec1 phosphorylation of the 9-1-1 complex subunit

Ddc1, which generates a binding site for the second pair of

phospho-protein binding BRCT repeats (BRCT3&4) of Dpb11

(Wang and Elledge, 2002; Puddu et al, 2008).

Recruitment of Rad9 to sites of DNA damage involves

multiple interactions. One pathway depends on histone

modifications: Rad9 can bind via its BRCT repeat domain to

histone H2A that has been phosphorylated by Mec1 or Tel1

(gH2A) (Hammet et al, 2007). It also binds lysine 79 methy-

lated histone H3 via its TUDOR domain (Grenon et al, 2007).

This modification is catalysed by the Dot1 methyltransferase

(Ng et al, 2002; van Leeuwen et al, 2002), but currently there

is no evidence that this modification is regulated in response

to DNA damage. Both unphosphorylatable H2A mutants and

dot1D mutants show defects in checkpoint activation during

G1 phase (Giannattasio et al, 2005; Wysocki et al, 2005;

Grenon et al, 2007; Hammet et al, 2007).

In contrast to G1 checkpoint activation, G2/M checkpoint

activation occurs in dot1D cells (Giannattasio et al, 2005).

However, checkpoint activation is abolished in dot1D dpb11-1

double mutants suggesting that an additional, alternative

mode of Rad9 recruitment may involve Dpb11 (Puddu et al,

2008). This idea is supported by the finding that Crb2, the

fission yeast homologue of Rad9, interacts with Cut5/Rad4,

the homologue of Dpb11 (Mochida et al, 2004; Du et al,

2006). This interaction is regulated by cyclin-dependent

kinase (CDK) phosphorylation of Crb2 and facilitates his-

tone-independent Crb2 recruitment to DNA damage foci

(Esashi and Yanagida, 1999; Nakamura et al, 2004;

Du et al, 2006). After phosphorylation by Mec1 Rad9 creates

a platform for the recruitment of Rad53 (Emili, 1998; Sun

et al, 1998; Vialard et al, 1998; Schwartz et al, 2002).

Another feature of checkpoint signalling is the activation

of the apical kinase by activator proteins. Mec1 and its

homologue ATR are stimulated by binding to Dpb11 and
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TopBP1, respectively (Kumagai et al, 2006; Mordes et al,

2008; Navadgi-Patil and Burgers, 2008). Mec1 is also stimu-

lated by binding to the Ddc1 subunit of 9-1-1 (Majka et al,

2006b). It is not sufficiently understood how relevant this

stimulation is for checkpoint signalling in vivo and especially

where in the signalling cascade these activators become

important. In this paper, we show that Dpb11 plays an

important role in three aspects of checkpoint signalling:

cell-cycle regulation, mediator recruitment and Mec1 kinase

activation. Dpb11 integrates these functions through forma-

tion of a ternary checkpoint complex.

Results

Interactions between Dpb11 and checkpoint proteins

To identify Dpb11 interacting proteins, we purified recombi-

nant, full-length, His-tagged Dpb11 via Ni2þ -NTA agarose

beads after incubation with whole cell extracts from asyn-

chronous yeast cultures. We identified Mec1, Ddc2 and Rad9

as specific Dpb11 interactors by mass spectrometry

(Figure 1A). We next repeated the pulldown experiment

with different domains of Dpb11 fused to GST (see

Figure 1D). Figure 1B shows that Rad9 from yeast extracts

binds to N-terminal BRCT1&2 domain (aa 1–275) but not to

BRCT3&4 (aa 276–600) or the C-terminal fragment of Dpb11

(aa 556–764) (Figure 1B). The Rad9 and Dpb11 orthologues

in fission yeast have previously been found to interact

(Mochida et al, 2004; Du et al, 2006), which suggests

evolutionary conservation.

Similarly to results published by the Burgers and Cortez

laboratories (Mordes et al, 2008; Navadgi-Patil and Burgers,

2008), we observe that the C-terminal domain of Dpb11 is

both necessary and sufficient to mediate the binding to Mec1

and Ddc2 (Figure 1C). Consistent with the fact that BRCT

repeats are not involved, the interaction does not depend on

phosphorylation of Mec1–Ddc2 and appears not to be regu-

lated during the cell cycle or in response to DNA damage

(Supplementary Figure S1). Together with previous work

showing that Dpb11 also interacts with Mec1-phosphorylated

Ddc1 via BRCT3&4 (Wang and Elledge, 2002; Puddu et al,

2008), Figure 1D summarizes interactions between Dpb11

and DNA damage checkpoint proteins.

The C-terminus of Dpb11 affects Mec1 signalling in vitro

and in vivo via conserved aromatic residues

Until now checkpoint studies have generally used the dpb11-1

allele, which introduces a STOP codon in place of W583.

However, in addition to defects in interacting with Mec1–

Ddc2, this mutant is also thermosensitive and shows strongly

reduced binding of the BRCT3&4 interactors Sld2 and Ddc1

(Kamimura et al, 1998; Wang and Elledge, 2002). Since the

Sld2–Dpb11 interaction is required for replication initiation

and a reduced initiation frequency can mimic a checkpoint

defect (Shimada et al, 2002; Tercero et al, 2003), we felt it was

important to generate true separation of function mutants.

Constructs truncated upstream of W583 were lethal; how-

ever, a truncation at amino acid 600 (dpb11DC) in the

endogenous DPB11 gene resulted in a viable haploid strain.

FACS analysis of WTand dpb11DC cells released from a-factor

arrest showed very similar replication profiles (Figure 2A).

Furthermore, in contrast to dpb11-1, we did not observe any

temperature sensitivity associated with dpb11DC (Figure 2B).

Therefore, dpb11DC appears to be functional for DNA

replication.

