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ABSTRACT Anew theory, to our knowledge, is developed that describes the dynamics of a lipidic pore in a liposome. The equa-
tions of the theory capture the experimentally observed three-stage functional form of pore radius over time—stage 1, rapid pore
enlargement; stage 2, slow pore shrinkage; and stage 3, rapid pore closure. They also show that lipid flow is kinetically limited by
the values of both membrane and aqueous viscosity; therefore, pore evolution is affected by both viscosities. The theory predicts
that for a giant liposome, tens of microns in radius, water viscosity dominates over the effects of membrane viscosity. The edge
tension of a lipidic pore is calculated by using the theory to quantitatively account for pore kinetics in stage 3, rapid pore closing.
This value of edge tension agrees with the value as standardly calculated from the stage of slow pore closure, stage 2. For small,
submicron liposomes, membrane viscosity affects pore kinetics, but only if the viscosity of the aqueous solution is comparable to
that of distilled water. A first-principle fluid-mechanics calculation of the friction due to aqueous viscosity is in excellent agreement
with the friction obtained by applying the new theory to data of previously published experimental results.
INTRODUCTION
The creation and growth of pores in cell membranes is a bio-
logical process that has been studied for many years in a
variety of contexts. For example, hemolysis—release of
the internal contents of a red blood cell through a membrane
pore—is a well known phenomenon in the field of medicine.
Hemolysis most often occurs through colloidal osmotic
swelling of the cell, which leads to membrane stretching.
Excessive stretching causes local rearrangement of the
membrane lipids into the configuration of a pore, more
commonly referred to as membrane rupture. The efflux of
the internal solution through the pore relieves the internal
pressure, allowing the pore to then shrink (1). Pore forma-
tion and growth are generated by physical forces and do
not require the presence of proteins; the process can be
modeled by swelling of liposomes. A giant liposome, on
the order of tens of microns, that is fully swollen cannot
sustain an internal pressure without rupturing. As a practical
matter, to study pores within giant liposomes, one wants to
be able to control pore formation rather than have pores
spontaneously and uncontrollably form as a result of
osmotic swelling. Lipidic pores can be created by other
means than osmotic swelling. Electroporation is one such
method: applying a large electric field that exceeds the
membrane dielectric breakdown results in pore formation
(2–4). Illumination of liposomes that contain fluorescently
labeled lipids is another method: excitation of the fluores-
cent probes leads to lipidic pores by a mechanism that is
as yet poorly characterized (5). For giant liposomes, the
pore that results upon illumination can be observed by light
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microscopy, allowing the time course of its enlargement and
subsequent shrinkage to be experimentally quantified.

To understand the dynamic growth of pores generated by
illumination, it is useful to know the basic experimental
protocol. Experimenters initially adjust osmotic conditions
to somewhat decrease the volume of the liposomes. This
results in dynamic membrane foldings that undulate (6,7).
The true area of the membrane is greater than inferred
from measuring liposome radii by light microscopy. For
bilayers containing fluorescent lipids, irradiation of an indi-
vidual liposome causes the folding of its membrane to
smooth out, generating a mechanical tension. A pore forms
as a result of that tension. Membrane smoothing is observed
as an increase in the measured liposome radii (8,9). In this
way, pore formation can be triggered in a controlled manner
and pores observed for an individual liposome.

Once a pore has formed, the observed evolution of its size
can be divided into three distinct stages (see Fig. 1, upper).
The first stage is characterized by rapid pore enlargement
caused by the membrane tension generated by the pressure
within the liposome. During this enlargement, pressure
causes an outflow of the internal aqueous solution, which
in turn results in a reduced membrane tension. The ever-
decreasing mechanical tension becomes balanced by an
opposing lateral force, directed into the center of the pore,
created by the edge tension (also known as line tension)
of the pore, and the pore radius reaches a maximum value.
The pore then slowly shrinks (stage 2) as the pressure
promoting pore enlargement becomes less consequential
than the edge energy. When the pressure has effectively
collapsed, only edge energy is present and a third stage—
rapid pore closure—ensues.

A quantitative physical theory that describes the observed
evolution of a pore, which we denote as BGS theory, was
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FIGURE 1 Pore evolution in giant liposomes exhibits three distinct

stages. (A) Both BGS and DAV theory yield three stages, and parameters

can be found for each theory to satisfactorily fit experimental data. But

the curve for BGS (dashed curve) assumes hs ¼ 0 and hl ¼ 1000 P.

