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Abstract
Complex interactions among genes and environmental factors are known to play a role in common
human disease aetiology. There is a growing body of evidence to suggest that complex
interactions are ‘the norm’ and, rather than amounting to a small perturbation to classical
Mendelian genetics, interactions may be the predominant effect. Traditional statistical methods are
not well suited for detecting such interactions, especially when the data are high dimensional
(many attributes or independent variables) or when interactions occur between more than two
polymorphisms. In this review, we discuss machine-learning models and algorithms for
identifying and characterising susceptibility genes in common, complex, multifactorial human
diseases. We focus on the following machine-learning methods that have been used to detect gene-
gene interactions: neural networks, cellular automata, random forests, and multifactor
dimensionality reduction. We conclude with some ideas about how these methods and others can
be integrated into a comprehensive and flexible framework for data mining and knowledge
discovery in human genetics.

An important goal of human genetics is to identify DNA sequence variations that increase or
decrease susceptibility to disease. Unlike rare Mendelian diseases, which may be
characterised by a single gene, susceptibility to common diseases is influenced by the
nonlinear interactions of multiple genes and environmental factors. Biomolecular
interactions that occur at the level of the individual can be referred to as ‘biological
epistasis’[1,2] and this is what Bateson[3] had in mind when he coined the term epistasis.
Deviations from additivity in a statistical model that summarises a population of individuals
can be referred to as ‘statistical epistasis’;[1,2] this is what Fisher[4] had in mind when used
the term epistacy. The language of gene interactions has been discussed in more detail by
Phillips.[5]
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Detecting and characterising attribute interactions, as statistical epistasis can be generically
called, is a well known challenge in data mining[6] and is becoming increasingly recognised
as a problem that needs to be addressed in human genetics and genetic epidemiology. In
fact, there are reasons to believe that the effect of gene-gene interactions, or epistasis, plays
a more important role than the independent main effect of any one gene in the susceptibility
to common human diseases.[7] These kinds of complexities have implications that reach
beyond study design and genetic analysis. For example, it has been suggested that we need
to prepare the next generation of investigators for addressing these challenges.[8]

Given the complexity of biomolecular interactions (i.e. biological epistasis) in gene
regulation and metabolic systems, the relationship between DNA sequence variations and
clinical endpoints (i.e. statistical epistasis) is likely to involve gene-gene interactions.[7,9,10]

For example, an expressed gene produces a protein, which in turn may activate or suppress
another gene, and so on. Complex gene interaction networks have been described in simpler
organisms such as bacteria[11] and yeast.[12] The ubiquity of gene-gene interactions in the
genetic architecture of human diseases is also a plausible explanation for the fact that
positive results from studies of single polymorphisms and single genes are typically not
reproducible across independent samples,[13] further suggesting that important effects due to
gene-gene interactions will be overlooked if not properly investigated.[7,10,14] Although the
definitive methods for detecting gene-gene interactions are not known, traditional statistical
methods, as discussed in more detail later in this section, are not well suited for the task, and
new approaches are needed that are designed with interactions in mind. It is time for an
analytical retooling that embraces, rather than ignores, the complexity of genetic
architecture.[15] Only after this analytical retooling will it be possible to routinely detect and
characterise statistical patterns of epistasis in human populations. The ultimate challenge
will be making accurate biological inferences from computational and statistical models.[1,2]

Attribute or variable interactions (i.e. statistical epistasis) may be defined as follows.[6]

Consider independent variables X1 and X2 and a class variable Y. Attributes X1 and X2 are
said to interact when the relationship between X1 and Y depends on X2. A simple example
illustrating nonlinear attribute interaction is an XOR (exclusive OR) model, shown in table I.
Only considering one attribute at a time would result in the conclusion that neither of the
independent variables correlate with Y. Looking at only X1, for example, would result in this
incorrect conclusion because given a state of X1 there is a 50/50 chance of yielding either
state of Y. To accurately predict the classifier variable in this interaction model, one must
consider both independent variables simultaneously.