We next examined checkpoint responses in cells expres-

sing the dpb11DC mutant treated with phleomycin. Figure 2C

shows that these cells, synchronized in G2/M phase, showed

no significant defect in either cell survival or Rad53 activation

(Figure 2C). Previous work has shown that dpb11-1 has a

G2/M checkpoint defect only when combined with deletion

of DOT1 (Puddu et al, 2008). When dpb11DC was combined

with dot1D, we observed a deficient G2/M checkpoint as

indicated by reduced phosphorylation of Rad53 and survival

after DNA damage treatment (Figure 2C and D). These

defects are not as severe as the defect seen in a rad9D mutant

(Figure 2C; Supplementary Figure S2A). The checkpoint

defect in dpb11DC dot1D is also less severe than that seen

in the dpb11-1 dot1D double mutant at the permissive tem-

perature for dpb11-1 (Supplementary Figure S2C and D). This

Figure 1 Dpb11 physically interacts with the DNA damage check-
point proteins Mec1–Ddc2 and Rad9. (A) Pulldown of Dpb11
protein interactors with purified His–Dpb11 and cell lysates of
asynchronously dividing yeast. MS analysis showed the presence
of Mec1 (4220 kDa), Rad9 (4160 kDa) and Ddc2 (¼ 90 kDa).
(B) Rad9 interacts with the N-terminus of Dpb11. Pulldown experi-
ment with immobilized GST–Dpb11 or GST–Dpb11 fragments
(N¼ aa 1–275, M¼ aa 276–600, C¼ 556–764; see D) and whole
cell extracts of yeast containing Rad9–9myc. (C) The C-terminus of
Dpb11 contains an interaction site for Mec1–Ddc2. Pulldown with
GST–Dpb11 or GST–Dpb11 fragments (see D) and extracts contain-
ing Ddc2–9myc or Mec1–9HA. (D) Schematic diagram of Dpb11
domains and interactors involved in the DNA damage checkpoint.
BRCT repeat domains (I–IV) are marked as grey boxes.
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may be due to defects in DNA replication in the dpb11-1

mutant that may exacerbate defects in checkpoint activation.

Alternatively, this may be because Dpb11-1 is unable to bind

both Ddc1 and Mec1–Ddc2 (Wang and Elledge, 2002; Mordes

et al, 2008; Navadgi-Patil and Burgers, 2008), while Dpb11DC

is only deficient in Mec1–Ddc2 interaction (Figure 1C).

Dpb11 and TopBP1 can stimulate the kinase activities of

Mec1 and ATR, respectively, in vitro (Kumagai et al, 2006;

Mordes et al, 2008; Navadgi-Patil and Burgers, 2008). As

shown in Figure 2E, we also observed significant stimulation

of immunopurified Mec1–Ddc2 kinase activity by recombi-

nant Dpb11, and the C-terminal domain of Dpb11 is sufficient

for this activation (Figure 2E; Mordes et al, 2008). Although it

has been reported that Dpb11 does not contain sequences

related to the ATR activation domain (AAD) of TopBP1

(Mordes et al, 2008), we noticed that sequence homology

among Dpb11 C-termini from Saccharomyces sensu lato was

restricted to two patches of amino acids surrounding con-

served W/YG motifs (Supplementary Figure S2B). Because a

tryptophan residue is critically important in the TopBP1 AAD

Figure 2 The C-terminal domain of Dpb11 is dispensable for DNA replication, but in the absence of DOT1 is required for the G2/M DNA
damage checkpoint in vivo and stimulates the Mec1 kinase via two W/YG motifs in vitro. (A) The C-terminus of Dpb11 is not required for DNA
replication, since WT and dpb11DC cells synchronously released from G1 arrest (a) show identical replication profiles. (B) The dpb11DC
mutant, in contrast to dpb11-1, is not temperature sensitive. (C, D) The dpb11DC mutation results in a G2/M DNA damage checkpoint defect in
the absence of DOT1, as indicated by reduced Rad53 phosphorylation (C) and loss of viability (D) after treatment with phleomycin (50 mg/ml).
(C) Samples were taken before (�) or 300 after (þ ) addition of phleomycin. (E) The C-terminal domain of Dpb11 is sufficient for stimulation of
Mec1 kinase in vitro. Mec1–18myc–Ddc2 phosphorylation towards the model substrate PHAS1 is stimulated by GST–Dpb11 or GST–Dpb11-C
(555–764). (F) Stimulation of Mec1 kinase requires two W/YG motifs. GST–Dpb11-C (555–764) and mutant versions WG700,701AA and
YG735,736AA of comparable amount and purity (left) were used to activate Mec1 kinase in vitro (right). (G, H) The checkpoint phenotypes of
the dpb11DC and ddc1-T602A mutants are epistatic. Strains harbouring indicated combinations of mutations were analysed as in (C) and (D).
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(Kumagai et al, 2006), we examined the effect of mutating

these residues on the interaction with and activation of

Mec1–Ddc2. Both Dpb11-WG700,701AA and Dpb11-W700A

were unable to interact with Mec1–Ddc2 and Dpb11

YG735,736AA showed a reduced interaction (Supplemen-

tary Figure S2E). Moreover, individual mutation of the

W/YG motifs strongly reduced the stimulatory effect of

Dpb11 on the kinase activity of Mec1–Ddc2 (Figure 2F).

Supplementary Figure S2F shows that dpb11 WG700,701AA

point mutant is as defective as dpb11DC in checkpoint activa-

tion and the inability to activate Mec1, therefore, correlates

which a deficiency to support checkpoint signalling.

The interaction between the 9-1-1 complex and Dpb11 or

their orthologues is thought to recruit Dpb11 orthologues to

sites of DNA damage (Furuya et al, 2004; Delacroix et al,

2007; Puddu et al, 2008). We, therefore, tested a specific

Mec1-phosphorylation site mutant of Ddc1 (ddc1 T602A),

which prevents binding to Dpb11 (Puddu et al, 2008). In ddc1

T602A or ddc1 T602A dot1D mutant strains, addition of the

dpb11DC mutation did not result in increased checkpoint

defects as measured by Rad53 phosphorylation and survival

after phleomycin treatment (Figure 2G and H compare sam-

ple 2 with 6; and 4 with 8). This suggests that the Dpb11–

Mec1 interaction is functionally dependent on the Dpb11–

Ddc1 interaction, consistent with 9-1-1-dependent recruit-

ment of Dpb11. Defects in the Dpb11–Ddc1 module (i.e.,

ddc1 T602A) cause more severe phenotypes than defects in

the Dpb11–Mec1–Ddc2 module (i.e., dpb11DC, Figure 2G and

H, compare sample 4 with 7), suggesting that at least in this

mutant background Dpb11 has a function in checkpoint

signalling independent of its ability to activate Mec1–Ddc2.