The DAV model (solid curve), on the other hand, assumes hs ¼ 32 cP as

used in the experiments of Brochard-Wyart et al. (10) (crosses), and the

physically realistic hl ¼ 1 P. The other parameters were also as in

Brochard-Wyart et al. (10) and are S ¼ 0.0458 kT/nm2, g ¼ 2.5 kT/nm

(~10 pN), W ¼ 0 kT/nm2, R0¼ 19.7 mm, R(t ¼ 0) ¼ 20.59 mm,

r(t ¼ 0) ¼ 1.5 mm, C ¼ 8.16, and d ¼ 3 nm. (B) Parameters used are the

same as in A, except that hs ¼ 1.13 cP. DAV fits well the experimental

data Portet and Dimova (9) without adjusting any parameters (other than

hs), whereas BGS does not.
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devised by Brochard-Wyart, de Gennes, and Sandre (10).
The membrane and aqueous solutions are obviously
viscous, and both must move if a pore radius is to change.
BGS theory uses membrane viscosity to explicitly account
for the dissipation of energy that occurs during pore expan-
sion/contraction. Building on previous efforts (11), BGS
combined the efflux of aqueous solution, elastic membrane
moduli, and a rate equation for the control of pore radius by
the viscosity of the membrane. This is now the standard
formalism to describe pore evolution in liposomes
(8,9,12,13). In the BGS formalism, the flow of the lipo-
Biophysical Journal 101(12) 2929–2938
some’s internal aqueous solution through the pore is regu-
lated by aqueous viscosity (by the same equation as our
Eq. 2). But this flow does not exert a lateral force on the
pore. A central assumption in the BGS theory is that
the only dissipative force that generates lateral stress on the
pore is internal to the lipid bilayer (i.e., membrane viscosity).
The equation that considers lateral forces (Eq. 5 of Brochard-
Wyart et al. (10)) implicitly assumes that water viscosity
is zero. In contrast, experiments show that increasing the
solution viscosity slows down pore kinetics (8,9).

Using BGS as a base, we have developed a new theory, to
our knowledge, that accounts for the lateral stress on the
pore arising from the tangential movement of a viscous
aqueous solution relative to the membrane. We find that
for giant liposomes, the kinetics of pore dynamics is con-
trolled by water viscosity and is virtually independent of
the value of membrane viscosity. Also, for small, submicron
liposomes, pore kinetics are affected by membrane viscosity
if the aqueous viscosity is comparable to that of distilled
water. Our theory leads to fundamentally different physical
conclusions than does the BGS formalism, and as we will
show, curve-fitting our theory to experimental data con-
sistently yields reasonable physical parameters, whereas
BGS theory does not. Because this new theory reveals the
dominance of aqueous viscosity in controlling pore
dynamics, we refer to the model as DAV theory.

A careful mathematical treatment of a physical
problem—in this case one directed toward a biological
process—can lead to results that extend beyond the initial
problem. This study of pore dynamics in a membrane led
us to calculate the coefficient of friction for an infinite
two-dimensional sheet with a hole (i.e., a pore in a bilayer),
surrounded by a viscous medium; the radius of the hole
changes as a consequence of a force applied to its rim. To
our knowledge, a solution to this general problem has not
been previously presented in the literature. For the radius
to increase, material of the infinite sheet must flow away
from the hole; for the radius to decrease, material must
flow toward the hole. A derivation and expression for the
friction associated with this flow is given in Appendix A.
THE DAV MODEL

The total tension of the bilayer, s, promotes pore enlarge-
ment, and edge tension of the pore, g, induces pore
shrinkage. The pore radius, r(t), is given by

Chsrr
0 þ 2hmr

0 ¼ sr � g; (1)

where r0 ¼ dr=dt, hs is the viscosity of the aqueous solution,
h is membrane viscosity, and g is line tension. h is related
m m

to lipid viscosity (hl) through the relation hm ¼ hld, where
d is the thickness of the bilayer. We let d ¼ 3 nm for all
figures of this article. The first term Chsrr

0 explicitly
accounts for the lateral stresses generated on the bilayer as
water movement shears along the dilating or shrinking
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pore. The precise form of this term is justified in Appendix
A. C is a coefficient that is determined through a curve fit to
experimental data for pore size as a function of time during
rapid pore closure. We show that this determination of C
agrees with the value obtained by directly calculating the
friction for a changing radius of a circular hole in a two-
dimensional sheet surrounded by water, as described in
Appendix A. The total tension on the bilayer, s, is due to
mechanical stretching of the membrane and the surface
tension, W, of a relaxed bilayer. The tension is given by
s ¼ S(A � A0)/A0 þ W, where S is the modulus for
increasing the area of the bilayer, A0 is the area of the
membrane in the absence of mechanical tension, and A is
the area in the presence of tension. For membranes that
have folds (sometimes referred to as wrinkles), the area of
the membrane refers to an apparent area. The apparent
area is inferred from the microscopically observed radius
of the liposome as if the membrane were a smooth sphere;
the existence of possible folds is ignored. Immediately after
a pore has formed, the experimentally observed radius of the
liposome is greater than that before illumination. This shows
that the undulations have been suppressed, strongly indi-
cating that, for unexplained reasons, a mechanical tension
was generated by illumination. Because tension suppresses
undulations, S should therefore be the elastic modulus for
smoothing out membrane folding by mechanical tension,
as has been assumed (10), rather than the modulus of
stretching a membrane by increasing the area/lipid. The
typical value of the modulus for unfolding into a smooth
membrane is S¼ 0.046 kT/nm2 (10) and the typical modulus
for increasing the area/lipid is S ¼ 60 kT/nm2 (14), where k
is the Boltzmann constant and T is the absolute temperature
in units of Kelvin.

Invoking conservation of mass, the rate of volume efflux,
�d/dt[(4/3)pR3], of the internal solution leaving a liposome
of radius R is equal to the flux through the pore. This flux is
Pr3/(3hs), where P is the pressure drop across the pore (see
pg. 153 of Happel and Brenner (15)). Using the Laplace
relation P¼ 2s/R yields (as derived by a somewhat alternate
means in BGS), the rate of change of the liposome radius:

R0 ¼ �sr3

6phsR
3
: (2)

It is worth noting that the outflow of the aqueous solution
does not generate stresses on the pore and therefore does
not directly promote any changes in pore radius.