Analogous epistatic models exist in genetics, such as the following two-locus XOR genetic
model, first described by Li and Reich[16] and later by Culverhouse et al.[17] and Moore et
al.[18] Consider two single nucleotide polymorphisms (SNPs): locus A with alleles ‘A’ and
‘a’ and locus B with alleles ‘B’ and ‘b’. For each SNP, there are three states or genotypes
since allele order does not matter. For SNP A, the genotypes are AA, Aa and aa, and
likewise for SNP B. In the XOR model shown in table II, high disease risk is dependent on
inheriting a heterozygous genotype (Aa) from one SNP or a heterozygous genotype from a
second SNP (Bb), but not both. The probabilities that an individual will have the disease for
each of the nine possible genotype combinations are given in a penetrance table (e.g. table
II). In this example, each pair of alleles has a biological population frequency of p = q = 0.5
with genotype frequency p2 for AA and BB, 2pq for Aa and Bb, and q2 for aa and bb,
consistent with Hardy-Weinberg equilibrium.

The marginal penetrance of a genotype is the probability of that genotype being associated
with disease risk, regardless of the genotype at the other variables. It is calculated by taking
the dot product of the row (or column) of penetrance values associated with the genotype of
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interest and the column (or row) of genotype frequencies associated with the genotypes of
the other genetic variables. For example, the marginal penetrance of BB is (0, 1, 0) (0.25,
0.50, 0.25)T = 0.5. Notice in table II that the marginal penetrance values for all six genotypes
are equal, indicating the absence of a main effect, or, put another way, the genetic variables
do not independently affect disease risk. The genotype of one SNP only affects disease risk
in the presence of the other SNP, and this despite the table penetrance values being unequal.
This hypothetical example illustrates epistasis in the absence of marginal effects and
represents one possible worst-case scenario in genetic analysis.

For a two-locus model, it is a simple matter to consider the effect on disease risk of all
possible genotype combinations, but this quickly becomes a combinatorial challenge as the
number of loci (i.e. the dimensionality of the dataset) increases. Traditional parametric
statistical methods are limited in their ability to identify interacting susceptibility genes in
small sample sizes because of the sparseness of the data in high dimensions. This
phenomenon is referred to as the curse of dimensionality:[19] as the number of interacting
genes increases, the number of genotype combinations (i.e. the dimensionality) increases
exponentially, leading to the need for commensurately larger sample sizes. Unfortunately,
collecting genetic datasets with such a large number of observations is prohibitively
expensive. Thus, new statistical and computational methods are needed to improve the
power to identify epistasis in genetic and epidemiologic samples.

Another drawback of traditional statistical methods for identifying interactions is the need to
specify a model for the interaction. The problem is particularly acute when, again, the
dimensionality, and hence, the number of possible interactions, is large. Logistic regression,
for example, models the probability of disease (p) as a linear function of the independent
variables. A logit transformation of p, ln[p/(1 − p)], is used to prevent p from taking on
values outside the interval (0, 1). The independent main effects of two SNPs on the disease
probability (Pind) can be modelled as (equation 1):

(Eq. 1)

where the independent variables are the polymorphisms A and B, which take on discrete
genotype values corresponding to the three genotypes; e is the exponential function; and α
and β are regression parameters. To model an interaction between A and B, the form of the
interaction must be specified. For example, the interaction (Pint) can be modelled by
inserting a product term of the form β3AB into equation 1 (equation 2):

(Eq. 2)

A test of the null hypothesis of no interaction can be carried out by testing whether β3 = 0.
Rejection of this null hypothesis provides evidence for an interaction on a multiplicative
scale, but the inability to reject the null hypothesis could mean that the form of the
interaction requires operations more complex than simple multiplication. Using logistic
regression to detect interactions when main effects are present has been investigated.[20]

One of the advantages of logistic regression is the simple physical interpretation of the
model and its parameters as they relate genotypes to probability of disease. However, the
advantage of interpretability is nullified if the method is unable to determine which variables
interact. A framework for understanding interactions is necessary when analysing genetic
data, otherwise useful knowledge (e.g. gene-gene interactions) will go undetected. Machine
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learning offers a powerful alternative to traditional statistical methods, an alternative that is
generally model-free and able to detect nonlinear interactions in high-dimensional datasets.

Machine learning refers to algorithms that allow a computer to learn from experience. In this
review, we focus on supervised machine learning, where the output variable guides the
learning process. The goal of (supervised) machine learning is to predict the output variable
given some input variables. The performance measure of the machine is defined as how well
the machine can predict outcomes from independent test data, based on the rules it has
learned from the training data. This two-step process of training and testing is referred to as
cross-validation and is important for studies to find gene-gene interactions.[21,22] In
unsupervised learning, the output variables are unavailable and the goal of the machine is to
find patterns in the data. Classic applications of machine learning include speech and
handwriting recognition, game playing and data mining.[23] Our primary interest in machine
learning for this review is to extract interesting knowledge from the overabundance of
genetic data. Specifically, we are interested in variable selection, that is, determining which
genes and/or environmental factors lead to an individual’s increased susceptibility to
disease.

