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Summary
Natural viewing challenges the visual system with images that have a dynamic range of light
intensity (luminance) that can approach 1,000,000:1 and that often exceeds 10,000:1 [1, 2]. The
range of perceived surface reflectance (lightness), however, can be well-approximated by the
Munsell matte neutral scale (N 2.0/ to N 9.5/), consisting of surfaces whose reflectance varies by
about 30:1. Thus, the visual system, must map a large range of surface luminance onto a much
smaller range of surface lightness. We measured this mapping in images with a dynamic range
close to that of natural images. We studied simple images that lacked segmentation cues that
would indicate multiple regions of illumination. We found a remarkable degree of compression: at
a single image location, a stimulus luminance range of 5905:1 can be mapped onto an extended
lightness scale that has a reflectance range of 100:1. We characterized how the luminance-to-
lightness mapping changes with stimulus context. Our data rule out theories that predict perceived
lightness from luminance ratios or Weber contrast. A mechanistic model connects our data to
theories of adaptation and provides insight about how the underlying visual response varies with
context.

Results
At the core of any theory of surface lightness perception is a characterization of how
luminances in the retinal image are mapped onto percepts that range from black through
gray to white. Because the dynamic range of natural images (which can approach
1,000,000:1) vastly exceeds the dynamic range of reflectance scales that describe perceptual
lightness (e.g., fresh snow reflects about 80% of the incident light across the visible
spectrum, while black shingles or black rich soil reflect approximately 4% [3] for a
reflectance ratio of 20:1), the mapping cannot be accomplished by a multiplicative scaling of
luminance onto lightness. Theories of lightness account for this observation by noting that
image luminance is affected both by object surface reflectance and by the intensity of the
illuminant, and that the visual system contains mechanisms that discount the variation
introduced by the illuminant [4-7]. Such theories divide the research program of
understanding lightness into two parts. First, how is luminance mapped to lightness within
an image region that is uniformly illuminated? Second, how does the visual system parse the
image into regions that share common illumination, and how does information from multiple
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such regions interact (if at all)? Here we report fundamental measurements that address the
first part of this program: our data characterize the luminance-to-lightness mapping in high-
dynamic range images that lack cues indicating the presence of multiple regions of
illumination. Our measurements probe the limits of the mechanisms that underlie lightness
perception and address key questions about their function.

In Experiment 1, observers viewed a 5 × 5 grayscale checkerboard, consisting of
homogeneous squares that varied in luminance over the range that we estimate to be greater
than 10,000:1 and presented on the high-dynamic range display (Figure 1). The center
square of the 5×5 checkerboard served as a test stimulus. The remaining 24 squares varied in
luminance over the stimulus range in equal log steps. On each trial, the test square took on
the luminance value of one of the surrounding contextual squares. Observers matched
lightness of the test by selecting a sample from an extended Munsell neutral palette (N 0.5/
to N 9.5/ in 0.5 value steps). Observers also had the option of responding with three out-of-
range judgments: “Darker than 0.5”, “Lighter than 9.5, but still a surface” or “Glowing”.
Experimental protocols were approved by the institutional review board at the University of
Pennsylvania.

The measured luminance-to-lightness matching function, shown in Figure 2, exhibits
remarkable compression. When viewed in the unsegmented high-dynamic-range context, a
luminance range of 5905:1 was mapped onto a reflectance range of 100:1. Our data falsify a
key implication of Wallach’s ratio principle [8] and of theories that base perceived lightness
on Weber contrast, namely that to match any pair of test patches in a region of uniform
illumination, a human observer will select two chips from the palette that stand in the same
luminance ratio to each other as the tests.

In Experiment 2 we measured the luminance-to-lightness matching function for contextual
checkerboards that varied in their photometric properties: the contextual luminance range
(that is, luminance ratio between the lowest and the highest contextual square), the overall
contextual luminance, and the distribution of contextual luminances when the highest and
lowest luminances were held fixed.