In the common experimental practice of inducing
pores by photoactivation of fluorescently labeled lipids,
the liposome is not fully swollen but has membrane undula-
tions before illumination. From conservation of lipid, the
total area of the liposome membrane after illumination,
including the area of a pore of radius r, is given by

4pR2 ¼ 4pR2
0

�
1þ s�W

S

�
þ pr2, where R0.is the radius
of the liposome before the formation of the pore in the
absence of mechanical tension, and the stretching modulus
S is set equal to the two-dimensional modulus for unfolding
of the undulations to yield a taut membrane (16). We follow
BGS in making the approximation W ¼ 0, as mechanical
tension is more consequential than relaxed surface tension
in controlling pore growth and shrinkage. This equation
for the area of the liposome yields an algebraic equation
for s in terms of r and R (and the modulus S and experimen-
tally measured R0). The radius of the initial pore is r(0).

Solution of two differential equations (Eqs. 1 and 2) deter-
mines the two unknowns, r and R. We used the forward Euler
method to solve these equations. The time intervals were
chosen as follows: the lifetime of a pore was set over the
interval (0,1), which was partitioned into 104 equal subdivi-
sons. A finer timemesh is required over the rapid rising stage
of pore growth than over the subsequent stages in which pore
size changes more slowly. This was accomplished by cubing
the time of each subdivision. After cubing, the time point of
each subinterval was multiplied by the lifetime of the pore,
yielding the true time for each point. In simulations where
the pore radius increased quickly (stage 1), squaring, instead
of cubing, led to numerical outputs that exceeded error toler-
ances, and therefore we used cubing. We checked the preci-
sion of our simulation by comparing runs for reference
partitions with 103 and 105 subdivisions.
RESULTS AND DISCUSSION

Dynamics of pores in large liposomes
is controlled by the aqueous viscosity

We first consider giant liposomes, tens of microns in diam-
eter, since pores in these liposomes spend the majority of
their time at radii of microns, and so, the pore can be exper-
imentally observed. To introduce the basic pattern of the pore
dynamics, we plot pore radius as a function of time for BGS
theory (Fig. 1 A, dashed curve) and for DAV theory (Fig. 1 A,
solid curve). Both approaches exhibit the three stages of pore
dynamics that are experimentally observed (crosses) by light
microscopy (8–10,12,13), and both can quantitatively match
experimental pore dynamics. However, in BGS theory, only
membrane viscosity controls pore dynamics, since the theory
ignores stresses caused by aqueous viscosity. Consequently,
in BGS theory, a value of hl on the order of 1000 poise must
be assumed so that the theoretically derived dynamics are as
slow as the actual experimental time courses. This is an inor-
dinately large and physically unrealistic value of viscosity; it
is at least 100 times greater thanmeasuredmembrane viscos-
ities. DAV theory explicitly accounts for the experimental
fact that aqueous viscosity slows pore dynamics (through
Eq. 1). For the solid curve of DAV theory in Fig. 1 A, we
set hl ¼ 1 P, a realistic value that is typical for lipid bilayer
membranes, and hs ¼ 32 cP, because this is the viscosity of
the solution that was used experimentally (a glycerol, water,
Biophysical Journal 101(12) 2929–2938
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sucrose/glucose solution) in the BGS study (10). Although
both DAV and BGS theories account for the experimental
data quite well (Fig. 1 A, crosses), they utilize very different
values for the physical parameter hl.

In contrast to the conclusions of BGS theory, DAV theory
shows that aqueous viscosity is by far the dominant source
of friction during changes in pore radius. This becomes strik-
ingly apparent when aqueous viscosity is varied. In Fig. 1 B,
hs ¼ 1.13 cP. The curves for both DAV and BGS use their
respective values of hl of Fig. 1A. Clearly, DAV (solid curve)
accurately describes the experimental pore dynamics (Fig. 1
B, crosses, obtained from Portet and Dimova (9)), whereas
BGS (dashed curve) predicts a significantly slower change
in pore radius in both the opening and rapid closure stages.
Although it would be possible to modify the value of hl so
that BGS fits the data of Fig. 1 B, doing so requires that hl
become a fitting parameter rather than an experimentally
determined physical parameter. In other words, in BGS,
membrane viscosity has to be recalibrated when the experi-
mental aqueous viscosity is adjusted. In contrast, both hl
and hs are true physical parameters in DAV theory, indepen-
dent of each other, and are set by their experimental values.
As will be shown, DAV theory does not have any free
parameters.

