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Abstract

Background: Therapeutic intervention of numerous brain-associated disorders currently remains unrealized due to serious
limitations imposed by the blood-brain-barrier (BBB). The BBB generally allows transport of small molecules, typically ,600
daltons with high octanol/water partition coefficients, but denies passage to most larger molecules. However, some
receptors present on the BBB allow passage of cognate proteins to the brain. Utilizing such receptor-ligand systems, several
investigators have developed methods for delivering proteins to the brain, a critical requirement of which involves covalent
linking of the target protein to a carrier entity. Such covalent modifications involve extensive preparative and post-
preparative chemistry that poses daunting limitations in the context of delivery to any organ. Here, we report creation of a
36-amino acid peptide transporter, which can transport a protein to the brain after routine intravenous injection of the
transporter-protein mixture. No covalent linkage of the protein with the transporter is necessary.

Approach: A peptide transporter comprising sixteen lysine residues and 20 amino acids corresponding to the LDLR-binding
domain of apolipoprotein E (ApoE) was synthesized. Transport of beta-galactosidase, IgG, IgM, and antibodies against
amyloid plques to the brain upon iv injection of the protein-transporter mixture was evaluated through staining for enzyme
activity or micro single photon emission tomography (micro-SPECT) or immunostaining. Effect of the transporter on the
integrity of the BBB was also investigated.

Principal Findings: The transporter enabled delivery to the mouse brain of functional beta-galactosidase, human IgG and
IgM, and two antibodies that labeled brain-associated amyloid beta plaques in a mouse model of Alzheimer’s disease.

Significance: The results suggest the transporter is able to transport most or all proteins to the brain without the need for
chemically linking the transporter to a protein. Thus, the approach offers an avenue for rapid clinical evaluation of
numerous candidate drugs against neurological diseases including cancer. (299 words).
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Introduction

Numerous potential drug candidates for treating brain-associ-

ated disorders involving mood, behavior, addiction, aging,

infection, cancer and neurodegenerative disease exist but thera-

peutic use of these candidate drugs currently remains unrealized

due to serious impediment imposed by the blood-brain-barrier

(BBB) [1–9]. The existence of the BBB was reported over a century

ago [10]. Transport of small molecules, typically ,600 daltons is

generally allowed by the BBB, whereas passage of larger molecules

is usually restricted. Several receptors present on the BBB are

known to allow passage of cognate protein ligands to the brain

[11–13]. Such receptor-ligand systems on the BBB have been

reportedly utilized to develop strategies for delivering target

proteins in the brain. All these approaches, however, rely on

covalent linking of a carrier peptide resembling the receptor-

binding domain of a ligand [14–16] or an antibody resembling the

ligand [17,18], to the target protein of interest. Other approaches

utilizing different peptides or proteins as transporters also require

covalent linking of a protein ‘load’ to the transporter for delivery

across the BBB [19–21].

Our previous efforts at developing avenues for increased

delivery across the BBB also depended upon covalent linking of

a protein to polyamines [22,23], or through synthetic insertions of

asparagyl/glutamyl-4-amino-butane [24]. There are considerable

technical and other challenges associated with covalent linking of a

protein to a carrier molecule in the context of delivery across the

BBB, which, conceivably, has limited translational applications of
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the existing methods. Consequently, our objective was to develop a

method abolishing the requirement for covalent modification of a

target protein to be delivered across the BBB. We reasoned that to

achieve such an objective requires a transporter that fulfills at least

two criteria: it should bind strongly to a target protein in a non-

covalent manner and it should be able to ‘piggyback’ the bound

protein across the BBB.

We have previously shown that a stretch of sixteen lysine

residues (K16) can non-covalently and strongly bind to proteins.

