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Host–guest systems that display catalytic behavior represent a promising area of
supramolecular chemistry.[1] Supramolecular approaches to cataylst design include ligand-
templated encapsulation,[2] self-assembled ligands, coordination compounds, and artificial
biomacromolecules.[3] Generally, these systems operate by binding substrates and
stabilizing transition states and/or increasing the effective concentration of reactive species
within confined space.[4] In most catalytic host–guest systems the substrate is a guest and
substrates that adequately fill the host’s interior are required to ensure activity.
Alternatively, there are few instances where the guest is the catalyst.[5] These examples
incorporate transition metal guests and enhanced reaction rates are rare.[6] Here we report a
complementary approach where the bound guest is an organocatalyst in a deep cavitand. We
find that the cavitand/piperidinium complex accelerates the Knoevenagel condensation and
show that the rate of the reaction can be controlled using light to stimulate structural changes
in the cavitand’s shape.

Relatively few examples of photo-switchable catalysis have been described,[7] but our recent
experience with photo-controlled guest binding in a cavitand with an azo wall provided an
encouraging point of departure.[8] For the present investigation we used short hydrocarbon
chains (C2) on the “feet” to facilitate crystallization and incorporated an isopropyl
substituent onto the azo wall (Scheme 1). The azo group can be photo-isomerized between
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trans (with 448 nm light) and cis (with 365 nm light) configurations. In the trans resting state
the cavitand presents a cavity accessible to guests; in the cis configuration a self-fulfilling
introverted arrangement results (Figure 1). This invagination imparts unusual stability to the
cis-1 isomer: it shows a t1/2 at room temperature of more than 75 days.

The synthesis of 1 was achieved in three steps from known hexa-amide diol 2. The azo wall
of the cavitand was installed in two parts by coupling 3,4-difluoronitrobenzene, first using
triethylamine as the base followed by cesium carbonate. Subsequently, the nitro group was
reduced to an amine then immediately condensed with 3-isopropylnitrosobenzene in glacial
acetic acid. The iPr azo cavitand 1 is a yellow solid, isolated in 37% yield from hexaamide
diol 2 and exists as a mixture of trans and cis isomers.

The extreme conformational stability of cis-1 allowed for structural characterization in the
solid state that is quite uncommon for cis-azo compounds.[9] Single, red crystals of 1 were
grown by diffusing pentane into an acetone solution after UV irradiation. Cis-1 crystallizes
in the C2/c space group with one cavitand in the asymmetric unit and 8 molecules per unit
cell.[10] Both enantiomers were observed and modeled accordingly. The cavitand adopts an
introverted conformation with the iPr group penetrating the cavity stabilized by CH–π
contacts ranging from 3.0 to 3.9 Å (Figure 1 and Figure S4 in the Supporting Information).
The azo geometry is distorted to maximize contacts with the interior of the cavitand with
average ∢CCNN =58° and ∢NNC =123° (53.3° and 121.9° respectively for cis-
azobenzene).[11]

Knoevenagel reported that formaldehyde and diethyl malonate could be condensed using
diethylamine as the catalyst.[12,13] The Knoevenagel condensation was extended to include
other active methylene compounds reacting with aldehydes or ketones and became a reliable
method for preparing carbon–carbon bonds. This reaction is still employed in the synthesis
of natural products, drugs, dyes and other compounds.[13] and an asymmetric variant has
recently been achieved.[14] Other secondary amines and their salts catalyze this reaction and,
depending on the conditions and substrates, the reaction proceeds through a Hann-
Lapworth[15] (β-hydroxy intermediate, I) mechanism and/or a Knoevenagel (iminium
intermediate, II) mechanism (Scheme 2).[13,16] Piperidine or piperidinium salts are popular
catalysts for the reaction.

The cavitand 1 binds piperidinium acetate in a variety of organic solvents. In [D4]acetic acid
trans-1 exhibits a dynamic vase conformation on the NMR time scale, as revealed by the
broad methine protons of the resorcin[4]arene. When piperidinium acetate is introduced,
trans-1 folds around the catalyst forming a vase conformation with sharp NMR signals. An
association constant Ka of 4300 m−1 was determined. Separate signals for free and bound
piperidinium indicate slow exchange on the NMR time scale and 2D EXSY experiments
reveal the barrier to be 17.8 kcalmol−1.[17] Irradiation with UV light (365 nm) isomerizes the
azo wall of the cavitand to the cis configuration and this has a remarkable effect—the
cavitand assumes an introverted conformation projecting the iPr substituent into the cavity
(Figure 1) and ejecting the piperidinium acetate into solution.