DAV theory shows that membrane viscosity is, in fact,
irrelevant for pore dynamics in giant liposomes. This can
be appreciated by fixing the aqueous viscosity at hs ¼ 32
cP and changing hl by 2 orders of magnitude above and
below the experimentally realistic hl ¼ 1 P (Fig. 2). These
large variations in hl barely affect pore dynamics (see
Fig. 2, where thel three curves are superimposed). Experi-
mentally, using solutions with a viscosity of hs ¼ 1.133
cP yielded considerably faster pore dynamics, with lifetimes
of a few hundred milliseconds (9) rather than the lifetimes of
several seconds observed in the solutions of hs¼ 32 cP (10).
This supplies direct experimental proof that the frictional
FIGURE 2 Pore evolution in giant liposomes is independent of

membrane viscosity for viscous solutions. The viscosity of the aqueous

solution was fixed at hs ¼ 32 cP, and the viscosity of the lipid was varied

by four orders of magnitude: h1 ¼ 1 P (solid curve), 100 P (circles), and

0.01 P (squares). The three curves are virtually identical, lying on top of

each other. All other parameters are the same as in Fig. 1.
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forces arising from the viscosity of water greatly affect
pore dynamics. Calculations from DAV theory show that
aqueous viscosity alone is the relevant source of friction
(Fig. 2). Membrane viscosity must become more conse-
quential for less viscous aqueous solutions. However, even
for an aqueous solution with hs ¼ 1 cP (the viscosity of
distilled water), membrane viscosity is largely irrelevant
for time courses of pore evolution (Fig. 3). The value of hl
must be increased by two orders of magnitude (Fig. 3, dotted
curve) above the experimental value (1 P; Fig. 3, solid
curve) for the slowing of pore dynamics by membrane
viscosity to be consequential according to the DAV model.

Results of calculating pore radius for hs¼ 1 cP, 16 cP, and
32 cP directly demonstrate that aqueous viscosity does
indeed control pore dynamics in our formalism (Fig. 4). In
fact, pore dynamics scales in time with hs; the maximum
pore diameter is independent of the aqueous viscosity and
pore lifetime is directly proportional to hs.
How reliable is DAV theory?

To test whether the model accurately predicts pore proper-
ties, we used it to obtain edge tension of pores from exper-
imental data of pore dynamics published in prior studies (9).
We used the experimental points of pore radius during rapid
closure, stage 3, to obtain g. Both r and s are small in the
rapid closure stage, so sr ~ 0. Consequently, Eq 1 can be
written as r0 ¼ �g=ðChsr þ 2hmÞ. Solving for r(t) gives

t ¼ �Chs
2g

r2 � 2hm
g

r þ tc. Here tc is the integration

constant and is equal to the lifetime of the pore. DAV theory
therefore predicts that for rapid pore closure (stage 3), the
time at which a given pore radius occurs varies as a quadratic
function of that radius. Therefore, as previously noted (in
the Appendix of Brochard-Wyart (10)), energy dissipation
FIGURE 3 Pore evolution in giant liposomes is somewhat dependent on

membrane viscosity for low-viscosity solutions. For the aqueous viscosity

of distilled water, hs ¼ 1 cP (solid curve), the dynamics of pore evolution

is slowed by the unnaturally large lipid viscosity of h1¼ 100P (circles). The

dynamics were independent of membrane viscosity for smaller values of hl,

as shown for 0.01 P (squares). All other parameters are as given in the

legend of Fig. 1.



FIGURE 4 Pore kinetics in giant liposomes scales with aqueous vis-

cosity. hs was assigned the values of 1 cP, 16 cP, and 32 cP, fixing h1 ¼
1 P and the other parameters as listed in the legend of Fig. 1. The maximum

pore radius is independent of hs; the value of r at every time is scaled by hs.
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dominated by aqueous viscosity results in a pore radius that
varies as a square-root function of time. In contrast, if one
assumes hs ¼ 0 in Eq. 1, pore radius and time vary linearly.
Least-squares fits verify a quadratic dependence between
time and radius, as predicted by the DAV model (Fig. 5).
Therefore, the DAV theory model correctly predicts the
functional form of pore radius versus time that is observed
experimentally in stage 3.

To obtain the value of g, the constant C must be deter-
mined. C is a fundamental constant of DAV theory and
therefore should have the same value in every experiment,
independent of membrane and solution viscosities, as well
as any other variability in experimental conditions. To test
this prediction, we evaluated C by curve-fitting data from
FIGURE 5 Stage of rapid pore closure, stage 3, is a quadratic function of

time. A least-squares fit of the data of Portet and Dimova (9) yielded

t ¼ 0.34r2 – 4.5r þ 209.4, with a confidence of 0.99. By combining this

quadratic equation, the calculated value of C ¼ 8.16, and hs ¼ 1.133 cP

as used for the experiment, one obtains the edge tension, g, of the pore.

The calculation yields g ¼ 13.5 pN.
experiments performed independently by two different
groups. For one fit, we used the data of Karatekin et al.
(8) (see their Fig. 7) and their determined value of g ¼ 10
pN (based on BGS theory) to find that C ¼ 8.16. For the
other fit, we used data of Portet and Dimova (9) (see their
Fig. 2). We let g ¼ 14 pN, as they determined from stage
2 of their data (see next paragraph), fit their data of stage
3, and found that C ¼ 8.44. As described in Appendix A,
we also determined C by calculating the shear stresses
generated by water on a circular hole within an infinite
sheet. The hole contracts as a result of edge tension (i.e.,
the force on the rim of the hole) exceeding the force of
surface tension at the rim. The solution to the fluid mechan-
ical process yields C ¼ 8.09. The fact that the values of C
determined by the two curve fits to data agree with each
other and with the theoretical value provides additional
quantitative support for the validity of the DAV theory of
pore dynamics.
Pore edge tension can be obtained by analyzing
stage 3 as well as stage 2

