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Abstract

Background: Using a knock-out mouse model, it was shown that NETO1 is a critical component of the NMDAR complex,
and that loss of Neto1 leads to impaired hippocampal long term potentiation and hippocampal-dependent learning and
memory. Moreover, hemizygosity of NETO1 was shown to be associated with autistic-like behavior in humans.

Purpose of the Research: We examined the association between schizophrenia and the neuropilin and tolloid-like 1 gene
(NETO1). First, we selected eight single nucleotide polymorphisms (SNPs) within the NETO1 locus, based on the Japanese
schizophrenia genome wide association study (JGWAS) results and previously conducted association studies. These SNPs
were genotyped in the replication sample comprised of 963 schizophrenic patients and 919 healthy controls. We also
examined the effect of associated SNPs on scores in the Continuous Performance Test and the Wisconsin Card Sorting Test
Keio version (schizophrenic patients 107, healthy controls 104).

Results: There were no significant allele-wise and haplotype-wise associations in the replication analysis after Bonferroni
correction. However, in meta-analysis (JGWAS and replication dataset) three association signals were observed (rs17795324:
p = 0.028, rs8098760: p = 0.017, rs17086492: p = 0.003). These SNPs were followed up but we could not detect the allele-
specific effect on cognitive performance measured by the Continuous performance test (CPT) and Wisconsin Card Sorting
test (WCST).

Major Conclusions: We did not detect evidence for the association of NETO1 with schizophrenia in the Japanese
population. Common variants within the NETO1 locus may not increase the genetic risk for schizophrenia in the Japanese
population. Additionally, common variants investigated in the current study did not affect cognitive performance, as
measured by the CPT and WCST.
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Introduction

The glutamate hypothesis of schizophrenia (GHS) emerged in the

early 1980 s as an alternative to the prevailing theory of altered

dopamine neurotransmission. The GHS is based on the observation

that non-competitive antagonists of the N-methyl-d-asparate

(NMDA) subtype of glutamate receptors, such as phencyclidine

(PCP), ketamine and MK-801, induce a psychotic reaction in

healthy individuals that resembles schizophrenia (both the positive

and negative symptoms). When the same compounds are

administered to patients with schizophrenia, exacerbation of

psychotic symptoms can be the outcome [1]. Together, these

observations suggest that diminished function of the NMDA

receptor (NMDAR) may play a role in the pathoetiology of

schizophrenia. Moreover, evidence from morphological, clinical

and neuroimaging studies have provided support for the GHS by

mapping cognitive impairment, alterations in blood flow and

changes in neuronal morphology to particular brain areas, including

the frontal and cingulate cortices, both of which are areas with

extensive excitatory glutamatergic neurotransmission [2].
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The N-methyl-D-aspartate receptor (NMDAR), a major

excitatory ligand-gated ion channel in the central nervous system,

is composed of a heterotetramer between two NR1 and two NR2

subunits. Moreover, the NMDAR is a principal mediator of

synaptic plasticity [3]. It has been shown that corticolimbic

NMDAR hypofunction is one of the core molecular mechanisms

relevant for phenotypes observed in animal models of schizophre-

nia [4]. One of the genes that regulate NMDAR function is

neuropilin and tolloid-like 1 gene (NETO1). NETO1 maps to the

18q22-q23 and three alternative splicing variants (mRNA level)

have been observed [5]. Specifically, variants 1 and 2 are detected

in the retina while variant 3 is specific for fetal and adult brain.

NETO1 is a transmembrane protein, which has two extracellular

CUB domains, a low-density lipoprotein class A (LDLa) domain, a

transmembrane domain and classical type I PDZ-domain binding

motif [5] (Figure 1). Deletion of Neto1 leads to deficits in synaptic

plasticity in mice while stimulation of the AMPA receptor can

partially compensate for deficits caused by Neto1 deletion [6].

NETO1 interacts with the core NMDAR subunits, NR2A and

NR2B and a scaffolding protein, postsynaptic density-95 (PSD-95),

maintaining the abundance of NR2A-containing NMDARs in the

postsynaptic density of the hippocampus. PSD-95 is a protein that

is almost exclusively located in the postsynaptic density of neurons,

and is important in anchoring synaptic proteins [7]. Increase in

surface NR2A, but not NR2B, occurs in hippocampal neurons

derived from dysbindin-null mutant mice (Dys-/-). Dysbindin

controls hippocampal LTP by selective regulation of the surface

expression of NR2A [8]. In situ hybridization studies of

schizophrenia detected decreased transcript expression of the

NR1 subunit, increased transcript expression of the NR2B subunit

and unchanged transcript expression of the NR2A subunit in

hippocampus [9]. Therefore, regulation of NR2 in hippocampus

in schizophrenia may be relevant for the etiology of schizophrenia

and NETO1 may play an important role in the molecular

mechanism by maintaining the abundance of NR2A-containing

NMDARs in the postsynaptic density of hippocampal neurons.