CDK phosphorylation of Rad9 regulates binding to

Dpb11

Although the Dpb11–Rad9 interaction could occur in the

absence of exogenous DNA damage (Figure 1B), Figure 3A

shows that the Rad9–Dpb11 interaction was cell-cycle regu-

lated: it was detected in extracts from G2/M-arrested cells,

but not in extracts from G1-arrested cells (Figure 3A).

Moreover, the interaction was lost in extracts from G2/M-

arrested cells in which a stable version of the CDK inhibitor

Sic1 (Sic1DN) was overexpressed (Figure 3B). To test whether

this cell cycle-regulated interaction was directly mediated by

CDK phosphorylation, we expressed and purified recombi-

nant MBP–Rad9 and phosphorylated it with recombinant

CDK. Figure 3C shows that CDK phosphorylation strongly

stimulated the binding of MBP–Rad9 to either full-length

GST–Dpb11 or GST–Dpb11-N, which contains just BRCT1&2.

Rad9 has previously been shown to be a CDK substrate

(Ubersax et al, 2003) and in the fission yeast orthologue Crb2

the CDK site T215 was found to be important for binding of

the Dpb11 orthologue Cut5/Rad4 (Esashi and Yanagida, 1999;

Du et al, 2006). Homologues of Rad9 that contain conserved

C-terminal BRCT and TUDOR domains can be found across

the eukaryotic kingdom, but upstream of these domains they

differ in length and sequence (Supplementary Figure S5B).

Since the majority of putative CDK phosphorylation sites can

be found in this region (Supplementary Figure S5B), we

decided to unambiguously map the phosphorylation site

that regulates the interaction with Dpb11. We generated

N- and C-terminal truncations of Rad9 in vivo and tested their

ability to bind GST–Dpb11-N in extracts from G2/M-arrested

cells. We found that versions of Rad9 harbouring significant

N- or C-terminal truncations were still able to interact with

Dpb11, but the interaction was abolished when a region

between aa 451 and 540 of Rad9 was deleted (Figure 3D).

This region of Rad9 contains a cluster of four S/TP sites

(S462, T474, S494 and T507; compare Supplementary Figure

S3A). In order to test whether any of these are sufficient to

mediate phosphorylation-specific binding to Dpb11, we con-

structed four independent biotinylated 35mer peptides, each

harbouring one phosphorylated CDK site at the same position

(26) in the peptide, and tested their binding to Dpb11

BRCT1&2 by streptavidin bead pulldown. Figure 3E shows

that phospho-S462 and phospho-T474 peptides exhibited

phosphorylation-dependent binding to Dpb11, comparable

to the Dpb11-binding peptide from Sld3 (Figure 3E;

Supplementary Figure S3B). Notably, out of 12 Rad9 peptides

tested, which covered 12 out of 16 conserved S/TP sites, only

Rad9 pS462 and Rad9 pT474 were able to bind Dpb11

(Supplementary Figure S3A). Among these, we did not see

significant Dpb11 binding to peptides containing phosphory-

lated Ser11, a residue recently implicated in Dpb11–Rad9

interaction (Granata et al, 2010). Sld3 and its mammalian

orthologue Treslin/ticrr also utilize two phosphorylated re-

sidues to interact with BRCT1&2 of Dpb11/TopBP1 (Tanaka

et al, 2007; Zegerman and Diffley, 2007; Boos et al, 2011). We

were able to detect limited conservation of sequences sur-

rounding the two phosphorylation sites of Sld3 and Rad9,

using the sequences of different Saccharomyces sensu lato

species (Supplementary Figure S5A), suggesting that both

proteins interact with Dpb11 in a similar fashion.

To assess the importance of S462 and/or T474 phosphor-

ylation to the Dpb11 interaction, we introduced point muta-

tions into full-length Rad9 fused to MBP and examined CDK-

dependent binding to Dpb11-N in vitro. Mutation of these two

phosphorylation sites, but not mutation of two neighbouring

sites (ST494,507AA), greatly reduced the CDK-dependent

interaction with Dpb11 in vitro (Figure 3F) indicating that,

even in the presence of the other 18 potential CDK sites, S462

and T474 are critical for efficient CDK-dependent Dpb11

interaction. We generated phospho-specific antibodies to

these two sites to determine whether S462 and T474 are

phosphorylated in vivo (Supplementary Figure S4). Figure 3G

shows that both of these antibodies detect wild-type Rad9–

3Flag after pulldown of Rad9 with anti-FLAG antibody from

G2/M-arrested cells, but not from G1-arrested cells.

Moreover, the ST462,474AA mutant was not detected from

either G1- or G2/M-arrested cell extracts with these antibo-

dies. Therefore, these sites are phosphorylated in vivo in a

cell cycle-dependent manner. Finally, we employed the two-

hybrid assay to analyse the requirements of the Dpb11–Rad9

interaction in vivo and found that the T474A mutation

reduced the interaction with Dpb11 and S462A or

ST462,474AA mutations appeared to abolish it completely

(Figure 3H). Taken together, these results show that phos-

phorylation of S462 and T474 is necessary and sufficient for

CDK-dependent, cell cycle-regulated interaction between

Dpb11 and Rad9.