When the K16 stretch was linked with the signal peptide sequence

of Kaposi’s Fibroblast Growth factor, the resulting peptide

delivered the bound proteins into cells [25]. Thus, the use of

K16 would fulfill our first key requirement. To meet the second

requirement, we elected to use the low-density lipoprotein receptor

(LDLR)-binding 20-amino acid segment of apolipoprotein E

(ApoE peptide) comprising amino acids 151–170 (Swiss-Prot #
P02649). When covalently linked, this peptide can deliver

glucocerebrosidase to the brain through LDLR-mediated transcy-

tosis [16]. Subsequently, a bi-partite peptide was synthesized

comprising the ApoE peptide linked with sixteen lysine residues

(henceforth K16ApoE), which was evaluated for its potential for

non-covalent transport of proteins across the BBB. We demon-

strate successful K16ApoE-mediated non-covalent delivery of

three different proteins (beta-galactosidase, IgG and IgM) across

the BBB. To our knowledge this is the first report demonstrating

successful delivery of various proteins across the BBB that does not

involve chemically linking the proteins with a carrier entity.

Materials and Methods

Materials
Mice were maintained and used following Institutional Animal

Care and Use Committee (IACUC)-approved protocol # A3291-

01. All mice used (B6SJLF1) were female and were purchased

from the Jackson Laboratories. Bacterial beta-galactosidase was

purchased from Calbiochem (Catalog # 345788). Human IgG

and IgM were purchased from Sigma (Product Numbers I 4506

and I8260 respectively). The 4G8 monclonal antibody (cat# SIG-

39220) was purchased from Covance (Emeryville, CA). LDL

receptor antibody was from abcam (Cat # ab30532).

All peptides were synthesized at the Mayo Proteomic Core

Facility. The transporter peptide, K16ApoE, had NH2 at both

ends. The transporter peptide has the following amino acid

sequence (in single-letter code): KKKK KKKK KKKK KKKK

LRVR LASH LRKL RKRL LRDA.

Preparation of peptide-protein complex for delivery in
the brain

Required amount of the peptide and protein were mixed in a

final volume of 300 uL PBS (phosphate buffered saline), and

incubated at room temperature for 60 min. The mixture was

vortexed for a few seconds, every fifteen minutes during the

incubation period. The mixture was somewhat turbid at high

peptide and protein concentration.

The mixture was injected intravenously as a bolus into the

lumen of the femoral vein. (K16ApoE-mediated delivery of

proteins to the brain through tail-vein iv injection has not been

explored at this time). This was accomplished using a heat pulled

PE50 catheter. At the conclusion of the experiment, the mouse

was euthanized with a lethal dose of sodium pentobarbital. Each

mouse was perfused with 10 ml PBS. This perfusion was

accomplished through the standard trans cardial method [26].

The brain was removed from the skull and positioned to make an

initial coronal slice at 22.0 mm bregma. Subsequently, 25 um

coronal sections were cut on a cryostat and placed on charged

slides for staining of beta-galactosidase activity.

Staining for beta-galactosidase enzyme activity
Evaluation of beta-galactosidase enzymatic activity was accom-

plished by an initial 15 min fixation of the brain sections in 0.25%

glutaraldehyde. The slides were washed with 3 changes of PBS for

5 minutes each and then rinsed in distilled water for 5 minutes.

The brain sections were incubated in X-Gal (0.2%) working

solution, pH 7.38, for 18 hours (overnight) at 37u C in covered

containers. Following this incubation the sections were dehydrated

and coverslips were applied [21,27].

Imaging by micro single photon emission computed
tomography (microSPECT)

Micro SPECT/CT experiments were conducted on a Gamma

Medica X SPECT System (GE Healthcare). Human IgG (Sigma)

and IgM (Sigma) were labeled to a high specific activity using the

Chloramine-T method [23]. 80 ug (corresponding to ,420 uCi of

IgG and ,397 uCi of IgM) of each immunoglobulin (corresponds

to 0.53 nanomole of IgG and 0.13 nanomole of IgM, based on

molecular weights of 150 Kd and 600 Kd for IgG and IgM,

respectively) was mixed with 70-fold molar excess of K16ApoE for

1 h at room temperature and was administered in each mouse

through the use of a catheter in the femoral vein. Immediately

subsequent to the intravenous bolus injection, the mice were

imaged every hour for a total of 6 hours [28]. At the completion of

the 6 h time point, each mouse was euthanized and the systemic

blood supply was transcardially perfused with 10 ml phosphate

buffered saline, and imaged after 30 min. Results are from 6 mice

in each group.