Machine learning is a more sophisticated descendant of traditional statistical models such as
logistic regression. Although the goal of both sets of methods is to make sense of data,
machine-learning methods have more flexibility to describe complex datasets. Rather than
attempt to give an exhaustive review of all machine-learning models, for simplicity we focus
on four models that have been used to detect and characterise gene-gene interactions: neural
networks (NNs), cellular automata (CAs), random forests (RFs) and multifactor
dimensionality reduction (MDR). For more information on other relevant methods, we direct
the reader to the reference list. Many machine-learning methods rely on a search or
optimisation algorithm for selecting attributes and/or determining the functional form of the
model. Thus, we begin the next section with a brief description of a particular set of
stochastic search methods known as evolutionary algorithms.

Optimisation and Evolution
Besides the model itself, the most important part of a machine-learning method is the
optimisation procedure that is used to select attributes and tune parameters. In recent
decades, some researchers have looked to nature for inspiration when developing new and
novel optimisation algorithms. Most of these methods are stochastic in nature. Simulated
annealing, for example, is based on the thermodynamic process of cooling a molten material
to find the lowest energy (i.e. minimum) solution of a problem.[24] In keeping with the
biological and genetic theme, we focus on evolutionary algorithms for optimisation.
Evolutionary algorithms, such as genetic algorithms[25] and genetic programming (GP),[26]

are based on the mechanics of Darwinian evolution by natural selection. Although we
discuss them in terms of optimisation, evolutionary algorithms also fall into the general
category of machine learning. These approaches have been widely applied in the domain of
bioinformatics.[27]

One goal of an optimisation procedure is to find a set of parameters that allows the machine-
learning model to most accurately predict class membership (e.g. affected vs unaffected). A
genetic algorithm randomly generates a population of solutions to the problem and evaluates
their fitness by applying a fitness function. The fitness function is the environment in which
the population must adapt. Candidate solutions are encoded as binary arrays or
chromosomes. The chromosomes compete in the population and those with the highest
fitness are selected to undergo exchange of random model pieces, a process referred to as
recombination. Recombination generates variability among the solutions and is essential to
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the success of the search routine. By analogy with natural selection, less fit candidate
solutions are replaced in the population with higher fitness candidates. Following
recombination, the models are re-evaluated and the cycle of selection, recombination, and
fitness evaluation continues until an optimum solution is identified. GP, applied in the
following section to NNs, is similar to genetic algorithms, except the evolutionary operators
act on binary expression trees instead of binary arrays or chromosomes.

Evolutionary algorithms, like other stochastic methods, may be well suited for optimising
machine-learning models when the search space is extremely large and rugged (i.e. many
local minima). Such machine-learning models often do not lend themselves well to
traditional methods, such as calculus-based methods, which need an analytical or
differentiable function to optimise. Furthermore, calculus-based methods begin their search
for an optimum solution at a single point, making these methods susceptible to falling into
local minima. The recombination operator makes evolutionary algorithms more robust
against succumbing to local minima.[25]

Neural Networks
NNs are a popular machine-learning model based on the brain’s ability to solve problems.
The terminology of machine learning itself is inspired by this model, which is why the term
‘learn’, as opposed to ‘fit’, is used to describe the process of finding a model that describes
some data. An NN can be thought of as a directed graph composed of nodes that represent
the processing elements (or neurons), arcs that represent the connections of the nodes (or
synaptic connections), and directionality on the arcs that represent the flow of information,
as illustrated in figure 1. The processing elements, or nodes, are arranged in layers. The
input layer receives an external pattern vector for processing. Each node (Xi) in the input
layer is then connected to one or more nodes in the first hidden layer (Hj

(1)). The nodes in
the first hidden layer are in turn connected to nodes in additional hidden layers or to each
output node (O). The number of hidden layers can range from zero to as many as is
computationally feasible. Each network connection has an associated weight, or coefficient,
(wji

(k)). The signal is conducted from the input layer through the hidden layers to the output
layer. The output layer, which often consists of a single node, generates an output signal that
is used to classify the input pattern.[28]

While NNs are often considered to be a mysterious black box, they are really a series of
nonlinear statistical models, similar to regression models. NNs can be expressed as a
weighted linear combination of inputs. Each hidden node can be represented as a weighted
sum of its inputs. For example, the output from the input nodes to the nodes in the first
hidden layer can be written as (equation 3):