Using a degenerate Dpb11 BRCT binding consensus de-

rived from the Rad9 and Sld3 sequences, we were able to

detect potential CDK phosphorylation-dependent Dpb11 bind-

ing sites in the N-termini of different Rad9 fungal orthologues

(Supplementary Figure S5C). The alignment suggests that

Dpb11 in checkpoint activation
B Pfander and JFX Diffley

The EMBO Journal VOL 30 | NO 24 | 2011 &2011 European Molecular Biology Organization4900



T215 (Esashi and Yanagida, 1999; Du et al, 2006) and perhaps

T235 or T252 of Schizosaccharomyces pombe Crb2 are homo-

logous to S462 and T474. Thus, in addition to the Dpb11–

Ddc1 and the Dpb11–Mec1–Ddc2 interactions, the Dpb11–

Rad9 interaction is also a conserved feature of Dpb11/TopBP1

function.

Figure 3 The Rad9–Dpb11 interaction is cell-cycle regulated through direct binding of Dpb11 to Rad9 CDK sites S462 and T474. (A) The Rad9–
Dpb11 interaction is cell-cycle regulated. Rad9–9myc from G1- or G2/M-arrested cells was tested for binding to GST–Dpb11-N in pulldown.
(B) Overexpression of a stable version of Sic1 (Sic1DN; Desdouets et al, 1998) inhibits the Rad9–Dpb11 interaction in G2/M-arrested cells.
(C) Recombinant, purified MBP–Rad9 specifically interacts with GST–Dpb11 or GST–Dpb11-N after in vitro phosphorylation of Rad9 by CDK
(Cyclin ADN170-Cdk2; Brown et al, 1995). (D) N- and C-terminal truncations of endogenous Rad9 from lysates of G2/M-arrested cells were
analysed by GST–Dpb11 pulldowns. A central region of Rad9, which contains a cluster of CDK sites, is required for interaction with Dpb11.
(E) Phosphorylated Serine 462 and Threonine 474 peptides of Rad9 pull down GST–Dpb11-N. l-Phosphatase treatment demonstrated
phosphorylation specificity. The Dpb11-N interacting peptide from Sld3 served as a positive control (Zegerman and Diffley, 2007). (F) Rad9
ST462,474AA is deficient for in vitro binding to GST–Dpb11-N after CDK treatment. Experiment as in (B) but with mutant versions of MBP–
Rad9. (G) Rad9 is phosphorylated at CDK sites Serine 462 and Threonine 474 in vivo. Phospho-specific antibodies (Supplementary Figure S4)
were used to probe pulldowns of Flag–Rad9 or Flag–Rad9 ST462,474AA from G1- or G2/M-arrested cells. (H) Rad9 CDK sites are required for
the interaction with Dpb11 in vivo. Gal4–BD–Dpb11-N and Gal4–AD–Rad9 (WT and S462A, T474A, ST462,474AA mutants) fusions were used
to test the Rad9–Dpb11 interaction in the two-hybrid system. Expression of Rad9-fusion constructs was confirmed by Gal4–AD–westerns.
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CDK regulation of the Rad9–Dpb11 interaction

determines cell-cycle regulation of the DNA

damage checkpoint

The rad9 ST462,474AA mutant, which is defective in Dpb11

interaction, is fully able to activate the checkpoint in G1

as well as in G2/M in otherwise wild-type cells (Figure 4A

and B). However, when this mutant was combined with

dot1D, it was defective in G2/M checkpoint activation

(Figure 4B) similar to the dpb11DC mutant (Figure 2C). The

rad9 ST462,474AA mutation did not lead to an increase of the

phenotype of the ddc1 T602A mutant (Supplementary Figure

S6A), which completely abolishes the checkpoint function

of Dpb11 providing additional evidence that the rad9

ST462,474AA phenotype is DPB11 dependent. Analysis of

the Mec1-dependent phosphorylation of Dpb11 suggests

that the Rad9–Dpb11 is not involved in recruitment of

Dpb11 to DNA damage sites (Supplementary Figure S6B).

We observed a similar checkpoint defect for rad9

ST462,474AA dot1D and dpb11DC dot1D mutants, but the

rad9 ST462,474AA dpb11DC dot1D triple mutant showed a

slightly stronger phenotype (Supplementary Figure S6C).

This suggests that the Rad9–Dpb11 interaction may be

partially independent of the Dpb11–Mec1–Ddc2 interaction

at least in these mutant backgrounds.

The results shown in Figure 4A and B are consistent with

the hypothesis that Dot1 and Dpb11 act redundantly in G2/M

but the Dpb11 pathway does not function during G1 phase

because Rad9 cannot be phosphorylated by CDK. To test

whether the Rad9–Dpb11 interaction is sufficient to explain

cell cycle-regulated checkpoint signalling, we constructed a

covalent fusion of Rad9 ST462,474AA and Dpb11 lacking the

N-terminal BRCT1&2 repeat domain (RAD9–AA–DPB11DN

fusion). This fusion is exactly analogous to the fusion we

previously used to show that phosphorylation of Sld3 by CDK

generates a binding site for Dpb11 during replication initia-

tion (Zegerman and Diffley, 2007). Expression of RAD9–AA–

DPB11DN appears not to negatively influence DNA replica-

tion (Supplementary Figure S7A). Neither rad9-ST462,474AA

nor dpb11DN alone is able to support checkpoint signalling in

a dot1D background (see Figures 4B and 5D). Figure 4C

shows that the RAD9–AA–DPB11DN fusion was able to

restore phleomycin-induced Rad53 activation to WT levels

during G2/M phase in a dot1D, dpb11DC, rad9D background.

Indeed, the RAD9–AA–DPB11DN fusion appears to be a gain-

of-function mutant, since the checkpoint was dominantly

activated even at lower phleomycin concentrations compared

with wild-type cells and also the fusion protein could be

recruited in a Ddc1 T602-independent way (Supplementary

Figure S7B–D).

Figure 4D shows that the fusion was also able to restore

phleomycin-induced Rad53 phosphorylation in G1-arrested

cells in the absence of Dot1 and the requirement for Dot1 in

the G1 checkpoint is therefore bypassed. Taken together,

these results show that CDK phosphorylation of Rad9 is

required to induce interaction between Dpb11 and Rad9 and

that lack of this interaction in G1 phase is sufficient to explain

the cell-cycle regulation of checkpoint signalling.