Immunostaining of 4G8 antibody (and other antibodies)
delivered in mice brain with and without K16ApoE

Following iv injection of 4G8 IgG (Covance Research Products,

Berkeley, CA), alone or with K16ApoE, mice were overdosed with

sodium pentobarbital (200 mg/kg, ip) and perfused transcardially

with PBS followed by neutral-buffered, 10% formalin. The brains

were removed and flash frozen. Twenty-five micron sections were

cut on a cryostat and thaw-mounted on gelatine coated slides. One

set of slides from each mouse was reacted with biotinylated

secondary anti-mouse IgG antibody, ABC immunoperoxidase

(Vector M.O.M. Peroxidase Kit, PK-2200, Vector Laboratories,

Burlingame, CA), and Vector VIP peroxidase substrate (SK-4600,

Vector Laboratories, Burlingame, CA) to test for the presence of

the 4G8 IgG in the brain. Briefly, sections were washed with tris-

buffered saline, pH 7.5 (TBS). Endogenous peroxidase activity in

the sections was quenched by reacting with 0.5% H2O2 in TBS for

30 min. The sections were blocked with M.O.M blocking solution

in TBS for 60 min. The 4G8 IgG antibody was then visualized

using standard immunoperoxidase techniques with 1 h incubation

times for the biotinylated secondary antibody and ABC solutions

[29].

Two sets of adjacent sections were processed histologically to

detect amyloid deposits and plaques using two standard methods.

One set of sections underwent immunohistochemistry for amyloid

using the same 4G8 anti-APP monoclonal mouse antibody

(Covance Research Products, Berkeley, CA) in vitro to verify the

binding of the monoclonal IgG to amyloid plaques. Briefly,

sections were washed with TBS. Endogenous peroxidase activity in

the sections was quenched by reacting with 0.5% H2O2 in TBS for

30 min. The sections were blocked with M.O.M. blocking solution

in TBS for 60 min. The sections were incubated with the 4G8
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anti-APP primary antibody at a dilution of 1:1000 in 0.1% BSA/

0.3% Triton-X/PBS overnight at 4uC. The primary antibody was

then visualized using an ABC immunoperoxidase kit (Vector

M.O.M. Peroxidase Kit, PK-2200) and Vector DAB (SK-4100) as

the substrate according to the instructions (Vector Laboratories,

Burlingame, CA). Another set of adjacent sections was stained with

fresh, filtered, aqueous 1% thioflavine S to stain the amyloid

plaques using a standard protocol [29]. The thioflavine S positive

amyloid plaques were visualized with epifluorescence microscopy

using filters for fluorescein isothiocyanate (excitation = 488 nm;

emission = 520 nm).

Results

The peptide transporter can non-covalently deliver
functional beta-galactosidase in the brain

The potential of K16ApoE for delivering a protein across the

BBB was first evaluated by intravenous (IV) injection of the

enzyme beta-galactosidase into mice with or without prior mixing

with K16ApoE (at a protein to peptide molar ratio of 1:70, based

on preliminary experiments. A wide range of protein to peptide

molar ratios up to 1:100 [higher molar ratio not tested] produced

very satisfactory results). Intense beta-galactosidase activity was

observed in the mouse brain when the enzyme-peptide mix was

injected intravenously and brain slices were prepared for enzyme

activity staining 6 h after injection,{data presented in Figure S1

demonstrate that 6 h of time is sufficient for visual evaluation of

intracerebral beta-galactosidase activity after K16ApoE-mediated

iv delivery in brain}whereas no activity was seen when the enzyme

was injected alone (Figure 1). High-magnification scan of several

regions of brain-sections stained for K16ApoE-delivered beta-

galactosidase activity show that the enzyme was delivered in nearly

every area of the brain, and appeared to have stained all cells

when compared to cells stained with hematoxylin (compare

sections A and A9, C and C9, and D and D9; Figure 1). However,

pyramidal cells in the hippocampus (compare sections B and B9)