(Eq. 3)

where σ is a nonlinear activation function, usually chosen to be sigmoid 1/(1 + e−x), and
wji

(0) are the weights for the connections between input nodes Xi and nodes Hj
(1) in hidden

layer 1. The output for nodes in subsequent hidden layers (k) can be written as a recurrence
relation between the previous hidden layer nodes (equation 4):

(Eq. 4)
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and the target output can then be modelled as a linear combination of the hidden layers
(equation 5):

(Eq. 5)

The input pattern vector that is propagated through the network can consist of continuous or
discrete values. This is also true of the output signal. Designing the network architecture
must take into account the representation of the input pattern vector and how it will interact
with the network while propagating information through the network.[28] Thus, the data
representation scheme must be suitable to detect the features of the input pattern vector such
that it produces the correct output signal. A large field of neural network design has been
devoted to the question of proper data representation. More detail regarding the caveats and
considerations in this task can be found in Skapura.[28]

Since learning and memory are thought to be associated with the strength of the synapse,
setting the strength of the NN connections (or synaptic weights) is the mechanism that
allows the network to learn.[29] The connection strengths, together with their inputs, lead to
an activity level, which is then used as input for the next layer of the NN.[30] NNs often
function with backpropagation types of error minimisation functions, also called gradient
descent. Since learning is associated with the synaptic weights, backpropagation algorithms
minimise the error by changing the weights following each pass through the network. This
‘hill-climbing’ algorithm makes small changes to the weights until it reaches a value to
which any change makes the error higher, indicating that the error has been minimised.[28]

Several research groups have used NNs for genetic studies because of their potential for
detecting gene-gene or gene-environment interactions in addition to main effects.[31–43]

These studies had varying levels of success because of the challenges associated with
designing the appropriate NN architecture. Ritchie et al.[44] proposed a novel NN technique
that uses evolutionary algorithms (see section 1) to optimise both the inputs and the
architecture of NNs. GP was used to optimise the NN architectures, where each GP binary
expression tree represents an NN. The GP-optimised NN (GPNN) optimises the inputs from
a larger pool of variables, the weights, and the connectivity of the network, including the
number of hidden layers and the number of nodes in the hidden layer. Thus, the algorithm
attempts to generate the appropriate network architecture for a given dataset.

Optimisation of NN architecture using GP was first proposed by Koza[26] and Koza and
Rice.[45] To evaluate the ability to detect gene-gene interactions, Ritchie et al.[44] performed
simulation studies in which data were simulated from a set of different models exhibiting
gene-gene interactions (epistasis). Five different epista-sis models were simulated, each
exhibiting interactions between two genes. To determine if the addition of the evolutionary
algorithm increased the power of the NN for detecting interactions, GPNN was compared
with a traditional backpropagation NN (BPNN). Two different analyses were conducted to
compare the performance of the BPNN and the GPNN. First, the ability to model gene-gene
interactions was determined by comparing the classification and prediction error of the two
methods using data containing only the two interacting genes. Second, the ability to detect
and model gene-gene interactions was investigated for both NN approaches. This was
determined by comparing the classification and prediction errors of the two methods using
data containing the interacting genes and a set of other nonfunctional genes.[44] GPNN was
able to model nonlinear interactions as well as a traditional BPNN based on the analyses of
only the interacting genes. In addition, GPNN had improved power and predictive ability
compared with BPNN when applied to data containing both functional and non-functional
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genes. These results provide evidence that GPNN is able to detect the functional SNPs and
model the interactions for the epistasis models described.[44]

Additional studies have been conducted to compare the power of GPNN with stepwise
logistic regression[46] and an unconstrained GP.[47] For the logistic regression study,
epistasis models were simulated that exhibited interactions between two or three genes.
These genes were embedded in a total dataset of ten genes, with 200 affected individuals
(cases) and 200 unaffected individuals (controls). In this study, GPNN had substantially
higher power than stepwise logistic regression for all models.[46] This is further evidence
that machine-learning approaches, such as GPNN, may provide more power to detect
epistasis over traditional statistical methods. For the GP study, epistasis models of low
heritability (between 0.5% and 3%) were simulated in datasets of 400 cases and 400
controls. It was found that GPNN had higher power and lower false-positive rates to detect
gene-gene interactions than an unconstrained GP alone.[47] This demonstrates that NNs are a
useful analytical representation for detecting epistatic genetic models in simulated data.
Motsinger et al.[48] tested the limits of GPNN to detect simulated epistasis with extremely
small genetic effects and an increasing number of interacting loci. The results indicate that
GPNN has sufficient power to detect two-locus models in case-control samples of 400, 800
and 1600 individuals for all but the lowest heritability (<1%), although this limitation is
overcome as the sample size increases. A similar trend is seen for higher-order models,
though the decline in power happens at slightly higher heritabilities as the number of
interacting loci increases. The authors successfully applied the GPNN method developed on
simulated data to SNPs and environmental factors collected in a study of Parkinson’s
disease. GPNN identified a gene-environment interaction, showing the method to be a useful
analytical approach for genetic data.[48]