Dpb11 specifically induces Rad9 phosphorylation by

Mec1 in a ternary Rad9–Dpb11–Mec1–Ddc2 complex

in vitro

If Dpb11 operates as a molecular scaffold in the DNA damage

response, it should be able to simultaneously interact with

different checkpoint proteins, for example, Rad9 and Mec1–

Ddc2. To test this, we examined the ability of Dpb11 to bridge

an interaction between Mec1–Ddc2 and Rad9. Figure 5A

shows that, in the presence of full-length Dpb11 but not a

C-terminal fragment of Dpb11 (Dpb11-C), CDK-phosphory-

lated Rad9 was specifically co-immunoprecipitated with

Mec1 in a Mec1 pulldown.

To integrate the scaffolding function and the Mec1–Ddc2

activation function of Dpb11 into a mechanistic model, we

hypothesized that Dpb11 may work by activating Mec1–Ddc2

and bringing active Mec1–Ddc2 into proximity with one of its

key downstream targets, Rad9. We examined the ability of

Dpb11 full length and Dpb11-C to activate Mec1–Ddc2 to-

wards the non-specific PHAS1 substrate and towards Rad9.

Figure 5B shows that both full-length Dpb11 and Dpb11-C

activate Mec1–Ddc2 to a very similar extent when PHAS1 is

used as a substrate. However, when we used Rad9 that had

been pre-phosphorylated with CDK and repurified as a sub-

strate (Supplementary Figure S8A and B), we found that the

Figure 4 CDK regulation of the Rad9–Dpb11 interaction constitutes the essential cell-cycle regulation of checkpoint signalling. (A) The rad9
ST462,474AA allele is proficient for the G1 checkpoint. Rad53 phosphorylation was determined in samples of G1-arrested cells, before (�) or
after (þ ) 300 treatment with phleomycin (50mg/ml). (B) rad9 ST462,474AA dot1D cells show defects in DNA damage-induced Rad53
phosphorylation in G2/M-arrested cells. Experiment as in (A) but with G2/M-arrested cells. (C) A fusion protein consisting of the two
checkpoint deficient alleles rad9 ST462,474AA and dpb11DN (276-C) can support checkpoint activation in G2/M. The RAD9–AA–DPB11DN
fusion was ectopically expressed from the DPB11 promoter as only cellular copy of RAD9 in WT or dot1 dpb11DC strains. (D) The RAD9–AA–
DPB11DN fusion restores checkpoint activation in G1-arrested dot1D cells.
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full-length Dpb11 promoted B2-fold more Rad9 phosphory-

lation than Dpb11-C (Figure 5B and C). This stimulation was

not seen when we used Rad9 ST462,474AA (AA) as substrate,

indicating that recruitment of Rad9 to Dpb11 was critical for

the stimulation. This stimulation by Dpb11 was maximal at

approximately equimolar concentrations of Rad9 and Dpb11,

while a further increase of the Rad9 concentration increased

overall Rad9 phosphorylation but reduced the stimulatory

effect of Dpb11 (Supplementary Figure S8C and D). Taken

together, these results support the hypothesis that Dpb11 acts

both to activate Mec1–Ddc2 and to bring the active kinase

together with CDK-phosphorylated Rad9 protein. When we

compared the efficiency of phleomycin-induced Rad9 and

Rad53 phosphorylation in vivo, we noticed that in the

dpb11DC dot1D mutant Rad53 phosphorylation was affected

more strongly than phosphorylation of Rad9 (Figure 2C;

Supplementary Figure S9A). This suggests that activation of

Mec1 by Dpb11 may be more important for the efficient

phosphorylation of Rad53.

Simultaneous interaction of Dpb11 with Rad9 and

Mec1–Ddc2 is required for efficient checkpoint

activation in vivo

This model predicts that simultaneous interaction of Dpb11

with Rad9 and Mec1–Ddc2 should be required for checkpoint

activation. Alternatively, if the Rad9–Dpb11 and Dpb11–

Figure 5 Dpb11 forms a ternary complex with Rad9 and Mec1–Ddc2, which is critical for phosphorylation by Mec1 in vitro and checkpoint
activation in vivo. (A) Mec1–18myc can pull down CDK-phosphorylated MBP–Rad9 in the presence of increasing amounts of full-length
Dpb11–His but not the isolated C-terminal domain (GST–Dpb11-C), demonstrating formation of a ternary Rad9–Dpb11–Mec1–Ddc2 complex
in vitro. (B) In vitro phosphorylation of Rad9 by Mec1 is specifically enhanced by a Rad9–Dpb11–Mec1–Ddc2 complex. Recombinant, purified
MBP–Rad9 or MBP–Rad9 ST462,474AA is quantitatively phosphorylated by CDK, repurified (see Supplementary Figure S8A) and used as
substrate in Mec1 kinase assays. Mec1 was activated with GST–Dpb11 or GST–Dpb11-C at equimolar concentration as MBP–Rad9. The PIKK
substrate PHAS1 was used as a specificity control. (C) Quantification of Dpb11-dependent stimulation of Mec1 phosphorylation of Rad9.
Signals are normalized to phosphorylation of WT Rad9 in the absence of Dpb11. (D, E) Dpb11DN fails to rescue the checkpoint defect of dot1D
dpb11DC cells. Dpb11 or Dpb11DN was ectopically expressed from the endogenous promoter as a second copy of DPB11. G2/M DNA damage
checkpoint activation was measured by Rad53 phosphorylation (D) or survival (E) after phleomycin treatment (50mg/ml). (D) Samples were
taken before (�) or 300 after (þ ) addition of phleomycin.
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Mec1–Ddc2 interactions were independent of each other,

checkpoint signalling should be functional in cells expressing

two versions of Dpb11, one able to support the interactions

with the 9-1-1 and Mec1–Ddc2 but defective in the Rad9

interaction (dpb11DN), and the other able to support interac-

tions with Rad9 and the 9-1-1 complex but not with Mec1–

Ddc2 (dpb11DC). To address this, we asked whether the

dpb11DN and dpb11DC mutants, when expressed together,

could support checkpoint activation. Figure 5D and E show,

however, that both Rad53 activation and cell survival are

compromised in dpb11DC dpb11DN dot1D cells (compare

lanes 15 and 16 in Figure 5D and E). In contrast, if full-length

DPB11 is expressed as a second copy in dpb11DC dot1D cells,

the checkpoint defect is rescued to levels comparable to WT

or dot1 strains (Figure 5D, compare lanes 7 and 8; Figure 5E).