appear to show much weaker staining for beta-galactosidase

activity compared to cells in other areas of the brain. Whether the

weak beta-galactosidase activity staining in the pyramidal cells is

due to low expression of LDLR in the hippocampus remains to be

determined. It is also possible that the peptide carrier utilizes

multiple related receptors for transcytosis, most or all of which is

expressed in most cells in the brain but cells in the hippocampus

may not express all those receptors leading to reduced uptake of a

protein ‘load’. Further, it is possible that deficient staining in the

hippocampus reflects enhanced leakage of X-gal and/or 5,59-

dibromo-4,49-dichloro-indigo (the chromophore generated upon

beta-galactosidase action on X-gal) from the pyramidal cells in the

hippocampus as compared with cells in other brain regions.

Delivery of proteins across the BBB whose functional identification

does not depend upon small molecule substrate or product might

help resolve this issue. These data, however, strongly show that the

peptide transporter can transport enzymatically functional beta-

galactosidase across the BBB and into the brain in a simple ‘mix-

and-inject’ manner.

Delivery of beta-galactosidase to the brain by the
transporter appears to be mediated by the LDLR

To assess if the delivery of beta-galactosidase in the brain via

K16ApoE is LDLR-mediated, we evaluated beta-galactosidase

staining in liver, kidney, heart, spleen and lung after intravenous

injection of the enzyme mixed with K16ApoE (Figure 2). The

Figure 1. Delivery of beta-galactosidase in mouse brain through K16ApoE and visualization of cells stained for beta-galactosidase
activity in different areas in the brain following delivery of the enzyme. Beta-galactosidase (one nanomole) was injected in mice mixed with
K16ApoE (70 nanomoles), tissue slices made six hours after injection were stained for enzyme activity (top left). Middle image, top row –an image of a
brain slice obtained after delivering beta-galactosidase without K16ApoE. Third image, top row – image of a brain slice stained with hematoxylin.
Also, high magnification (206) images from four regions of the beta-galactosidase-stained section (A,B, C and D) and hematoxylin-stained
comparable regions (A9, B9, C9 and D9) are shown. A,A9 - retrosplenial agranular cortex; B,B9 - CA3 field, hippocampus; C,C9 - posterior thalamic nuclear
group; D, D9 - basolateral amygdaloid nuclei, posterior. Arrows indicate some of the cells in the respective regions.
doi:10.1371/journal.pone.0028881.g001
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most intense staining was observed in liver followed by staining in

lung, kidney spleen and heart. The pattern of cellular uptake of

beta-galactosidase in these organs by K16ApoE is strongly

correlated with reported LDLR expression patterns in various

tissues (high in liver and brain, low in other organs) [30–32,16],

suggesting that delivery of beta-galactosidase via K16ApoE is

LDLR-mediated. Use of LDLR knockout animals should provide

important information in deciphering the mechanism underlying

K16ApoE-mediated transport of proteins across the BBB. It also

remains to be seen if K16ApoE-mediated delivery of proteins

across the BBB takes place exclusively through the LDLR; use of

LDLR-knockout animals should help resolve the issue.

Non-covalent delivery of IgG and IgM by the transporter
across the BBB

Since many potentially therapeutic proteins against brain-

associated disorders are immunoglobulins, we evaluated delivery

of normal human serum IgG and IgM with K16ApoE in mouse

brain by micro-single photon emission computed tomography

(microSPECT) imaging (Figure 3). For this, radioiodinated human

IgG and human IgM were mixed with and without K16ApoE, and

injected intravenously. Anesthetized animals were then subjected

to imaging at 1 h intervals for 6 h at which time cardiac perfusion

was done. Final imaging was performed at 30 min post-perfusion.