Cellular Automata
CAs are discrete, dynamical systems capable of performing computations on a lattice of
cells. The state of each cell is updated synchronously at each time step according to a rule
that depends on the state of the cell and its local neighbours at the previous time step. CAs
were first introduced by von Neumann[49] for modelling biological self-reproduction and
have since been used as models to simulate physical systems that interact locally.[50,51]

A 1-dimensional (1-D) CA is composed of a 1-D lattice of cells. The state of each cell, ai
(t),

at lattice site i and time step t of a k-state CA, is taken from the alphabet S = {0, 1, …, k
−1}. At each time step, the state of each site is updated according to a local rule Φ: S2r+1 →
S, where the rule depends on the site’s state at the previous time step as well as the states of
its neighbours at the previous time step in a neighbourhood of radius r (equation 6):

(Eq. 6)

In this review we only consider spatially cyclic boundary conditions, so that the
configuration at each time step forms a circular lattice, or, as the CA propagates in time, a
circular cylinder. We focus further on nearest-neighbour (r = 1) CA interactions.

Despite the local nature of the interactions, CAs have been evolved by genetic algorithms to
perform certain global computational tasks, meaning the computation of a global property of
a dataset. For example, genetic algorithms have been used to evolve 1-D, two-state (k = 2),
nearest-neighbour CA rules to classify based on whether or not the density of an arbitrary,
fixed-length string of bits exceeds 0.5.[52,53] Usually the rules for this global computation
are evolved so that the CA configuration at the final time step is all 1’s (0’s) for initial
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configurations that have density greater (less) than 0.5. The intuitive goal of a classifier is
for the CA output at the final time step to have a reduced complexity over the input
configuration, resulting in an irreversible CA, one that does not obey the second law of
thermodynamics. For the output of all 1’s or 0’s, the complexity of the output configuration
is minimal. CA rules with this final output have been evolved that attain very high, yet not
perfect, misclassification error. However, it has been shown that perfect classification can be
attained if this restriction on the final configuration is loosened (i.e. affected or
unaffected).[54]

Analysing case-control SNP data is also a global computational task, where the global
property is disease status, which is computed from an individual’s pattern of SNPs. Moore
and Hahn used the computational ability of CAs to identify combinations of SNPs that
interact to influence disease risk.[55,56] The idea behind their approach was similar to that
used in the density classification problem above, with a few exceptions. Both CAs had one
spatial dimension and used nearest-neighbour interactions, but, unlike the density
classification problem which naturally uses binary state CAs, multi-state cells were used in
the SNP analysis problem to reflect the multi-state nature of genotypic data. For example, a
CA cell can be in the states 0, 1 and 2, assuming each genetic locus has only three possible
genotypes. The spatial width of the CA was fixed, but part of the genetic algorithm
optimisation involved selection of which SNPs to use as the CA cells. A looser restriction
than all 1’s or 0’s was used on the CA output array for the classification of individuals into
disease affection status (see Moore and Hahn[55,56] for more details). Figure 2 illustrates an
example of CA output for simulated case-control data for two individuals (one case and one
control). In this illustration, the CA is allowed to propagate for a fixed number of time steps
(e.g. t = 7 units) but only the output configuration at the final time step is used to classify an
individual as a case or control.

Using simulated data, Moore and Hahn demonstrated that CAs, combined with parallel
genetic algorithms (see section 1) for optimisation, are capable of identifying nonlinear
interactions among multiple SNPs in the absence of an independent main effect. It was
shown that CAs have very good power for identifying gene-gene interactions even in the
presence of real-world sources of noise such as genotyping error and phenocopy. Simulation
studies indicate that an approach that uses the simplest CA features may be less able to
model genetic heterogeneity, which is a well known complicating factor in genetic studies of
common diseases such as type 2 diabetes mellitus;[57] however, proposals have been
suggested to make CAs more robust in the face of such complicating factors.[55]

Random Forests
An RF is a collection of individual decision-tree classifiers, where each tree in the forest has
been trained using a bootstrap sample of instances from the data, and each split attribute in
the tree is chosen from among a random subset of attributes.[58] Classification of instances is
based upon aggregate voting over all trees in the forest.