The dpb11DC protein is likely to be functional because it can

fully support the replicative function of Dpb11 (Figure 2A),

which requires functional N-terminal and central BRCTrepeat

domains. The Dpb11DN protein is expressed at a similar level

to that of the full-length protein (Figure 5D). Moreover

Dpb11DN must be able to bind to the 9-1-1 complex and

Mec1–Ddc2, because it is able to support residual checkpoint

activation in G1, which can be observed under high concen-

trations of phleomycin (Supplementary Figure S10). This

checkpoint activation is independent of the Rad9–Dpb11

interaction, but requires Dpb11 to bind to the 9-1-1 complex

and Mec1–Ddc2 (Supplementary Figure S10). As a final test,

we examined the effect of a single point mutation in BRCT1,

dpb11-T12A. Supplementary Figure S11 shows that dpb11-

T12A also fails to complement dpb11DC in the checkpoint,

similar to dpb11DN (Supplementary Figure S11). Taken to-

gether, these results indicate that Dpb11 must simultaneously

interact with Rad9 and Mec1–Ddc2 for efficient checkpoint

signalling.

Discussion

Our work, taken with previous work in budding and fission

yeast as well as Xenopus, argues that Dpb11 plays a crucial

role in integrating cell cycle and DNA damage signals to

ensure correct spatial and temporal checkpoint activation.

Dpb11 accomplishes this by providing a scaffolding function

for Rad9, 9-1-1 and Mec1–Ddc2 and activating the Mec1–

Ddc2 kinase specifically in this context (Figure 6A).

Our data indicate that Rad9 specifically interacts with

Dpb11 after phosphorylation by CDK, thus promoting inter-

action during S, G2 and M phases of the cell cycle. We

identified two key CDK phosphorylation sites on Rad9

(S462 and T474) that bind directly to the N-terminal BRCT

repeats 1 and 2 of Dpb11 and are necessary and sufficient for

Rad9–Dpb11 interaction. Fusion of Rad9 to Dpb11 bypassed

the requirement for CDK phosphorylation of Rad9 and sup-

ported Dot1-independent checkpoint signalling even during

G1 phase, when CDK is inactive. Thus, CDK phosphorylation

of Rad9 is crucial for coordinating DNA damage signalling

with the cell cycle. CDK phosphorylation of S11 of Rad9 has

recently been implicated in the Dpb11 interaction (Granata

et al, 2010). However, peptides containing phospho S11 did

not interact with Dpb11 (Supplementary Figure S3) and rad9

mutants in which the N-terminal cluster of CDK sites has

been deleted can still interact with Dpb11 (Figure 3D) while

full-length Rad9 ST462,474AA cannot interact with Dpb11

(Figure 3F and H). Consequently, phosphorylation of S11

appears to play no direct role in Dpb11 binding. S11 phos-

phorylation may, of course, contribute in some way indir-

ectly, similar to Sld2 where phosphorylation of a cluster of

CDK sites is required for the phosphorylation of T84, which

constitutes the direct Dpb11 binding site (Tak et al, 2006). The

region around S462 in Rad9 aligns well with T215 of the

Schizosaccharomyces pombe Rad9 orthologue, Crb2

(Supplementary Figure S5C), which has previously been

implicated in binding of the fission yeast Dpb11 orthologue,

Cut5/Rad4 (Du et al, 2006). There are two potential CDK sites

in Crb2 downstream of T215 which have some homology

with T474 of Rad9 and it will be interesting to know if they

also contribute to Cut5/Rad4 binding. Both Rad9 and Sld3

contain two CDK phospho-sites required for efficient interac-

tion with BRCT1&2 of Dpb11. The recent crystal structure of

TopBP1 shows that BRCT repeats 1 and 2 each have potential

phosphopeptide binding sites (Rappas et al, 2010). We spec-

ulate that these two phosphorylation sites may each bind to

different BRCT repeats, though further work is required to

verify this.

Consistent with previous work, we found a domain of

Dpb11 distal to the last BRCT repeat that binds to and

activates the Mec1/Ddc2 kinase. While there is very little

Figure 6 Model of Dpb11 function in the checkpoint response.
(A) The Dpb11 module of checkpoint signalling: Dpb11 engages
three protein domains to form a checkpoint signalling complex with
Rad9, 9-1-1 and Mec1–Ddc2. In this assembly, Dpb11 coordinates
specific activation of Mec1 with cell cycle-regulated recruitment of
the Mec1 substrate Rad9. This signalling complex is presumably
localized to DNA damage sites by the loaded 9-1-1 complex and
RPA-bound Mec1–Ddc2. (B) Holistic view of DNA damage check-
point signalling upstream of Rad53 activation. The Dpb11 module is
integrated with cell cycle- and Dpb11-independent modules:
Binding of Rad9 to histones, which are H3-K79 methylated and
H2a-S129 phosphorylated can localize Rad9 to DNA damage sites.
The Mec1 kinase can be activated Dpb11-independently by the Ddc1
subunit of the 9-1-1 complex. It remains to be clarified, if crosstalk
of Dpb11-dependent and -independent modules exists in WT cells.
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sequence similarity between this domain and the ATR acti-

vating domain (AAD) from TopBP1, we identified two motifs

that contain conserved aromatic residues, which are critical

for both interaction and activation, similar to the AAD in

Xenopus TopBP1. Both Mec1 and Ddc2 are required for

interaction with Dpb11, suggesting that either interaction

occurs near the interface between Mec1 and Ddc2 or con-

formation changes that occur when Mec1 and Ddc2 interact

are required to generate a Dpb11 binding site on either Mec1

or Ddc2. How the Dpb11 AAD activates Mec1–Ddc2 is

unknown, but the presence of conserved aromatic residues

in the AADs of Dpb11, TopBP1 and Ddc1 suggests a common

mechanism (Kumagai et al, 2006; Navadgi-Patil and Burgers,

2009). Interestingly, a Mec1-phosphorylation site (T731) in

Dpb11 has been identified that is required for activation of

Mec1 (Mordes et al, 2008) and might be part of the AAD

motif. This suggests that AADs may not work constitutively,

but may be regulated by post-translational modifications.