Several observations can be made from these experiments: First, it

appears that peak brain delivery of both IgG (Figure 3A) and IgM

(Figure 3B) occurs at 2 h after injection of the peptide-protein mix,

and then remains relatively stable up to 6 h (maximum time point

tested). Second, cardiac perfusion appears to remove most of the

radioactive protein in the vasculature, concomitantly increasing

the difference between apparent brain-uptake of the protein with

and without the transporter peptide (4.89-fold for IgG (p-

value,0.0001) and 3.94 fold for IgM (p-value 0.0009, see

Table 1). This is probably a lower estimate of the efficiency of

delivery across the BBB by the transporter, because complete

removal of the vasculature-bound labeled IgG and IgM (the

numerical value which is the denominator in the estimation) by

cardiac perfusion was not achieved. That the efficiency of delivery

is high is supported by our beta-galactosidase-based experiments

since no animal receiving beta-galactosidase injection without the

transporter showed any visually detectable intra-cerebral enzyme

activity. Finally, we note that uptake of the radiolabeled IgG and

IgM into kidney, liver/spleen and heart did not appear to depend

on whether the proteins were delivered with or without the

transporter (Figure S2). Cardiac perfusion also did not change the

accumulation of radioactivity in these organs, implying that

accumulation of proteins in these organs does not depend upon

crossing of a biological barrier harboring LDLR.

IgG delivered by the transporter across the BBB can
recognize a specific ligand in the brain

The radiolabeled immunoglobulins delivered into the brain

through K16ApoE could represent trapped molecules in the

endothelial cells at the BBB and may not reflect entry of the

delivered proteins into the brain parenchyma. Furthermore,

assessment of K16ApoE-delivered beta-galactosidase activity in

the brain was independent of binding of the enzyme with any

intra-cerebral molecular entity. For therapeutic function, most

proteins transported across the BBB must be delivered to the brain

parenchyma and be able to recognize and bind with a cognate

target molecule. To test binding specificity of the delivered protein,

we mixed an antibody against amyloid beta peptide (4G8) with

K16ApoE and injected the mixture intravenously into APP/PS1

mice (a model for Alzheimer’s disease). This antibody is known to

recognize amyloid beta plaques [33]. Results presented in Figure 4

and Figure S3 indicate that the K16-ApoE-delivered antibody

labeled the amyloid plaques in the brain of APP/PS1 mice in a

manner nearly identical to parallel sections stained by the plaque-

specific dye ThioflavinS or by standard immunohistochemistry

with the same antibody. The results imply that the 4G8 antibody

was specifically targeted to the amyloid plaques via K16ApoE-

mediated delivery. Similar results were also obtained with another

antibody (IgG4.1) known to label amyloid plaques (Figure S4)

[26]. Collectively, these results show that an antibody delivered in

the brain via K16ApoE can be targeted to neurons. In a separate

experiment, the 4G8 IgG delivered via K16ApoE in a normal

Figure 2. K16ApoE-mediated delivery of beta-galactosidase in
various organs. Slides of 25 micron thickness were made with tissues
from different organs and stained for beta-galactosidase activity after
delivery. Left panel – no K16ApoE; right panel – with K16ApoE.
doi:10.1371/journal.pone.0028881.g002
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mouse brain was negative for any staining (Figure S5). In a related

experiment, a monoclonal antibody L227, not specific to the

amyloid plaques [34], did not appear to label any amyloid plaques

when delivered to the brain of an AD-mouse via K16ApoE (Figure

S6).