Values of edge tension of lipidic pores have previously been
obtained by analyzing the second stage of pore dynamics
(8,9,12,13). It has been observed in experiments that pore
radius decreases slowly in stage 2, and both BGS and
DAV theory are consistent with this observed decrease.
The value of line tension is obtained from the slope of the
linear decrease in R2lnr versus time. The decrease in pore
radius is described by the same equation for both models,
because r0 is small in this stage: The stresses generated
through membrane viscosity are given by hmr

0. The efflux
of the aqueous solution through the pore is slow in the
second stage, and pore closure is slow. Consequently, hmr

0

is less than both mechanical and edge tensions. Therefore,
the drastic disparity in values of hm derived by curve fitting
in the two theories is irrelevant for the description of pore
closure during stage 2. In essence, the time course of pore
closure in stage 2 is determined by the rate of water efflux,
and virtually any model that accounts for conservation of
mass will correctly describe this time course, independent
of the rate equation (Eq. 1). The predictions of the theories
are different only if the force generated by water movement
along the membrane, hsrr

0, is significant. This is the case in
stages 1 and 3. Because r0 is small in stage 2, the two theo-
ries make the same predictions for this stage (and only for
this stage).

The pore shrinks during stage 2, because the edge tension
is somewhat greater than the force of mechanical tension:
the edge tension, �dð2prgÞ=dr ¼ �2pg, remains constant
as r decreases, but the magnitude of the force from me-
chanical tension, �dðpr2sÞ=dr ¼ �2prs, continuously de-
creases during this closure. The time course of the slow
shrinkage is determined by the rate at which the mechanical
tension, s(r,R), decreases. This tension decreases as the
Biophysical Journal 101(12) 2929–2938



FIGURE 6 Pore dynamics as a function of liposome radius for small

liposomes. The kinetics roughly scale with liposome radius. We assumed

that R(0) was 3% larger than R0, corresponding to the maximum increase

in area/lipid that can occur when liposomes rupture in pore formation

(20). Explicitly, for R0 ¼ 1 mm, we chose R(0) ¼ 1.03 mm; for R0 ¼
0.3 mm, R(0) ¼ 0.309 mm; for R0 ¼ 0.1 mm, R(0) ¼ 0.103 mm. The param-

eters used for the small liposomes are S ¼ 60 kT/nm2, g ¼ 2.5 kT/nm,

W ¼ 0 kT/nm2, C ¼ 8.16, hs ¼ 1 cP, h1 ¼ 1 P, r(0) ¼ 1 nm, and d ¼ 3 nm.
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internal contents of the liposome continue to exit; this is
determined by Eq. 2, and it is independent of Eq. 1. For
both BGS and DAV theory, the constant downward slope
of R2lnr versus time varies linearly with g; and all other
parameters that affect the slope are constant or controlled
experimentally. This allows the value of g to be obtained
from stage 2 (9). We checked that the value of g determined
from DAV theory was not sensitive to the precise value
chosen for the constant C. We used the theoretical value
of C ¼ 8.09, fit the data of stage 2 of Portet and Dimova
(9), and obtained g ¼ 13.5 pN. Alternatively, we used the
value C ¼ 8.44 derived by curve-fitting the data of stage 3
of the same experiment, fit the data of stage 2, and found
g ¼ 14 pN. These similar values of g show that small
changes in the value of C used for curve fits has little affect
on the determined value of g, and vice versa. This illustrates
that the numerically determined solutions of the equations
of the DAV model are computationally stable and do not
vary greatly as input parameters are smoothly varied.

As a practical matter, it is simpler to obtain values of g, as
traditionally done, from data of stage 2 rather than those of
stage 3. But from a mathematical point of view, stage 3 is
preferable. To obtain g from stage 2, it must be assumed
that s is constant for the duration of that stage and that
2hmr

0 << rs� g (Eqs. 10 and 11, respectively, of Karatekin
et al. (8)). Although these assumptions are reasonable,
as stated in the previous paragraph, s decreases with the
efflux of internal contents, and in some cases, the second
assumption can break down. At stage 3, it is certain that
sr<< g, since the pore is rapidly closing, and the quadratic
fit rigorously follows without additional assumptions or
approximations.

DAV theory predicts that aqueous friction limits pore
growth in stage 1, with the initial slope of the rising phase
inversely proportional to aqueous viscosity (calculations
not shown). If one assumes hs ¼ 0, on the other hand, the
initial rate of pore growth is predicted to vary inversely
with membrane viscosity (and cannot depend on the solu-
tion viscosity). Experimental data show that the rapid pore
enlargement in stage 1 is slower for a larger aqueous
viscosity (8–10).
Pores within small liposomes surrounded
by low-viscosity solution are sensitive
to membrane viscosity