Moreover, NETO1 interacts with kainate receptors (KAR), one of

the glutamate receptors, in mouse brain. NETO1 modulates the

KAR affinity for the endogenous ligand glutamate. NETO1

modulates not only kinetics, but also the amplitude of slow

excitatory postsynaptic current in KAR (KAR-EPSC) [10,11].

NETO1 fundamentally alters the function and neuronal localiza-

tion of GluK1-containing KAR [10,11]. Therefore, NETO1 may

influence glutamate neurotransmission through modulation of

KAR and NMDAR properties.

Genetic studies suggested that the NETO1 locus could harbor

genetic variants that are relevant for susceptibility to neuropsy-

chiatric disorders. Specifically, hemizygosity of NETO1 was shown

to be associated with a autistic-like behaviors in humans [12].

Although unequivocal genome wide evidence (p,1028) for

association at the NETO1 locus has not been reported, it is of

note that in the recent GWASs of Alzheimer’s disease and

schizophrenia, suggestive association signals were observed

(rs1109070; p = 0.000669 [13] and rs9962470; p = 0.000154 [14]

in Alzheimer’s disease and schizophrenia, respectively). Moreover,

several weak association signals (P,0.05) within the NETO1 locus

were detected in the first GWAS of schizophrenia conducted in the

Japanese population (JGWAS) [15]. It is of note that in the

JGWAS, genome wide evidence for association was not detected,

and the non-genome wide level of statistical significance should be

interpreted with caution. However due to the relatively small

sample size, type II errors (false negative result) cannot be excluded

– especially in the case of small odds ratios (OR) which are

expected for common SNPs associated with schizophrenia [16].

Based on the aforementioned biological studies, NETO1 can be

seen as a promising candidate gene for schizophrenia. However, to

the best of our knowledge, no genetic association study specifically

designed to evaluate the association between NETO1 and

schizophrenia has been conducted. The goal of the present study

was to evaluate the association between NETO1 and schizophrenia

based on the JGWAS. Additionally, as deficits were found in LTP

and learning and memory in Neto1-null mice [7], we performed a

cognitive function analysis that targeted the relationship between

common SNPs selected based on the JGWAS and cognitive

function assessed by the CPT and the WCST.

Results

In the replication sample set, we did not detect any association

between eight SNPs and schizophrenia after Bonferroni correction

was applied (Table 1). Using the replication sample set, we have

conducted haplotype-wise analysis in order to investigate associ-

ation between haplotypes within the NETO1 locus and schizo-

phrenia. We did not detect evidence for haplotype-wise association

after Bonferroni correction was applied (Table S1). In order to

maximize the power, we performed meta-analysis combining

results from the JGWAS and the replication dataset. In this

analysis we could detect three suggestive association signals

(rs17795324: P = 0.028, rs8098760: P = 0.017, rs17086492:

P = 0.003). In the test of heterogeneity, we detected four SNPs,

which showed significant high heterogeneities (Breslow-Day test;

rs17795324: P = 0.04, rs6566674: P = 0.01, rs8098624: P = 0.003,

rs1109070: P = 0.0001) (Table 2). However, we could not detect

any association between these three SNPs (rs17795324, rs8098760

and rs17086492) and CPT and WCST scores (Table S4). We

investigated the association between the NETO1 gene and

schizophrenia stratified by gender. We could detect no association

signals either for males or females in the meta-analysis after

Bonferroni correction (Tables S2 and S3).

Discussion

In this study, we investigated the association between eight

SNPs within NETO1 and schizophrenia in the Japanese popula-

tion. We detected associations between NETO1 and schizophrenia

in the meta-analysis, however, as the JGWAS dataset was included

in the meta-analysis, evidence for association might be overesti-

mated. In order to address this issue we tested the association

between candidate SNPs from our meta-analysis and cognitive

performance measured by the CPT and WCST. This analysis was

of interest for us as Neto1-null mice show deficits in LTP and

learning and memory [7], and if the three SNPs (rs17795324,

rs8098760, rs17086492) were genuinely associated with schizo-

phrenia, then carriers of risk alleles would likely have deficits in

cognitive processing assessed by CPT and WCST [6]. However,

we could not detect any association between these three SNPs

(rs17795324, rs8098760, rs17086492) and the psychological tests

we applied. We also performed meta-analysis (Method S1) of

rs6566674 (the SNP that was included both in our replication

sample set and another Japanese GWAS [17]), however we did not

detect evidence for an association with schizophrenia. These

results suggest that NETO1 is not associated with schizophrenia in

the Japanese population.