The peptide transporter K16ApoE does not impair the
BBB

For therapeutic and/or diagnostic use, a transporter that

efficiently carries a protein in the brain should not impair the

integrity of the BBB. To evaluate integrity of the BBB upon

K16ApoE-mediated delivery, we first injected the peptide

intravenously, then injected beta-galactosidase at different time

intervals. The control mice received the enzyme mixed with the

peptide. Mice were perfused and sacrificed 6 h after injection of

beta-galactosidase, brain slices were prepared and subjected to

beta-galactosidase staining. Results presented in Figure 5 show

successively weaker beta-galactosidase activity in the brains of

mice receiving beta-galactosidase at 1, 5 and 10 min after injection

of K16ApoE and no visible staining thereafter. Our interpretation

of these results is that most of the injected K16ApoE binds with

proteins and cells in the circulation. This intravascular binding is

virtually complete within 10 min, after which no free K16ApoE

remains in the circulation. Free K16ApoE that remains at early

time points becomes bound with beta-galactosidase and carries the

enzyme in the brain. The peptide by itself and/or being bound

with blood proteins/cells does not seem to affect the BBB since no

beta-galactosidase enzyme activity is seen in the brain from

10 min to 6 h. An alternative explanation is that the transporter

does compromise the BBB, but the damage is spontaneously

repaired in a short time (within ,10 mins). We note that animals

receiving iv injection of K16ApoE alone or mixed with beta-

galactosidase, IgG or IgM showed no visually detectable

behavioral or physiological impairment for up to 24 h (longest

time observed). It remains to be seen if K16ApoE compromises the

integrity of the BBB in the context of passage of small molecules.

Discussion

We have demonstrated the ability of a synthetic peptide,

K16ApoE, as a transporter of target proteins in the brain

employing a simple ‘mix-and-inject’ approach. The most notable

aspect of the transporter, unlike current methods, is that it does not

need to be chemically linked to a protein ‘load’ to be transported

across the BBB. Thus, K16ApoE may be regarded as a universal

protein delivery agent for the brain. Transport of proteins to the

brain by K16ApoE was evaluated by employing three different

strategies (enzyme activity, radiologic imaging and immunostain-

ing), and by delivering three different proteins of diverse molecular

weight. As far as we know, this is the first report of a delivery

reagent, targeting uptake of a protein by the brain that does not

require any chemical linking between the transporter and the

protein. We have delivered functional beta-galactosidase to the

brains of .100 mice with this peptide transporter, and successful

delivery have been observed in every instance.

Figure 3. Evaluation of K16ApoE-mediated delivery of IgG (A) and IgM (B) in brain by microSPECT. Imaging was done at 1 h interval up
to six hours, after which cardiac perfusion was performed, and final imaging carried out 30 min after perfusion. Blue bars – delivery with K16ApoE; red
bars – delivery without K16ApoE. The upward arrows at time 6 h indicate time when cardiac perfusion was performed. Right panel – microSPECT
images of mice head after perfusion after delivery of radiolabeled IgG and IgM. B – brain; S – salivary gland; T – thyroid.
doi:10.1371/journal.pone.0028881.g003
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For clinical applications, a protein that has been transported to

the brain must be able to recognize and bind with an intracranial

target molecule and remain biologically functional. By delivering

anti-amyloid antibodies in the brains of AD mice through

K16ApoE, and observing that the delivered antibodies label the

amyloid plaques in a manner almost indistinguishable to

identifying the plaques through standard immunohistochemistry

coupled with the demonstration that the delivered molecules

retains biological activity (results of the beta-galactosidase based

experiments) raises the possibility that K16ApoE has potential for

clinical applications. It is intriguing to note that despite

availability of methods for delivering proteins across the BBB

for nearly two decades, successful translational application of

these methods, to date, remains challenging. The limitation

imposed by the requirement of chemically conjugating a target

protein to a transporter entity may underlie such a scenario.

Since our peptide transporter specifically abolishes the require-

ment of chemical linkage between a transporter and a protein

load, we believe our peptide transporter will allow rapid pre-

clinical evaluation of numerous potential protein-drugs currently

in the pipeline.

We have not, so far, specifically addressed quantifying the

fraction of injected dose of a protein that ultimately is transported

to the brain parenchyma through K16ApoE. We speculate that to

achieve such quantification, the contribution of the vessel-bound

target protein that remains even after perfusion needs to be

completely eliminated. Results presented in Figure 3 indicate that

,1.5% of the immunoglobulins injected entered the brain.