Individual trees are constructed as follows from data having N samples and M explanatory
attributes:

1. Choose a training set by selecting N samples, with replacement, from the data.

2. At each node in the tree, randomly select m attributes from the entire set of M
attributes in the data (the magnitude of m is constant throughout the forest
building).

3. Choose the best split at that node from among the m attributes.
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4. Iterate the second and third steps until the tree is fully grown (no pruning).

Repetition of this algorithm yields a forest of trees, each of which have been trained on
bootstrap samples of instances (see figure 3). Thus, for a given tree, certain instances will
have been left out during training. Prediction error is estimated from these ‘out-of-bag’
instances. The out-of-bag instances are also used to estimate the importance of particular
attributes via permutation testing. If randomly permuting values of a particular attribute does
not affect the predictive ability of trees on out-of-bag samples, that attribute is assigned a
low importance score.[59]

The decision trees comprising an RF provide an explicit representation of attribute
interaction[60] that is readily applicable to the study of gene-gene or gene-environment
interactions. These models may uncover interactions among genes and/or environmental
factors that do not exhibit strong marginal effects.[61] Additionally, tree methods are suited
to dealing with certain types of genetic heterogeneity, since early splits in the tree define
separate model subsets in the data.[62] RFs capitalise on the benefits of decision trees and
have demonstrated excellent predictive performance when the forest is diverse (i.e. trees are
not highly correlated with each other) and composed of individually strong classifier
trees.[58] The RF method is a natural approach for studying gene-gene or gene-environment
interactions because importance scores for particular attributes take interactions into account
without demanding a pre-specified model.[62] However, most current implementations of the
importance score are calculated in the context of all other attributes in the model. Therefore,
assessing the interactions between particular sets of attributes must be done through careful
model interpretation, although there has been preliminary success in jointly permuting
explicit sets of attributes to capture their interactive effects.[59]

In selecting functional SNP attributes from simulated case-control data, RFs outperform
traditional methods such as the Fisher’s Exact test when the ‘risk’ SNPs interact, and the
relative superiority of the RF method increases as more interacting SNPs are added to the
model.[62] RFs have also shown to be more robust in the presence of noise SNPs relative to
methods that rely on main effects, such as the Fisher’s Exact test.[59] Initial results of RF
applications to genetic data in studies of asthma[59] and breast cancer[63] are encouraging,
and it is anticipated that RFs will prove a useful tool for detecting gene-gene interactions.

Multifactor Dimensionality Reduction
MDR is a machine-learning method specifically designed to identify interacting
combinations of genetic variations associated with increased risk of common, complex,
multifactorial human diseases.[64–68] This method was developed in response to the
limitations posed by logistic regression in detecting gene-gene interactions in
epidemiological studies (see introductory section). MDR is nonparametric in that no
parameters are estimated, and it is free of any assumed genetic model. The goal of MDR is
to find a combination of attributes associated with disease outcome by minimising the
number of misclassified individuals. MDR pools multi-locus genotypes or environmental
factors into high-risk and low-risk groups, effectively reducing the dimensionality of the
predictors (i.e. attributes) from N dimensions to one dimension. This process, wherein a new
attribute is defined as a function of two or more other attributes, is termed constructive
induction.[69] The newly constructed attribute can be evaluated for its ability to classify and
predict disease status.[70] MDR forms a hypothesis by counting the frequency of various
gene combinations within the training sample, which is analogous to a naive Bayes
classifier.[64] Figure 4 illustrates the general procedure for implementing the MDR method.