We detected four SNPs, which showed heterogeneous associ-

ation (Breslow-Day test; rs17795324: P = 0.04, rs6566674:

P = 0.01, rs8098624: P = 0.003, rs1109070: P = 0.0001) in the

meta-analysis. These high heterogeneities may be derived from

flip-flop phenomenon, that is, associations of opposite alleles at the

same biallelic locus with the same disease [18]. Although the flip-

Association Study and Cognitive Analysis of NETO1
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flop phenomenon may represent a genuine genetic association

(i.e., genuinely different LD architectures across populations with

different ancestral origins), it may also be an artifact due to

sampling variation that leads to variability in observed LD

patterns.

Several caveats should be considered when interpreting the

results of our study. First, in terms of sample size, the replication

dataset may not have sufficient statistical power to detect

associations between SNPs with low genotype relative risk

(GRR) and schizophrenia. In other words, our sample has

statistical power greater than 0.8 for the detection of association

signals at nominal statistical significance, of the polymorphism

with a minor allele frequency of 0.1, when the GRR is 1.30.

Therefore, the possibility of association between schizophrenia

Figure 1. NETO1-gene centric data. LD: linkage disequilibrium. NETO1 maps to the 18q22-q23 and three alternative splicing variants (mRNA
level) have been observed. Specifically variants 1 and 2 are detected in retina while variant 3 is specific for fetal and adult brain (mRNA level panel).
NETO1 is a transmembrane protein, which has two extracellular CUB domains, a low-density lipoprotein class A (LDLa) domain, a transmembrane
domain and a classical type I PDZ-domain binding motif (protein level panel).
doi:10.1371/journal.pone.0028929.g001
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and common SNPs with GRR,1.30 cannot be excluded.

Furthermore, the JGWAS may not have sufficient power to detect

associations between SNPs with low GRR and schizophrenia.

Therefore, other relevant common variants in the NETO1 region,

which the JGWAS cannot identify, may exist. In addition,

association between NETO1 and schizophrenia may be specific

only for the patients with early onset age. However, as in the

current study, the frequency of the early onset schizophrenia

patients was low (less than 5%). The power to detect such an

association is inadequate. Therefore, the effect of onset age on the

association between NETO1 and schizophrenia remains to be

investigated in further studies.

The second caveat is that our study design was based on the

common disease, common variant hypothesis, based on which we

applied a minor allele frequency threshold (.5%) and selected

eight SNPs for follow-up. In the best case scenario, common

variants detected in GWAS can explain only part of the

heritability in cases of schizophrenia (,30%) [19] and missense

or nonsense mutations on the one side and structural variations

(i.e., copy number variants (CNVs)) on the other side are likely to

contribute to the increased susceptibility [20]. Recently, the

concept of synthetic associations has been suggested, though some

there are some objections [21]. Uncommon or rare genetic

variants can easily create synthetic associations that are credited to

common variants. This possibility requires careful consideration in

the interpretation and follow up of GWAS signals [22].

The third caveat in our association study is that cases and

controls in replication samples were not matched in age. In other

words, although highly unlikely, the controls may develop

schizophrenia at some point in life, as they were significantly

younger than cases.

The fourth caveat is related to the validity of cognitive function

analysis. The premise that NETO1 was associated with cognitive

function in humans had been derived from results of a knock-out

mice study [7]. Neto1-null mice showed impaired spatial learning

measured by the Morris water maze task, the delayed matching-

to-place version of the Morris water maze task and displaced-

object tasks. In the current study, we investigated executive

function (WCST) and vigilance/attention (CPT-IP), however, the

results of these cognitive tests might not represent similar cognitive

dysfunctions that were shown in the Neto1-null mouse study. It may

be useful to examine different domains of cognitive impairment

Table 1. Results of JGWAS (N = 1108).