Further experiments are in progress along this line. Whether

delivery of this magnitude will have any clinical significance

remains to be seen, however, since we observe intense beta-

galactosidase staining in virtually all areas of the brain, and that

most or all beta-amyloid plaques in the brain become labeled with

antibodies delivered in the AD mice through the transporter, we

remain hopeful that the transporter will have reasonable clinical

relevance.

In addition to providing evidence for a simple reagent as

transporter of proteins across the BBB, our approach also

illustrates a general strategy to develop similar reagents based

upon ligand-receptor systems on the BBB. Conceivably, varying

the length and composition of the polybasic amino acid moiety

coupled with varying the length of the ApoE moiety might yield

even better transporter than K16ApoE. Discovery of BBB-specific

ligand-receptor system, if any, that functions like the ApoE-LDLR,

should provide avenues to deliver therapeutic proteins in the brain

without affecting other organs. It remains to be seen if proteins

delivered in this manner will have therapeutic effects against brain-

associated disorders.

Table 1. Evaluation of peptide transporter-mediated uptake
of IgG and IgM*.

Protein delivered Time (hr) Fold-Change** P-Value

IgG 0 0.96 0.3523

1 1.53 ,0.0001

2 1.7 ,0.0001

3 1.79 ,0.0001

4 1.91 ,0.0001

5 2.08 ,0.0001

6 1.83 ,0.0001

6.5 4.89 ,0.0001

IgM 0 1.01 0.8617

1 1.37 0.0004

2 1.56 0.0013

3 1.76 0.0005

4 2.07 0.0017

5 2.09 0.0021

6 2.24 0.0008

6.5 3.94 0.0009

*Mice were injected with the radiolabeled immunoglobulin with or without
prior mixing with the peptide transporter. MicroSPECT imaging was done from
0 to 6 h without perfusion. Cardiac perfusion was carried out at 6 h post-
injection and final imaging was done 30 min later. Six mice were used in each
group.
**Fold-Change refers to uptake with the transporter divided by uptake without
the transporter.
doi:10.1371/journal.pone.0028881.t001

Figure 4. Labeling of amyloid plaques with a plaque-specific
antibody (4G8) delivered via K16ApoE in brains of mice
models of Alzheimer’s disease (AD). Two mice with AD were
used: one represented by A, C and E are adjacent brain sections from
one mouse, while adjacent sections from the other mouse are
represented by B, D and F. A, B – thioflavine S staining; C, D –
immunostaining to identify plaques using the 4G8 as the primary
antibody, and an anti-mouse antibody as the secondary antibody; E, F –
immunostaining using the secondary antibody only. The 4G8 IgG was
injected in the first mouse (left panel) without K16ApoE, while the
second mouse (right panel) received injection of the IgG mixed with
K16ApoE. Numbers 1–5 represents approximately corresponding
plaques. Scale bar – 100 micrometer.
doi:10.1371/journal.pone.0028881.g004
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Supporting Information

Figure S1 Time course for beta-galactosidase delivery
in mouse brain with K16ApoE. In each animal, one nanomole

of beta-galactosidase was mixed with 70 nanomoles of K16ApoE

and injected intravenously. Brain slices were prepared for staining

for beta-galactosidase activity at indicated time points. A- Beta-

galactosidase, no K16ApoE, 6 h. B- Beta-galactosidase+ K16ApoE,

1 h. C- Beta-galactosidase+ K16ApoE, 2 h. D- Beta-galactosidase+
K16ApoE, 6 h. E- Beta-galactosidase+ K16ApoE, 10 h.

(TIFF)

Figure S2 microSPECT images of accumulation of
125IgG and 125IgM in various organs. In such experiments,

spleen and liver could not be adequately separated. Consequently,

these two organs were collected as one entity. Imaging (and,

therefore, counting of radioactivity) was done at 1 h interval up to

6 h, at which time cardiac perfusion was done. A final imaging was

done 30 min after perfusion. Left panel –IgG; right panel –IgM.

Blue bars – with K16ApoE; red bars – without K16ApoE. Arrows

indicate time at which cardiac perfusion was done.