Figure 3A plots the matching function for three dynamic range conditions (~10,000:1,
~1,000:1 and ~30:1) across which the highest contextual luminance was held approximately
constant. The data for the 10,000:1 checkerboard replicate the results of Experiment 1, for
different observers and a different spatial arrangement of the checkerboard. The data for the
other two checkerboards show that the luminance-to-lightness mapping depends strongly on
the contextual range. For example, the luminance range mapped onto the reflectance scale
between N 2.5/ and N 9.5/ (the palette range used in common by observers across all three
contexts) varied by 1.3 log units across the three dynamic range conditions (see Table S1).
Across this large variation, however, the white point (i.e., the luminance matched to N 9.5/)
was approximately constant. In addition, the white point was close to the highest contextual
luminance (Table S1) in all conditions, broadly consistent with a “highest luminance appears
white” anchoring rule [4, 11]. The agreement is not perfect, however. For example, analysis
of the out of range judgments (Table S2) shows that the highest luminance test, which
matched the highest contextual luminance, was judged glowing on most trials in the
10,000:1 and 1,000:1 contexts. It may be that the minor deviations from the “highest
luminance appears white” anchoring resulted from the fact that our stimuli were presented
on an emissive display, and thus that the perceptual interpretation of the stimuli as surfaces
was imperfect.

We also measured the effect of varying the overall contextual luminance for the 1,000:1 and
30:1 range conditions. In essence, we scaled all contextual and test luminances by a
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common multiplicative factor (see supplement for luminance values). Figure 3B,C shows
that this manipulation has a simple effect: the luminance-to-lightness matching function
shifted by close to the same factor as the stimuli. In particular, perceptual white remained
anchored close to the highest contextual luminance, and the shape of the matching functions
on the log-log plots was invariant. Subtle effects of overall luminance variation are reflected
in the distribution of out-of-range judgments (Table S2).

The final measurements of Experiment 2 studied the effect of varying the distribution of
contextual luminances while holding the two lowest and highest two contextual luminances
constant. The results (Figure 3D) show that this manipulation has little effect on the white
point or the luminance range of the matching function, but substantially affects the matching
function’s shape.

We developed a mechanistic model that describes our measured luminance-to-lightness
matching functions. We built on models developed in the literature on visual adaptation,
which are formulated primarily to account for measurements of visual thresholds [12]. The
key idea is that the visual system has a limited response range, described by a saturating
response function. The response function varies with context through the action of a small
set of adaptation parameters. We combined this idea with the Fechnerian notion that
perceived lightness is related to the response by a fixed context-independent transformation,
with higher responses corresponding to greater perceived lightness [13-16]. Thus two tests,
each seen in its own context, are predicted to match in lightness if they both produce the
same response. The model captures contextual effects on the luminance-to-lightness
mapping entirely through changes in the adaptation parameters with context.

We characterized the relation between stimulus luminance L and visual response R using a
modified Naka-Rushton function [17]

Three adaptation parameters control the behavior of this function: a multiplicative gain
parameter g and a subtractive offset parameter c (which both modify the input to the
standard Naka-Rushton function) and an exponent n (which controls the shape of the
function). For any choice of adaptation parameters, the response increases from 0 to 1 as a
function of luminance. The supplemental methods describe how the model was fit to the
data.

The lines through the data shown in Figures 2 and 3 show the model predictions. Clearly,
the model fits the data well for all experiments and contexts. Figure 4 shows the visual
response functions derived from the model. These provide additional insight. First, for all
contexts, the upper end of the response functions is located near the highest luminance of the
surrounding checkerboard. This is the response function manifestation of the “highest
luminance appears white” anchoring rule. Second, as the range of the contextual stimuli
increases, the slope of the response function becomes shallower, so that the available
response range is allocated to approximately match the luminances in the checkerboard
context (Figure 4A). Third, scaling the overall contextual luminance while keeping its range
constant simply shifts the response function, so that the response range remains matched to
the contextual luminance (Figure 4B, C). Finally, when the range of the contextual stimuli is
held constant, the visual response function changes so that a larger portion of the response
range is allocated to stimulus luminances that occur most often in the checkerboard (Figure
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4D). The latter three behaviors are consistent with the general notion that adaptation serves
to optimize the use of available response range [18-21].