Surprisingly, cavitand 1 promotes the piperidinium acetate-catalyzed Knoevenagel
condensation between malononitrile and aromatic aldehydes (Figure 2, inset). The
uncatalyzed reaction is quite slow in [D4]acetic acid. After 240 h little reaction occurs and
only 7% or less of the olefin product is observed (Figure 2). The reaction is significantly
accelerated by the host–guest complex: piperidinium acetate (5 mol%) and trans-1 (5–13
mol%).[18] The host binds the piperidinium catalyst and not the substrate. As a result, the
catalyzed reaction tolerates a range of aromatic aldehydes that do not fit into the cavity.
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The supramolecular assembly appears necessary for the rate enhancement. Comparison of
the reaction rates in the presence and absence of trans-1 highlights the importance of the
cavitand/catalyst complex (Table 1). Cavitand 1 produces up to 3.5-fold increase in the
initial reaction rate (kHG/kCAT) as compared to the reaction with piperidinium alone
(kCAT).[19] NOESY NMR experiments and magnetic anisotropy induced changes to
chemical shifts reveal that piperidinium acetate binds to trans-1 with the nitrogen near the
open end of the cavitand. This orientation surrounds the catalyst with a structured semi-
circle of hydrogen bonding secondary amides. In this system we observe the buildup of a β-
hydroxy intermediate (Scheme 2, I).[20] It is likely that the polar amide groups facilitate
deprotonation of the malononitrile nucleophile which quickly reacts with the aldehyde to
produce the olefin product—outside the cavitand. Neither the condensation product nor the
substrates are guests and the catalyst is the only species observed in the cavitand during the
reaction.[21]

The azo wall of 1 allows control of guest binding and as an example, we reacted
pentafluorobenzaldehyde (5) with malononitrile in the presence of piperidinium acetate and
the cavitand. At set time intervals the cavitand was photo-isomerized between the trans and
cis configurations and the reaction rates were measured between isomerizations (Figure 3).
The reaction is accelerated by trans-1 and decelerated by cis-1, consistent with the removal
of the catalyst from the host.[22] This process is reversible and numerous cycles were
followed without loss of function (Supporting Information). A control experiment excluding
1 did not respond to light.

In summary, the Knoevenagel condensation of aromatic aldehydes with malononitrile is
accelerated and catalyzed by a light responsive cavitand/piperidinium complex. In this
example the cavitand binds the catalyst itself, and the rate of the reaction can be manipulated
with light. Photo-controlled reactivity is a viable approach to supramolecular catalysis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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malononitrile and piperidinium). This intermediate is likely the β-hydroxy intermediate (see
reference [20]).

22. Despite the efficiency of the guest removal upon photoisomerization to cis-1, a small amount of
piperidinium acetate remains bound to the cavitand (see Supporting Information). This results in
slightly elevated reaction rates as compared to the reaction when the cavitand is absent. In
addition, the isomerization from cis-1 to trans-1 reaches a photostationary state of approximately
90% trans-1 leading to depressed reaction rates as compared to the reaction with 100% trans-1.
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Figure 1.
Stick and CPK representations of the introverted cis-1 crystal structure viewed from the side
(left) and the top (right). The introverted azo wall is colored green.
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Figure 2.
Graph depicting % conversions of cavitand 1/piperidinium-catalyzed Knoevenagel
condensations of aromatic aldehydes at room temperature.
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Figure 3.
Photo-controlled catalysis of the Knoevenagel condensation between 5 and malononitrile
with the 1/piperidinium catalyst complex.
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Scheme 1.
Synthesis of light-responsive cavitand 1.
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Scheme 2.
Two possible mechanisms for secondary amine-catalyzed Knoevenagel condensations.
Counter ions are omitted for simplicity.
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Table 1

Comparison of the rate constants[a] involving the host–guest complex (kHG) and the piperidinium-catalyzed
reaction (kCAT).

Aldehyde kHG/kCAT

3 3.0

4 n.d.[b]

5 3.5

6 2.3

7 2.6

8 2.1

[a]
The reactions are second order and initial rates were used with the same time interval for both rate constant calculations.

[b]
Reaction abides by different reaction kinetics and was not compared.
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