(TIFF)

Figure S3 Labeling of amyloid plaques with 4G8
antibody delivered with and without K16ApoE in mice
models of Alzheimer’s disease. Two mice with AD were

used: A, C and E represent adjacent brain sections from one

mouse, whereas B, D and F represent adjacent brain sections from

another mouse. A, B – thioflavine S staining; C, D –

immunostaining to identify plaques using the 4G8 as the primary

antibody, and an anti-mouse antibody as the secondary antibody;

E, F – immunostaining using the secondary antibody only. The

4G8 IgG was injected in the first mouse (left panel) without

K16ApoE, while the second mouse (right panel) received injection

of the IgG mixed with K16ApoE.

(TIFF)

Figure 5. Evaluation of the integrity of the BBB after injection of K16ApoE. Separate mouse (represented by A through G) all received an
injection of K16ApoE, followed by injection of beta-galactosidase at indicated times. Brain slices were made 6 h after beta-galactosidase injection and
proceeded with staining for activity of the enzyme. A – Beta-galactosidase was injected 1 min after K16ApoE injection. B – Beta-galactosidase was
injected 5 min after K16ApoE injection. C – Beta-galactosidase was injected 10 min after K16ApoE injection. D – Beta-galactosidase was injected
30 min after K16ApoE injection. E – Beta-galactosidase was injected 1 h after K16ApoE injection. F – Beta-galactosidase was injected 2 h after
K16ApoE injection. G – Beta-galactosidase was injected 4 h after K16ApoE injection. H- positive control (beta-galactosidase mixed with K16ApoE was
injected, brain slices were made 4 h after the injection and stained for enzyme activity.
doi:10.1371/journal.pone.0028881.g005
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Figure S4 Labeling of amyloid plaques with IgG4.1
delivered with and without K16ApoE in mice models of
Alzheimer’s disease. Two mice with AD were used: A, C and

E represent adjacent brain sections from one mice, whereas B, D

and F represent adjacent brain sections from the second mouse. A,

B – thioflavine S staining; C, D – immunostaining to identify

plaques using the IgG4.1 as the primary antibody, and an anti-

mouse antibody as the secondary antibody; E, F – immunostaining

using the secondary antibody only. The IgG4.1 was injected in the

first mouse (left panel) without K16ApoE, while the second mouse

(right panel) received injection of the IgG mixed with K16ApoE.

(TIFF)

Figure S5 Labeling of amyloid plaques with 4G8 IgG
delivered with K16ApoE in normal mouse and in a
mouse model of Alzheimer’s disease. Two mice were used

in the experiment: one normal mouse represented by A, C and E,

and one mouse with AD represented by B, D and F. A, C and E

represent adjacent brain sections from the normal mouse, whereas

B, D and F represent adjacent brain sections from the AD mouse.

A, B – thioflavine S staining; C, D – immunostaining to identify

plaques using the 4G8 IgG as the primary antibody, and an anti-

mouse antibody as the secondary antibody; E, F – immunostaining

using the secondary antibody only. The 4G8 IgG was injected in

the two mice mixed with K16ApoE. Numbers indicate corre-

sponding plaques. Scale bar – 100 micrometer.

(TIFF)

Figure S6 Evaluation of specificity of labeling of
amyloid plaques with a plaque-specific antibody
IgG4.1 (right panel) and a non-specific control (isotype)
antibody L227 (left panel) delivered via K16ApoE in the
brains of mice models of Alzheimer’s disease (AD). Two

mice with AD were used: one represented by A and C, which are

adjacent brain sections from one mouse, while adjacent sections

from the other mouse are represented by B and D. A,B -

thioflavine S staining; C,D - immunostaining using the secondary

antibody only. The L227 IgG was injected in the first mouse (left

panel) mixed with K16ApoE, while the second mouse (right panel)

received injection of the IgG4.1 mixed with K16ApoE. Numerous

plaques were labeled by IgG4.1 (panel D) but none were

apparently labeled by the L227 antibody (panel C). Numbers

represent approximately corresponding plaques. Scale bar – 100

micrometer.

(TIF)
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