Because dpb11DC mutants are viable at all temperatures

tested, our results demonstrate that the C-terminus of Dpb11

including the AAD is not required for viability. Thus, while

Mec1 and Ddc2 are essential, their activation by Dpb11 is not

essential. Because deletion of the other AAD-containing

protein, Ddc1, is not lethal in combination with dpb11DC,

either Mec1 activation is not essential or there are other as yet

unidentified Mec1-activating proteins in yeast. We favour this

latter possibility because the dpb11DC ddc1WW352,544AA

double mutant is not as sensitive to phleomycin as the rad9D
mutant and because Rad53 activation is only partly defective

in this double mutant (Supplementary Figure S9B). The

viability of dpb11DC also shows that the C-terminus of

Dpb11 does not have an essential role in DNA replication at

any temperature.

Our biochemical and genetic data indicate that Dpb11 must

be able to interact with both CDK-phosphorylated Rad9 and

AAD-activated Mec1–Ddc2 for efficient Rad9 phosphoryla-

tion by Mec1–Ddc2 and efficient checkpoint activation. In

this regard, Dpb11 appears to act analogously to the arche-

typal scaffold protein, Ste5, which provides a scaffold for

mating type signalling and also specifically activates the

bound Fus3 kinase (Choi et al, 1994; Bhattacharyya et al,

2006; Hao et al, 2008; Good et al, 2009). Dpb11 also acts as a

scaffold protein in DNA replication, bridging interactions

between Sld3 and Sld2 (Tanaka et al, 2007; Zegerman and

Diffley, 2007). Although the C-terminal AAD is not required

for replication, it is interesting to consider that Dpb11 may, by

analogy to its role in checkpoints, play roles in the initiation

process beyond simple scaffolding.

Figure 6B considers our results in the broader context of

checkpoint activation. After ds break formation and resec-

tion, RPA binds to ssDNA and recruits Mec1–Ddc2 (Rouse

and Jackson, 2002; Zou and Elledge, 2003; Ball et al, 2007).

And separately, the 9-1-1 complex is loaded onto the recessed

50 end by the Rad24/RFC complex (Ellison and Stillman,

2003; Majka and Burgers, 2003; Zou et al, 2003; Majka

et al, 2006a). The phosphorylation of the Ddc1 subunit of

the 9-1-1 complex is critical for the function of Dpb11 in

checkpoint signalling since the ddc1 T602A mutant is

epistatic to both dpb11DC and rad9 ST462,474AA. This,

however, creates an apparent paradox: Mec1–Ddc2 activation

requires the AAD of Dpb11, yet Dpb11 cannot be recruited to

ds breaks until Ddc1 is phosphorylated by Mec1–Ddc2. It is

possible that direct recruitment of Dpb11 to Mec1/Ddc2 via

interaction with the AAD results in sufficient activation of

Mec1–Ddc2 to promote Ddc1 phosphorylation, which sup-

ports further Dpb11 recruitment and Mec1–Ddc2 activation.

Alternatively, the AAD of Ddc1 (or some, as yet unidentified

AAD) may play some priming role in Mec1–Ddc2 activation,

allowing subsequent Ddc1 phosphorylation and Dpb11 re-

cruitment. Furthermore, the ATM orthologue Tel1 may be

involved in this phosphorylation event thus potentially estab-

lishing crosstalk between the two apical checkpoint kinases.

Finally, Mec1–Ddc2, recruited via RPA, may have sufficient

activity prior to AAD interaction to phosphorylate Ddc1,

promoting Dpb11 recruitment and complete activation.

Further work is required to resolve this issue.

The role of Ddc1 in checkpoint activation is, however,

more complex. The Ddc1 AAD mutant (ddc1WW352,544AA)

is epistatic to dot1D, not to dpb11DC (Supplementary Figure

S9B), suggesting that the Ddc1 AAD acts primarily within the

Dot1 module of the pathway. This suggests that Ddc1 plays

different roles in the two pathways: it is required to recruit

Dpb11 via Ddc1 phosphorylation in the Dpb11 pathway, but it

is required to directly activate Mec1–Ddc2 in the Dot1 path-

way. Currently we can only speculate, why Ddc1 cannot

simultaneously bind to Dpb11 and activate Mec1: both inter-

actions involve the C-terminal domain of Ddc1 and may be

due to steric constraints.

There is evidence for alternative routes to checkpoint

activation, at least in mutant backgrounds. For example, at

high concentrations of phleomycin, G1 cells can activate

Rad53 even in dot1D mutants (Supplementary Figure S10).

This activation requires the AAD of Dpb11 but not the CDK

phosphorylation sites in Rad9, and is therefore most likely

mediated by a Dpb11 subcomplex. It is currently unclear

whether such subcomplexes (Rad9–Dpb11–9-1-1 or 9-1-1–

Dpb11–Mec1–Ddc2) are relevant for checkpoint activation

in wild-type cells, since their function can only be observed

in mutant backgrounds and/or at high amounts of DNA

damage and results only in partial checkpoint activation.

Once Rad9 is recruited, Mec1–Ddc2 phosphorylates it,

which promotes both oligomerization of Rad9 via its BRCT

domain and recruitment of Rad53 via its FHA domains (Emili,

1998; Sun et al, 1998; Vialard et al, 1998; Soulier and

Lowndes, 1999; Sweeney et al, 2005; Usui et al, 2009).