It is not possible to use light microscopy to detect pore sizes
in small (submicron) liposomes. However, having found
considerable confirmation that the equations of DAV theory
are reliable, we used them to predict pore dynamics in small
liposomes (Fig. 6). The relevant value of the modulus S (for
increasing membrane area) is drastically different when
generating pores in giant liposomes by illumination than
when creating pores in small liposomes by standard osmotic
swelling. The value of S for increasing the area/lipid by
Biophysical Journal 101(12) 2929–2938
swelling, S ¼ 60 kT/nm2, is much greater than the modulus
for suppressing undulations, 0.045 kT/nm2. Using a value of
S corresponding to increasing the area/lipid leads to kinetics
of pore enlargement for giant liposomes in stage 1 that is
orders of magnitude faster than kinetics in experiments,
and a clear three-stage process is not predicted by either
BGS or DAV (Fig. S1 of the Supporting Material). In
contrast, we found that for small liposomes, rather than
rapid pore enlargement, a pore immediately contracts
upon formation if S is set to 0.045 kT/nm2 (see Small lipo-
somes in the Supporting Material). We therefore assumed
S ¼ 60 kT/nm2 for small liposomes, the modulus for
increasing the area/lipid molecule.

Based on the graphs for small liposomes, r as a function
of time scales with R, and r0 scales with 1/R in the limit that
the initial liposome radius is zero (Fig. 6). (For giant lipo-
somes, scaling is much more approximate than it is for small
liposomes.) As the initial pore radius increases, the scaling
relations become less exact. The maximum pore size is
~45 nm for a liposome of radius 100 nm, demonstrating
that a pore can grow to an appreciable fraction of the mem-
brane radius and still close. (The same phenomenon also
holds for giant liposomes.) This contrasts with the experi-
mental finding in planar bilayer membranes, where pores
can only close if they are small. Once these pores
achieve a radius above a relatively small critical value,
~10 nm, they are irreversibly open and continue to enlarge
(17–19). Large pores in liposomes can close because
mechanical tension relaxes toward zero as water is expelled
from the liposome interior and consequently, edge tension
becomes the dominant force, resulting in pore shrinkage
and closure. For planar bilayer membranes, mechanical
tension is generated and maintained by the surrounding
Gibbs-Plateau border that supports the bilayer.



FIGURE 8 Membrane viscosity affects pore dynamics in small lipo-

somes for small aqueous viscosities. Pore dynamics is shown for the

same 300 nm liposome as in Fig. 7, except that hs ¼ 1 cP; the viscosity

of distilled water is assumed. The kinetics are appreciably slowed by the

typical lipid viscosity h1¼ 1 P (solid curve) as compared to the kinetics

when lipid viscosity is ignored, h1¼ 0 P (dashed curve). The abscissa is

plotted as the square root of time.
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For small liposomes, DAV theory predicts that pore
dynamics is sensitive to membrane viscosity if the viscosity
of the aqueous solution is comparable to that of water. For
the high viscosity of hs ¼ 32 cP, aqueous friction dominates
and pore dynamics are almost independent of hl. Letting
hl ¼ 0 (Fig. 7, dashed curve; note that the abscissa is not
uniform in time, but is presented as a square root of time)
barely speeds up pore dynamics as compared to letting
hl ¼ 1 P (Fig. 7, solid curve). For hs ¼ 1 cP (Fig. 8),
however, membrane viscosity has some importance: pores
grow to larger radii and do so faster in the absence
(Fig. 8, dashed curve, hl ¼ 0) than in the presence of
membrane viscosity (Fig. 8, solid curve, hl ¼ 1 P). Mem-
brane viscosity becomes more consequential as liposomes
become smaller, because the volume of water decreases
with the cube of the radius and membrane area decreases
less steeply, as the square of the radius. But if the aqueous
solution is sufficiently viscous, membrane viscosity is
unimportant even for very small liposomes. For liposomes
of R ¼ 0.3 mm, hl has a < 4% effect for hs > 4 cP. For
R ¼ 1 mm, the effect of hl is also < 4 % for hs > 8 cP.
Improvements that can be made to DAV

The assumption that the liposome is always spherical (also
made in BGS) cannot be correct. Because a fraction of the
internal contents of a liposome is expelled after a pore has
formed, the liposome volume decreases. Consequently, the
liposomes should assume nonspherical shapes, since mem-
brane area is conserved, and in fact, inspections of published
optical projections of liposomes show that they are not
always spherical. One could try to account for this by
assuming that a spherical liposome evolves into an ellipsoid
or into another geometric shape. A more appropriate
approach would be to use a variational treatment that calcu-
FIGURE 7 Membrane viscosity does not appreciably affect pore

dynamics in small liposomes for viscous aqueous solutions. Predicted

pore dynamics was only slightly faster in the absence of membrane

viscosity, h1¼ 0 P (dashed curve) than in its presence, h1¼ 1 P (solid

curve). R0¼ 300 nm, R(0) ¼ 309 nm, and hs ¼ 32 cP. All other parameters

are provided in the legend of Fig. 6. Note that the time axis is not linear, but

rather is plotted as the square root of time.
lates, as an output, the evolving liposome geometry over
time that minimizes energy. We are using a phase field
approach to achieve this aim.