Discussion
Our measurements provide a foundation for future work that considers more natural
contextual images in which segmentation cues cause the luminance-to-lightness mapping to
vary from one image region to another. For example, a luminance value that is perceived as
black in a region of high illumination might be perceived as white in a region of low
illumination [22, 23]. This is consistent with theories of lightness [7, 24, 25] that suggest
that the visual system relies on segmentation cues in (e.g., depth boundaries, penumbrae) to
stabilize the mapping between object reflectance and perceived lightness. Although our
measurements do not speak to directly to the effect of such cues, we can now proceed to ask
questions such as i) whether variation in adaptation parameters we identified can describe
luminance-to-lightness mapping functions in high-dynamic-range images that are segmented
into differentially illuminated regions and ii) if so, whether the parameters are set by the
local within-illuminant context, by the global context, or by some combination of both [for
theoretical overviews, see 6, 7, 11]. We have conducted initial experiments along these
lines, where photometric cues are available for segmentation [26].

It may seem surprising that the visual system can maintain a lightness scale over a
luminance range that exceeds 5000:1 at a single image location, since this is much larger
than is necessary to perceive variation in surface reflectance. Perhaps the excess operating
range serves to preserve useful representations of surface lightness in the face of failures in
image segmentation according to illuminant or to handle bright specular highlights on glossy
objects. Or perhaps it is a side effect of the early visual system’s need not only to represent
surface lightness but also to preserve discriminability of image luminances [see 21]. It will
be of interest to understand how the effects we report come into play in high-dynamic range
images that can be segmented into separate regions, each of which has a low-dynamic range.

The adaptation model we developed to describes contextual variation in the luminance-to-
lightness mapping function, provides a connection between two traditions, one that studies
the functional characteristics of lightness perception and whose goal is to relate perceived
lightness to the visual stimulus and a second that uses threshold psychophysics and
physiological measurements to identify and characterize mechanisms that mediate visual
processing. We are not the first to develop adaptation models to account for judgments of
appearance, however, and our model incorporates ideas available in the literature. There is
ample evidence of the need for an adaptation parameter to describe some form of
multiplicative gain control [12]. Our data clearly require additional adaptation parameters: if
the only effect of context were to change a multiplicative gain, then the luminance-to-
lightness matching functions would all have the same shape on the log-log plots and differ
only in their horizontal positions.

The need for an additional adaptation parameter has been noted previously by numerous
authors using a variety of experimental stimuli, methods, and terminologies [7, 27-39]. Our
second adaptation parameter, the subtractive offset c, is an instantiation of this second
parameter. In addition, we found that a third adaptation parameter, the exponent n, was
required to fit our data. When this parameter was held fixed, there were systematic
deviations between the model predictions and the data.

Our model allows lightness measurements to generate mechanistic hypotheses that can be
explicitly tested. For example, if early mechanisms of adaption mediate our results, the
model predicts the way in which the corresponding physiologically measured luminance-
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response functions should vary with high-dynamic range contexts. In addition,
understanding the parametric form of the luminance-to-lightness matching functions should
be useful for refining algorithms designed to render high-dynamic range images on low-
dynamic range displays [40, 41].

The model in its current form does not provide a complete theory of lightness, as it does not
specify how context sets the adaptation parameters. To understand context effects, our
strategy was to first determine the parameters that vary with context, as we have done here,
and then proceed towards understanding how those parameters are set [42-45]. The
regularities in our data suggest that simple rules may suffice for this purpose. Testing the
generality of these rules, both for simple checkerboards and for more complex stimuli, will
be of considerable interest.

We measured the mapping of stimulus luminance onto perceptual lightness in high-dynamic
range images. We find the visual system can maintain a lightness scale over more than 3 log
units of luminance, considerably larger than is necessary to represent variation in natural
surface reflectance. The large degree of compression revealed by our data rules out theories
that predict perceived lightness from luminance ratios or Weber contrast. In addition, the
luminance-to-lightness mapping depends on the image context. For our experimental
images, which contained no cues that would allow segmentation of the image into separate
regions of illumination, we found three regularities that described this dependence. First,
perceptual white is anchored near the highest luminance in the contextual image, across
variations of highest luminance and contextual image luminance range. Second, varying the
contextual image luminance range while holding the highest luminance fixed has its primary
effect on the range of luminances mapped between perceptual white and perceptual black.
Third, changing the distribution of contextual image luminances while holding the highest
luminance and luminance range fixed left the luminances mapped to white and black
unchanged, but affected the shape of the matching function in a manner broadly consistent
with theories of optimal image coding. We accounted for the contextual effects using a
model based on the adaptation of an underlying visual response function, and used the
model to derive the response function for each of our experimental contexts.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The dynamic range of lightness perception exceeds 5,000:1 in a single image
context