SNP Positiona Minor allele Caseb Controlb p-valuec OR L95d U95d

rs9962470 68616086 A 0.03 0.04 0.31 0.79 0.50 1.24

rs17086334 68626752 C 0.10 0.08 0.05 1.34 1.00 1.80

rs17795324 68654033 G 0.27 0.33 0.003 0.76 0.63 0.91

rs6566674 68662791 T 0.20 0.16 0.04 1.26 1.01 1.57

rs8098624 68669199 T 0.30 0.24 0.002 1.35 1.12 1.63

rs8098760 68669970 T 0.11 0.08 0.02 1.42 1.06 1.90

rs17086492 68674050 C 0.14 0.10 0.001 1.52 1.17 1.98

rs1109070 68674559 C 0.21 0.16 0.01 1.35 1.09 1.68

abased on NCBI 36.
bminor allele frequency.
cFisher’s exact test.
dLower (L) and upper (U) 95% confidence intervals.
doi:10.1371/journal.pone.0028929.t001

Table 2. Allele frequencies of the eight SNPs of NETO1.

SNP Positiona Minor allele Replication (N = 1882) Meta analysis (N = 2990)

Caseb Controlb p-valuec OR L95d U95d p-valuec OR L95d U95d BDpe

rs9962470 68616086 A 0.02 0.03 0.24 0.79 0.53 1.18 0.126 0.79 0.59 1.07 0.99

rs17086334 68626752 C 0.08 0.08 0.87 0.98 0.77 1.25 0.289 1.11 0.92 1.33 0.09

rs17795324 68654033 G 0.29 0.30 0.61 0.96 0.84 1.11 0.028 0.88 0.79 0.99 0.04

rs6566674 68662791 T 0.17 0.19 0.12 0.88 0.74 1.04 0.926 1.01 0.88 1.15 0.01

rs8098624 68669199 T 0.27 0.29 0.43 0.94 0.82 1.09 0.213 1.08 0.96 1.21 0.003

rs8098760 68669970 T 0.10 0.08 0.18 1.17 0.93 1.47 0.017 1.24 1.04 1.49 0.26

rs17086492 68674050 C 0.12 0.11 0.22 1.14 0.93 1.39 0.003 1.28 1.09 1.50 0.09

rs1109070 68674559 C 0.16 0.19 0.01 0.78 0.65 0.93 0.718 0.98 0.85 1.12 0.0001

abased on NCBI 36.
bminor allele frequency.
cFisher’s exact test.
dLower (L) and upper (U) 95% confidence intervals.
ep-value of Breslow-Day test.
doi:10.1371/journal.pone.0028929.t002
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associated with NETO1 in schizophrenic patients using broader

cognitive assessment tools.

In conclusion, we were not able to detect evidence for an

association between NETO1 and schizophrenia in the Japanese

population. Common variants within the NETO1 locus may not

increase the genetic risk for schizophrenia in the Japanese

population. Additionally, common variants investigated in the

current study did not affect cognitive performance, as measured by

the CPT and the WCST.

Materials and Methods

Participants
This study was approved by the Ethics Committees of the

Nagoya University Graduate School of Medicine and Fujita

Health University, and written informed consent was obtained

from each participant. Patients were included in the study if they

(1) met DSM-IV criteria for schizophrenia, (2) were physically

healthy and (3) had no mood disorders, substance abuse,

neurodevelopmental disorders, epilepsy or known mental retar-

dation. A general characterization and psychiatric assessment of

subjects is available elsewhere [23]. Controls were selected from

the general population. Control subjects had no history of mental

disorders, based on questionnaire responses from the subjects

themselves during the sample inclusion step, and based on an

unstructured diagnostic interview done by an experienced

psychiatrist during the blood collection step. The JGWAS

sample was comprised of 575 patients with schizophrenia

(43.5614.8 years (mean6s.d.), male 50%) and 564 healthy

controls with no personal or family history of psychiatric illness

(44.0614.4 years (mean6s.d.), male 49.8%). All subjects were

unrelated, living in the central area of the Honshu island of

Japan and self-identified as members of the Japanese population.

Subjects of replication samples consisted of 963 schizophrenic

patients (47.760.5 years (mean6s.d.), male 55.2%) and 919

healthy controls (45.060.5 years (mean6s.d.), male 51.0%). The

JGWAS and replication samples were collected independently at

each university hospital.

Genotyping and data analysis
Based on the JGWAS results we initially selected SNPs with

probability values, p,0.05 and allelic frequencies, MAF.0.05

within the NETO1 locus. Then we identified redundant SNPs

based on the linkage disequilibrium or LD pattern within the

interrogated region. Specifically, if the correlation coefficient

between two loci (r2) was 0.8 or higher, only one of the two loci

was selected for the association study [24]. The correlation

coefficient between two loci (r2) was calculated using Haploview

v.4.1 based on the HapMap database (release no. 24, population:

Japanese in Tokyo). Finally, we selected seven nonredundant SNPs

within the NETO1 locus. Moreover, one common polymorphism

(rs9962470), which showed a low p-value (p = 0.000154) in a

previous GWA study [14], was included for genotyping. All eight

SNPs are intronic polymorphisms. DNA was extracted from

peripheral blood according to a standard protocol [23]. Genotyp-

ing was performed using a fluorescence-based allelic discrimina-

tion assay (Taqman, Applied Biosystems, Foster City, CA, USA).