In order to provide a tool that encourages interaction between the biologist and the machine-
learning method, a graphical user interface (GUI) for MDR has been implemented using
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open-source, freely available software packages available from
http://www.epistasis.org/mdr.html. The MDR software is designed in accordance with the
philosophy advocated by Langley that computational methods should provide explicit
support for human intervention in scientific discovery.[71–73] Taken together, the component
packages of the MDR toolkit (Data Tool, Analysis Tool, and Permutation Testing Tool)
encourage human intervention in all stages the discovery process, including data
preprocessing, application of the learning algorithm, and evaluation and interpretation of the
resulting model. Indeed, Langley stresses that “appropriate decisions about these issues are
more crucial to success than decisions about which learning algorithm to use.”[73] The first
step in an effective analysis involves an iterative process of careful data manipulation and
filtering. Once the data have been thoroughly examined from a variety of perspectives, the
biologist applies his or her specialised knowledge to the application of the machine-learning
algorithm. Expert knowledge guides the analysis by assuring that candidate loci appear in
the model, manipulating parameters (e.g. setting limits on the number of loci hypothesised
to interact in a particular disease) and accounting for peculiarities in the data. As an aid to
the evaluation and interpretation of results, the MDR software produces relevant
performance statistics as well as various interactive visualisations of MDR models
generated, and permutation testing is used to estimate the statistical significance of selected
models.

Application of MDR to case-control datasets has routinely yielded evidence of epistasis in
the absence of main effects. For example, Ritchie et al.[67] identified a statistically
significant interaction among four SNPs from three estrogen metabolism genes for sporadic
breast cancer. Again, this interaction was detected in the absence of independent main
effects for any of the four SNPs. Evidence for epistasis has also been detected for other
common diseases such as essential hypertension,[14,74] type 2 diabetes,[75] atrial
fibrillation,[76,77] amyloid polyneuropathy,[78] autism,[79,80] myocardial infarction,[22]

coronary calcification,[81] pharmacogenetics,[82,83] bladder cancer,[84] prostate cancer[85]

and schizophrenia.[86]

A Flexible Strategy for Data Mining and Knowledge Discovery
Moore et al.[70] have proposed a four-step framework for data mining and knowledge
discovery that can integrate constructive induction algorithms such as MDR with other
machine-learning methods such as NNs, CAs and RFs. The first step of this flexible
framework is to select interesting subsets of SNPs when the total number of SNPs is too
large to exhaustively evaluate for gene-gene interactions. The key here is to identify filter
strategies such as ReliefF[87] that are capable of assigning a high quality or relevance to
SNPs that might be involved in a nonlinear interaction. This first step will be important in
the context of genome-wide association studies[88,89] that measure thousands of SNPs. Once
interesting SNPs are selected, they can then be used in conjunction with constructive
induction algorithms such as MDR to generate new attributes that capture interaction
information. Once a new multi-locus attribute is constructed in step two, it can then be
evaluated in step three using machine-learning methods such as those described above. The
goal of step four is to facilitate statistical interpretation of machine-learning models. Moore
et al.[70] suggest using measures of interaction information to construct interaction graphs
and interaction dendrograms as described by Jakulin and Bratko[90] and Jakulin.[91] This
approach proved useful for modelling atrial fibrillation[70] and bladder cancer,[84] as it
differentiated additive from nonadditive interactions. Of course, the final goal is to make
biological inferences from gene-gene interactions models. This may be the greatest
challenge of all.[1,2,92]

McKinney et al. Page 10

Appl Bioinformatics. Author manuscript; available in PMC 2011 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.epistasis.org/mdr.html


Conclusions
There is a growing awareness that susceptibility to common, multifactorial human diseases
is largely due to complex nonlinear interactions among genetic and environmental variables.
Traditional statistical methods often lack the ability to identify these interactions because of
the inflexibility of the models and the large sample sizes required for accurate parameter
estimation. New methods are needed to analyse genetic data that not only address the usual
challenges posed by real-world data, such as noise, missing data, and small sample size, but
that also recognise interactions as an important effect rather than a perturbation to
independent main effects.[15] Interacting variables can easily be hidden to methods that are
not specifically designed to detect them. To this end, we reviewed some of the machine-
learning methods that have demonstrated the power and flexibility to identify combinations
of interacting genes that contribute to the disease status of individuals.

Specifically, we discussed evolution-optimised NNs and CAs, as well as MDR and RFs –
machine-learning models that have been successfully used to detect gene-gene interactions.
For each of these models, the machine is allowed to learn from experience to discriminate
between individuals whose disease affection status is known. After this learning process,
during which the model parameters are optimised, the fitted model is applied to an
independent dataset to test how well the model generalises.