Mec1–Ddc2-dependent phosphorylation of Rad53 allows

further oligomerization and autoactivation (Sanchez et al,

1996; Sun et al, 1996). Understanding in detail how Rad53

gets activated will ultimately require reconstitution of this

complex network with purified proteins. Our partial recon-

stitution of the Dpb11 module will hopefully contribute

towards this goal.

Materials and methods

Strains, plasmids, antibodies and proteins
All yeast strains are based on W303; details are listed
in Supplementary Table 1. N-terminal truncations (451–1309,
471–1309 and 541–1309) of Rad9 were created by deletion of the
corresponding sequence from the endogenous gene and integration
of the RAD9 promoter and new start codon at the site of truncation.
Additionally, a 9myc tag was integrated at the C-terminus.
C-terminal truncations (1–750, 1–540 and 1–450) of Rad9 were
generated through deletion and integration of the 9myc tag at the
position of truncation. Unless specifically indicated yeast strains
were grown in rich medium at 301C. Details on plasmid constructs
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can be found in Supplementary Table 2. Antibodies used in this
study are listed in Supplementary Table 3. Purification protocols for
proteins used in this study can be found in Supplementary data.

Protein interaction techniques
The initial pulldown was performed with B1 nmol Dpb11–His
bound to Ni-NTA magnetic beads (Qiagen) and 6 ml of DNAse
treated (1500 U, 300, 41C) yeast extract (300 mM KOAc, 5 mM
Mg2SO4 1 mM CaCl2, 25 mM Hepes pH 7.6, 10% glycerol, 0.02%
NP-40, 2 mM b-Me, protease inhibitors) corresponding to 5�1010

asynchronously dividing cells. Bound proteins were eluted with
500 mM imidazole and concentrated by TCA precipitation. 10% of
the bound sample was loaded on 4–12% NuPAGE (Figure 1A),
which was silver stained. 90% of the sample was run under
identical conditions and stained with colloidal Coomassie. The gel
was cut into 30 slices and after trypsin digestion bound proteins
were identified by ESI ion trap MS.

For small-scale pulldowns, GST–Dpb11 or GST-tagged protein
fragments were immobilized on glutathione sepharose 4B (GE
Healthcare) and incubated with 600 ml ammonium sulphate
precipitated (57%) cell extracts (buffer for binding experiments
with Ddc2: 300 mM KOAc, 25 mM Hepes pH 7.6, 10% glycerol,
0.02% NP-40, 2 mM b-Me, protease inhibitors; for binding experi-
ments with Rad9: 200 mM KOAc, 100 mM Hepes pH 7.6, 10%
glycerol, 0.02% NP-40, 2 mM b-Me, 20 mM b-glycerophosphate,
10 mM NaF, 100mM okadaic acid, protease inhibitors) correspond-
ing to 1�109 cells.

For pulldowns with Dpb11 and purified Rad9, the procedure was
as described above, but instead of cell extract GST–Dpb11 beads
were incubated with 6 pmol MBP–Rad9, which was quantitatively
pre-phosphorylated with btCyclin ADN170-hsCdk2 (Brown et al,
1995).

In order to test ternary complex formation, immunopurified
Mec1–18myc–Ddc2 (protocol in Supplementary data) was used to
pull down 0.3 pmol MBP–Rad9 and 0, 1, 3, 10 pmol Dpb11 FL-His or
GST–Dpb11-C in buffer containing 500 mM KOAc, 100 mM Hepes pH
7.6, 10% glycerol, 0.02% NP-40, 2 mM b-Me, 20 mM b-glyceropho-
sphate, 10 mM NaF, 100mM okadaic acid and protease inhibitors.

Peptide binding was investigated with 35mer peptides corre-
sponding to endogenous Rad9 sequence, harbouring a phosphory-
lated amino acid at position 26, an N-terminal EAhx-linker and
biotin tag. 75ml Streptavidin Dynabeads (Dynal) were saturated
with peptide, treated with l-phosphatase or left untreated, and used
to pull down 40 pmol GST–Dpb11-N (aa 1–276) in buffer containing
500 mM KOAc, 100 mM Hepes pH 7.6, 10% glycerol, 0.02% NP-40
and 2 mM b-Me.

In vivo checkpoint assays
To investigate checkpoint activation in vivo, yeast strains were
arrested in G1 with a-factor or in G2/M with nocodazole.
Phleomycin was added to 50mg/ml (or the indicated concentration)

and samples corresponding to 2�107 cells were taken at indicated
time points and subjected to TCA precipitation. Rad53 activation
was measured by its phosphorylation-dependent shift in electro-
phoretic mobility. For determination of survival, cells were released
from cell-cycle block simultaneously with addition of phleomycin.
At indicated time points, cells were diluted to 2�106 cells/ml. This
solution as well as five 1:5 dilutions were spotted on plates without
drugs and incubated for 2 days.

In vitro kinase assays
Mec1 kinase assays were performed as described (Mordes et al,
2008), with small modifications. A protocol of the Mec1–18myc–
Ddc2 preparation can be found in Supplementary data. 10 ml of
bead-bound Mec1–18myc–Ddc2 was incubated for 300 at 301C with
B0.5 pmol CDK pre-phosphorylated MBP–Rad9 or MBP–Rad9–AA
and 0.75 pmol GST–Dpb11 or GST–Dpb11-C (0.75, 0.25 or
0.075 pmol in Figure 2E) and/or 15 pmol PHAS1 (60 pmol in
Figure 2F) in 40ml kinase reactions (100 mM KOAc, 10 mM Hepes
pH 7.6, 50 mM b-glycerophosphate, 10 mM MgCl2, 10% glycerol,
2 mM b-Me, 10 mM ATP, 5 mCi gP32-ATP). Phosphorylation of Rad9
and PHAS1 was visualized by autoradiography; equal loading of the
substrates was confirmed by western blots (Coomassie stain in
Figure 2F).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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