There is also the question of the appropriate constitutive
relation of mechanical tension as a function of membrane
area. Regarding this issue, DAV theory has adhered to
BGS theory and assumed that, for giant liposomes, the
tension is given by S(A � A0)/A0, where S is the modulus
for elimination or creation of membrane undulations. This
relationship has been extensively tested experimentally
when tension increases the area/lipid, and it holds up
extremely well (14,20). However, experimental justification
for this relation in the case of reducing membrane folds is
sparse (16). The value of S and the precise constitutive
relation predominantly affect the stage of rapid pore
enlargement (i.e., stage 1). The maximum pore radius, for
example, is relatively insensitive to modulus and constitu-
tive relation since it can be approximated by extrapolating
the curve of slow pore closure (i.e., stage 2) to time ¼ 0.
The value of S does not affect the rate of pore shrinkage
during stage 2, but it does affect the time a pore spends in
this stage: increasing the value of S increases the tension
promoting pore enlargement, and this lengthens the time
before a pore reaches the stage of rapid pore closure (stage
3). In other words, the larger S is, the longer the time a pore
spends in stage 2.

We, and previous investigators, have treated pore
dynamics by evaluating the balance between surface tension
and edge tension. These treatments ignore the fact that the
vectors for the forces arising from surface tension are
tangential to a liposome’s (spherical) surface, whereas the
vectors arising from edge tension are directed along the
flat plane and toward the center of the circle defined by
the pore circumference. The different angles (relative to
the plane of this circle) of the two sets of force vectors
have been ignored but could be accounted for.
Biophysical Journal 101(12) 2929–2938
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Last, our derivation (and other versions of it) of Eq. 2
assumes that the efflux of the aqueous solution is through
a small hole in an infinite plane. However, experimentally,
r can become appreciable relative to R. Deriving an equation
that would rigorously account for the fluid dynamics for all
values of r is mathematically quite complex.
CONCLUSIONS

DAVandBGS theory account for the source of friction differ-
ently. Although a lipid bilayer is 100-fold more viscous
than water, the bilayer is very thin when compared to the
thickness of the aqueous volumetric flow. The sliding of
themembrane through the aqueous solution, as occurs during
changes in pore radius, is consequently a significant source of
dissipation. In BGS theory, only internal membrane friction
(i.e., membrane viscosity), and not friction of water move-
ment, creates stresses on the pore. We adopted the BGS
formalism (10,11) to define the total internal membrane fric-
tion as Fm ¼ 2hmr

0. This quantifies the friction generated by
internal membrane sliding. DAV theory has the critical addi-
tion of incorporating the friction of the membrane moving in
water; this friction is expressed as Fs ¼ Chsrr

0.
Several important consequences arise from this addition.

The friction generated by a membrane sliding through the
aqueous solution is at least an order of magnitude larger
than the internal membrane friction. In a viscous solution,
they can differ by two orders of magnitude. Because aqueous
friction has a different form (rr0) than does the internal
membrane friction (r0), the overall form of the friction equa-
tion inDAV theory (Eq. 1) is different than that ofBGS theory
(see Eq. 5 of Brochard-Wyart et al. (10)). As a direct conse-
quence, DAV theory predicts a quadratic relationship for the
rapid closing stage, whereas BGS theory predicts a linear
relationship. Finally, the equations of DAVand BGS describe
two opposite extremes of a pore in a large liposome (or in
a cell): for DAV, aqueous viscosity limits pore dynamics; in
BGS, membrane viscosity limits the pore.
DAV theory yields several physical
and mathematical implications

For large liposomes, membrane viscosity is inconsequential
for pore dynamics. We therefore predict that the variation of
kinetics of enlargement and closure of pores as lipid compo-
sition is varied will depend only on the pore edge tension of
that lipid composition. Edge tension can be obtained from
pore closure during either stage 2 or stage 3.

For small liposomes, membrane viscosity affects pore
dynamics if the aqueous viscosity is not too large.

hs is a linear scaling factor in time, as long as hm is irrel-
evant. For example, all curves for pore dynamics of large
liposomes can be scaled through hs to a single curve.
Biophysical Journal 101(12) 2929–2938
Liposome radius, R, is an approximate numerical scaling
factor for pore radius r. At any time, r varies linearly with R,
and dr/dt roughly varies linearly with 1/R.

The constant C can be obtained either by curve-fitting
experimental data or by calculating from standard fluid
mechanical equations. These two strategies yield nearly
the same value of C.

DAV theory accounts for the experimental observation
that pore dynamics in giant liposomes is controlled by
aqueous viscosity; the theory correctly predicts and quan-
tifies the dependence of pore kinetics on experimentally
varied parameters.
APPENDIX A

Consider a lipidic pore contracting in solution. When the pore is still large,

a large volumetric region of fluid is deformed by pore contraction. When

the pore is small, only a small region of fluid is affected by the contraction.

To quantify the interaction between membrane and fluid, the fluid velocity

immediately surrounding the pore is assumed proportional to the speed of

the pore. Since the water far from the pore is static, a shear stress propor-

tional to rate of contraction r0, the solution viscosity hs, and the character-

istic size of the deformation r is generated. The proportionality constantC is

determined either by a curve fit or by a theoretical, hydrodynamic model.
How do the friction coefficients compare?

We compare the two sources of friction, membrane and solution. Consider

a liposome in a solution with viscosity hs ¼ 1cP and lipid viscosity hl ¼ 1P.