Power was calculated according to the methods of Skol et al. [25].

To exclude low-quality DNA samples or genotyping probes,

data sets were filtered on the basis of SNP genotype call rate (more

than 90%) or checked deviation from Hardy-Weinberg equilibri-

um (HWE) in the control sample. Subjects whose percentage of

missing genotypes was .30% or who had evidence of possible

DNA contamination were excluded from subsequent analyses.

To reduce the total number of tests, eight associated markers

were selected based on the JGWAS results. Next, conditional on

the findings of the JGWAS, which used a less stringent nominal

level, a meta-analysis was done involving the confirmation sample

using the replication data and data from the JGWAS. In the

replication sample, Fisher’s exact test was used to compare allele

frequencies between patients and control subjects. The signifi-

cance level was set at p,0.05. In the replication sample set, log

likelihood ratio tests for assessing haplotype-wise association

between schizophrenia and a combination of tagging SNPs was

performed using UNPHASED software v3.04. The rare haplotype

frequency threshold was set at 5% [26]. In this meta-analysis, p-

values were generated by a Cochran–Mantel–Haenszel stratified

analysis, and the Breslow–Day test was performed for evaluations

of heterogeneous associations as implemented in gPLINK v.2.050

[27].

Neurocognitive assessment
1. CPT. We used the Continuous Performance Test–Identical

Pairs Version Release 4.0 (NewCPT.exe, Copyright 1982–2004 by

Barbara A. Cornblatt, All Rights Reserved). The size of PC

monitor used for the test was 10.4 inches as each letter was at least

2.261.5 cm [28]. Stimuli were flashed on the screen at a constant

rate of 1 per second, with a stimulus ‘‘on’’ time of 50 ms. Stimuli

were four-digit numbers and were presented 150 times. In each

150-trial condition, 30 of the trials (20%) were target trials and

required a response. Target trials were those on which the second

of a pair of two identical stimuli appeared [28]. The outcome

measure was a mean, d9.

2. WCST. The WCST [29] mainly assesses executive function

including cognitive flexibility in response to feedback. We used a

modified and computerized version of the test: Wisconsin Card

Sorting Test (Keio Version) (KWCST) [30]. The outcome

measures were numbers of categories achieved (CA), total errors

(TE), and perseverative errors of Milner (PEM) and Nelson types

(PEN) in the first trial. We selected outcomes in the WCST,

following a prior study, which used KWCST as a measure of

cognitive function [31].

(1) CA: This is the number of categories for which six

consecutive correct responses are achieved (eight is the maximum

number of categories which can be achieved), and is the sum

measure of the level of conceptual shifts in the KWCST.

(2) PEN: This is the number of incorrect responses in the same

category as the immediately preceding incorrect response

(maximum of 47 perseverative errors) [32].

(3) PEM: This is the number of incorrect responses in the same

category as the immediately preceding correct response after the

category changes.

(4) TE: This is the total number of incorrect responses [33].

3. Clinical information. Chlorpromazine (CPZ) equivalent

doses were calculated based on the report by Inada [34,35]. The

Positive and Negative Symptom Scale (PANSS) was used to

evaluate patients [36].

4. Analysis of cognitive performance. From the sample

used in the current study, we made a subset of randomly selected

participants older than 18 years of age for analysis of cognitive

performance. Cognitive data analysis was done for the participants

who completed both WCST and CPT-IP. We checked the effect

of three SNPs on cognitive performance measured by the

Continuous Performance Test and the Wisconsin Card Sorting

Test (107 schizophrenic patients, 104 Healthy controls). IBM

SPSS statistical software, version 19 was used for all analyses. We

compared age, education, CPZ equivalent doses, age at onset,

duration of illness, positive scale, negative scale and General

Association Study and Cognitive Analysis of NETO1
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Psychopathology Scale between schizophrenia cases and control

subjects using a two-tailed t-test and Welch’s t-test. We compared

sex between case and control groups using Fisher’s exact test.

Next, we compared d9 in the CPT and CA, PEM, PEN, TE in the

WCST between the case and control groups using a two-tailed t-

test and Welch’s test (Table S4).
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