• Ratio-based models fail to account for the measured luminance-to-lightness
mappings

• Simple regularities describe how luminance-to-lightness mapping varies with
context

• Luminance-to-lightness mappings are described by inferred visual response
functions
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Figure 1. Apparatus
A) Schematic view of the high-dynamic range display. A DLP projector projects an image
onto an LCD display panel through a Fresnel lens and diffuser, placed directly against the
backside of the panel. Because the LCD panel is a transmissive display, it provides a
multiplicative attenuation of the projector image, resulting in an overall dynamic range that
is nominally the product of the native dynamic ranges of the projector and panel. The
observer viewed the resulting image monocularly through an aperture and a reduction
screen. The dotted portion of the reduction screen in diagram shows the vertical extent of a
square aperture in that screen. The display is built following the design by Seetzen et al. [9];
details on its calibration are available in a technical report by Radonjić et al. [10]. B) The
matching chamber was diffusely illuminated by a fluorescent bulb and contained a matching
palette. The palette consisted 19 glossy papers ranging from Munsell N 0.5/ to N 9.5/. A
baffle prevented light from the bulb from reaching the observer directly. Observers matched
the test square, presented in the center of a checkerboard, to one of the palette papers. They
indicated their response using a slider on a custom response box (shown below chamber in
diagram). The slider varied a number displayed on an LCD panel mounted at the back of the
viewing chamber. Out of range response options were displayed as text on the same
monitor. C) The stimulus was a 5 × 5 checkerboard. The checker squares had CIE
chromaticity x = 0.309, y = 0.338 and varied in luminance. The test, which was the center
square of the checkerboard, took on 24 different luminances during each block of trials.
Additional detail on the experimental procedures is provided in the supplement.
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Figure 2. Luminance-to-lightness mapping shows high compression
Palette log 10 reflectance plotted against test log 10 luminance (cd/m2) for Experiment 1.
Open circles plot the average test luminance for which that paper was chosen as a match,
averaged across observers (N=8), error bars indicate +/− 1 between-observers standard error
of the mean (SEM). Dashed vertical lines show upper and lower limits of contextual/test
luminances. Dotted horizontal lines show the minimum and maximum palette paper
reflectance. The line through the data shows the fit of the model described in the text. Figure
S1 shows that similar results are obtained when a standard Munsell palette (N2.0/ to N 9.5/)
is used.
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Figure 3. Luminance-to-Lightness Mapping Varies with Context in Experiment 2
All panels have same basic format as Figure 2 (N = 5). Error bars indicate +/− 1 SEM
computed across observers. (A) Luminance-to-lightness matching functions for three
contextual luminance ranges from 10,000:1 (blue), 1,000:1 (gray), and 30:1 (black). (B)
Luminance-to-lightness matching functions for 1,000:1 luminance range context. Solid lines
plot the model fits to each overall luminance condition. The dashed line through the high-
luminance-condition data shows a shifted version of the fit for the low-luminance condition.
The overall contextual luminance change was 0.8 log units. The shift in model fit from high
to low overall contextual luminance condition is 0.64 log units. In (B) and (C), the gray
points and fit are replotted from (A). (C) Data for the 30:1 range condition, same format as
(B). The overall contextual luminance change was 0.72 log units. The shift in model fit from
high to low overall contextual luminance condition is 0.6 log units. (D) Luminance-to-
lightness matching functions for two contexts that had the same lowest two and highest two
luminances but a different luminance distribution. Low mean luminance is plotted in black
and high mean luminance in gray. Thick dashed vertical lines in corresponding colors
represent the contextual mean luminance level for the two contextual configurations (center
square excluded). Figure S2 connects our measurements to classic results obtained with
uniform surrounds.
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Figures 4. Inferred response functions shift to match contextual luminance distributions
A) Response functions inferred from data shown in Figure 2 and 3A. Response is plotted
against log test luminance (cd/m2). The solid dots on the y-axis indicate the response
corresponding to each palette paper. The bars above the plots indicate the contextual
stimulus range for each condition, and the solid dots on these bars indicate the 24 contextual
luminances. Dashed blue line: Experiment 1. Solid lines: Experiment 2, same color code as
Figure 3. B) Response functions inferred from data in Figure 3B. C) Response functions
inferred from data in Figure 3C. D) Response functions inferred from data in Figure 3D.
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