Assuming the value C¼ 8.085 (determined from a curve fit to experimental

data), we find the ratio of the solvent and membrane friction, Fs/Fm ¼
13.475r, where r ¼ r mm. For pores 1 mm in radius, the dissipation due

to water friction is more than 10 times that of membrane friction. Following

experimental studies that stimulated the BGS theory, we let the solution

viscosity be 30 times that of distilled water. The source of friction due to

the aqueous solution is then at least 390 times greater than that of the

membrane throughout most of the life of the pore.
Calculating C from a curve fit

As stated in the body of this article, the rapid falling stage (stage 3) obeys

the quadratic relationship �Chsr
2/2g � 2hmr/g þ tc ¼ t. One way to deter-

mine the coefficient C is by fitting microscopy data from the falling

stage with a quadratic function. For example, a least-squares fit to pore

radius data obtained from Portet and Dimova (9) yields a value of 0.3418

for the coefficient Chs/2g. The value of g ¼ 14 pN was previously

calculated from the linear closing stage (stage 2). A solution with viscosity

hs ¼ 1.133 cP was used in the experiment. Solving, we find the value

C ¼ 8.4469.
Deriving the friction for a contracting membrane
with a hole

We can evaluate the friction due to the aqueous solution by a scaling argu-

ment. First, we find a dilation of space that makes the pore appear

stationary. It turns out that this dilation factor is simply r. In the dilated

coordinates, the membrane is static and the velocity of the membrane is

known. We then look for a steady flow and calculate the friction due to

this steady flow. The friction of the moving membrane is then evaluated

by scaling back to the original coordinates. The scaling factor for friction

is hsrr
0, in part justifying the form Fs ¼ Chsrr

0. The friction coefficient C
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is then found by solving the boundary value problem for the steady, axial

flow around a diaphragm with a hole.

It is well known that the shear stress on a surface in a viscous, Newtonian

fluid is

hs

�
Duþ DTu

�
nþ pn;

where u is the velocity, (Du þDTu) the strain tensor, p the pressure, and n

the unit normal of the surface (see for example (21); chapter 5, eqn 13).

Here u and p are the solution to the Navier-Stokes equation with a no-

slip, moving boundary condition given by the velocity of the diaphragm.

To calculate the radial friction Fs, we dot the equation for stress with the

radial vector field x/jxj and integrate over the diaphragm:

2pFs ¼ 2hs

Z �
Duþ DTu

�
n$

x

jxj dAðxÞ:

The factor of 2 appears because the water on both sides of the membrane

is sheared. Making the change of variables x ¼ ry, the area element dA

scales by r2 and the gradient scales by r-1. This gives

2pFs ¼ 2hsr

Z �
Duðry; tÞ þ DTuðry; tÞ�n$ yjyj dAðyÞ:

There is no closed form expression to evaluate this integral. Instead, we

look for a solution of the form u(ry,t) ¼ u0(y,t)r
0(t) where the speed of the

pore r0 gives the characteristic velocity and u0 is the steady flow field.

Making this substitution, the previous equation becomes

2pFs ¼ 2hsrr
0
Z �

Du0ðy; tÞ þ DTu0ðy; tÞ
�
n$

y

jyj dAðyÞ

¼ 2pChsrr
0:

Here C is a property of the characteristic flow, the meaning of which will

be made clear below. The point is that it is a constant independent of phys-

ical parameters. The value of C can be determined by solving for u0 and

integrating the shear stress over the diaphragm.
Calculating C numerically

To determine the boundary condition for the velocity, we assume the

membrane area is locally conserved and the membrane remains in the hori-

zontal plane. This implies u(x,t) ¼ r(t)r0(t)/jxj and v(x,t) ¼ 0 where u and v

are the radial and axial components of the velocity field respectively.

Assume the velocity of the surrounding water reaches a quasi-steady

state. In otherwords, if the coordinate system is dilated so that the diaphragm

appears static, the flow appears steady. This motivates the expansion

uðry; tÞ ¼ r0ðtÞðu0ðyÞ þ ru1ðyÞ þ.Þ;

pðry; tÞ ¼ hsr
�1ðtÞr0ðtÞðp0ðyÞ þ rp1ðyÞ þ.Þ:
We now derive a boundary value problem for the lowest order terms u0
and p0 by expanding and matching the coefficients in powers of r. On the

diaphragm,

r0ðtÞ
jyj ¼ uðry; tÞ ¼ r0ðtÞðu0ðyÞ þ ru1ðyÞ þ.Þ;

0 ¼ vðry; tÞ ¼ r0ðtÞðv0ðyÞ þ rv1ðyÞ þ.Þ:
Matching coefficients, we read off the boundary conditions 1/jyj ¼ u0(y),

0 ¼ v0(y). The velocity and pressure pair (u, p) are a solution to the Navier-

Stokes equations:

rðut þ u$DuÞ þ Dp ¼ hsD
2u; div u ¼ 0:

Applying the expansion to these equations yields a system of equations

Dp0 ¼ hsD
2u0; div u0 ¼ 0; in the water

1 ¼ u0ðyÞ; 0 ¼ v0ðyÞ; on the diaphragm:
jyj

These equations are discretized on a rectangular grid using the finite

difference method. The linear system of equations resulting from the discre-

tization are solved and an approximation of the steady flow field u0 is found.

The constant C ¼ 8.085 was evaluated by applying a numerical quadrature

to the integral expressions for the lateral friction Fs.
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