Although the methods reviewed in this article show promise for detecting gene-gene
interactions, no single computational or statistical method will be optimal for every dataset.
A successful data analysis will likely combine multiple data analysis methods, both
traditional and novel, that have different strengths and weaknesses. This is an advantage of
the computational framework proposed by Moore et al.[70] A logical first approach to a
genotypic dataset would be to use traditional statistical methods in the hopes of detecting
independent main effects. Regardless of whether independent main effects are detected, it
will be important to also carry out a gene-gene interaction analysis using methods such as
MDR. MDR is a deterministic and conceptually simple constructive induction method that
exhaustively considers every possible combination of variables up to a given order.
However, the number of combinations can become computationally intractable when many-
variable interactions need to be considered as in the context of a large candidate gene study
or a genome-wide association study. For example, depending on the number of attributes, it
may not be feasible to consider all possible seven-way and higher interactions. For higher-
order interactions, it would then be necessary to implement an RF approach or a stochastic
optimisation method (e.g. genetic algorithms or simulated annealing) to attempt to traverse
the vast search space. Examples discussed in this review of methods that implement such
stochastic optimisation methods are GPNNs and genetic algorithm-optimised CAs.
Alternatively, a filter-based approach that selects interesting SNPs prior to interaction
modelling might be preferable.[70]

Further research is needed to understand the biological mechanisms of disease, but it is
becoming increasingly clear that interactions among genes and environmental variables will
play a prominent role. The imbalance between experimental output and theoretical
understanding in favour of unexplained experimental data in genetics today is reminiscent of
particle physics in the 1960s and in chemistry a century earlier, before the days of the quark
model and the periodic table, respectively. Perhaps a similar underlying order waits to be
discovered in genetics through the collaborative efforts of geneticists, epidemiologists,
bioinformaticists, computer scientists, physicians and others.
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Fig. 1.
Example of a backpropagation neural network with eight input nodes (Xi) and three hidden
layers with four nodes in the first layer, two nodes in the second layer and one node in the
third layer. The signal is propagated through the network to yield an output signal (O),
which can be put to a threshold to yield an output for affected (case) or unaffected (control).
Hj(k) = value of node j in layer k; wji(k) = weight of the connection between node j in layer k
with node i in layer k+1.
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Fig. 2.
Example of cellular automata (CAs) output for simulated control and case individuals. In the
first time step of both CAs, each cell represents a colour-encoded genotype for a particular
genetic variation. The cells in the subsequent time steps are the result of the CA computation
using a particular rule table (not shown) evolved by the genetic algorithm. The information
from the cells in the final time step is used to discriminate between affected (case) and
unaffected (control) disease status.
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Fig. 3.
Construction of individual trees using the random forest method from a full dataset of N
instances and M attributes. Step 1: choose a bootstrap training sample by selecting N
instances, with replacement, from the full dataset. Step 2: for a new node in the tree,
randomly select m attributes from the entire set of M attributes in the data. Step 3: from
among the m attributes selected in the previous step, choose the attribute that best splits the
training sample at that node. Step 4: iterate the second and third steps until the tree is fully
grown (no pruning). This entire algorithm is repeated to yield a forest of arbitrary size,
where each individual tree has been trained on a different bootstrap sample of the data. A =
affected; U = unaffected.
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Fig. 4.
Summary of the general steps involved in implementing the multifactor dimensionality
reduction (MDR) method. Step 1: a set of N genetic and/or discrete environmental factors is
selected from the pool of all factors. Step 2: the N factors and their possible multifactor cells
are represented in N-dimensional space. Step 3: each multifactor cell in the N-dimensional
space is labelled as ‘high risk’ if the ratio of affected individuals to unaffected individuals
(the number in the cell) exceeds some threshold T (e.g. T = 1.0) and ‘low risk’ if the
threshold is not exceeded. Step 4: the collection of newly constructed multifactor attributes
comprising the MDR model for the particular combination of factors. Step 5: the model is
evaluated using a naive Bayes classifier. Step 6: the accuracy with which the model
separates cases from controls is reported. An optimal predictive model is chosen using
cross-validation and permutation testing.
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Table I

Exclusive OR (XOR) interaction model for two binary variables

X1 X2 Y

0 0 0

0 1 1

1 0 1

1 1 0
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Table II

Penetrance values for combinations of genotypes from two single nucleotide polymorphisms exhibiting
interactions in the absence of independent main effects

Genotypea Genotypea Marginal penetranceb

AA (0.25) Aa (0.50) aa (0.25)

BB (0.25) 0 1 0 0.5

Bb (0.50) 1 0 1 0.5

bb (0.25) 0 1 0 0.5

Marginal penetranceb 0.5 0.5 0.5

a
Genotype frequencies are given in parentheses.

b
Marginal penetrance values for the A (B) genotypes.
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