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Two methods for point and interval estimation of relative risk for log-linear exposure-response relations in meta-
analyses of published ordinal categorical exposure-response data have been proposed. The authors compared the
results of a meta-analysis of published data using each of the 2 methods with the results that would be obtained if
the primary data were available and investigated the circumstances under which the approximations required for
valid use of each meta-analytic method break down. They then extended the methods to handle nonlinear exposure-
response relations. In the present article, methods are illustrated using studies of the relation between alcohol
consumption and colorectal and lung cancer risks from the ongoing Pooling Project of Prospective Studies of Diet
and Cancer. In these examples, the differences between the results of a meta-analysis of summarized published
data and the pooled analysis of the individual original data were small. However, incorrectly assuming no corre-
lation between relative risk estimates for exposure categories from the same study gave biased confidence in-
tervals for the trend and biased P values for the tests for nonlinearity and between-study heterogeneity when there
was strong confounding by other model covariates. The authors illustrate the use of 2 publicly available user-
friendly programs (Stata and SAS) to implement meta-analysis for dose-response data.

cohort studies; data interpretation, statistical; dose-response relationship, drug; linear models; meta-analysis;
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Abbreviations: FAR, floating absolute risk; RR, relative risk.

Quantitative reviews of published epidemiologic studies
of exposure-response relations typically include an assessment
of the relation between exposure levels and risk of disease (1).
The standard approach to trend estimation in meta-analysis
of exposure-response relations when only published category-
specific relative risks and their confidence intervals are avail-
able is to fit a weighted linear regression through the origin,
in which the dependent variable is the estimated log relative
risk, the independent variable is the exposure level to which
the dependent variable corresponds, and the weights are the
estimated inverse variances of the log relative risks. This
method assumes that the log relative risks are independent.
It has been shown that assuming zero correlation among a se-
ries of log relative risks estimated using a common referent
group leads to a biased estimate for the variance of the trend
(2). Therefore, Greenland and Longnecker (2) proposed a

method (hereafter referred to as the GL method) to approx-
imate these correlations and incorporate them into the es-
timation of the linear trend using generalized least-squares
regression. More recently, Hamling et al. (3) developed an
alternative to the GL method (hereafter referred to as the
Hamling method) for reconstructing the cell counts of the
original 23 2 tables of constituent studies in a meta-analysis,
with the apparent advantage of being able to adjust for a loss
of precision due to confounding. A third possibility involves
application of the floating absolute risk (FAR) method of
Easton et al. (4). Studies in which relative risks with floating
standard errors or floating confidence intervals are reported
have an advantage in that the variance of the reference expo-
sure level equals the common covariance of the set of adjusted
relative risks, obviating the need to apply a method to approx-
imate this, as is usually required (4, 5).
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Since the article by Greenland and Longnecker was pub-
lished in 1992, it has been cited 262 times. Of these citations,
5 were in methodological articles in which other related issues
such as publication bias (6), confidence bounds for the covari-
ances (7), how to model nonlinear dose-response relations
(8, 9), and how to assign dose values to each exposure level
(1, 6, 10) were investigated. At the time that the present article
was written, the article by Hamling et al. (3) had received 5
citations.

In the present article, we evaluate the accuracy of the
approximation by Greenland and Longnecker and that of the
approximation by Hamling et al. for the confidence interval
of the linear trend for the relative risk compared with the exact
estimate from pooled primary data. We show how to use these
methods to obtain a pooled estimate of linear and nonlinear
trends, the latter by applying the method of restricted cubic
splines (11).We investigate situations in which failing to apply
either the GL method or the Hamling method to account for
within-study covariance of the exposure-level relative risks
would be particularly misleading. In addition, we compare
the assumptions made in the GL and Hamling methods and
discuss the conditions under which eachmethodmay bemore
accurate. Finally, we present publicly available user-friendly
programs for meta-analysis of dose-response data written in
Stata (StataCorp LP, College Station, Texas) and SAS (SAS
Institute, Inc., Cary, North Carolina).

MATERIALS AND METHODS

Review of the GL method for reconstructing covariances
among a series of published relative risk estimates

Published dose-response data are typically reported as
a series of dose-specific relative risks, with one category serv-
ing as the common referent group. We define Ak, the number
of cases in exposure level k; Bk, the number of controls (for
case-control data) in exposure level k; and Nk, the total num-
ber of subjects (for cumulative incidence data) or the total
person-time (for incidence rate data) in exposure level k,
where the subscript k ranges from 0 (referent) to K (the total
number of nonreference exposure levels). In the present article,
the term ‘‘relative risk’’ will be used as a generic term for the
risk ratio (cumulative incidence data), rate ratio (incidence-
rate data), and odds ratio (case–control data).

Three steps are required to estimate the covariances
of a series of multivariate-adjusted log relative risks
ðRR1;RR2; . . . ;RRKÞ for each study that will be included
in the meta-analysis:

1. Solve for the effective numbers of cases and noncases at
each exposure level, given the multivariate-adjusted log
relative risks and the total numbers of cases and the total
number of exposed at each level of exposure reported in
each published article. An iterative algorithm for solving
the system of nonlinear equations is given in Appendix 2
of the article by Greenland and Longnecker (2), although
many other options exist for solving systems of nonlinear
equations.

2. Approximate the correlations among the log relative risks
as rkl ¼ s0=ðskslÞ1=2, where s0 is the common covariance
and sk and sl are the variances of the log relative risks. The
formulas for the covariances and variances depend on the
type of summarized data, as follows: s0 ¼ (1/A0 þ 1/B0)
and sk ¼ (1/Ak þ 1/Bk þ 1/A0 þ 1/B0) for case-control
data; s0¼ (1/A0) and sk¼ (1/Akþ 1/A0) for incidence-rate
data; and s0 ¼ (1/A0 � 1/N0) and sk ¼ (1/Ak � 1/Nk þ
1/A0 � 1/N0) for cumulative incidence data.

3. Approximate the multivariate covariances between the
adjusted log relative risks as ckl ¼ rkl3ðvkvlÞ1=2, where rkl
represents the correlations estimated in the previous step
and vk and vl are the variances of the adjusted log relative
risks, defined as the length of the confidence interval on
the log scale divided by the square of the (1� a/2)-level
standard normal deviate (use 1.96 for a 95% confidence
interval) for all k 6¼ l.

The formulas given in step 2 for the variances of the log
relative risks for incidence rate and cumulative incidence data
fix errors in 2 formulas given in the article by Greenland and
Longnecker (2). The formulas are correct as originally given
only if the exposure has 2 levels; otherwise, they overestimate
the variance (2).

Review of the Hamling method for reconstructing
covariances among a series of relative risks

1. Solve for the effective numbers of cases and noncases at
each exposure level given the multivariate-adjusted log
relative risks, the multivariate-adjusted variances (as de-
fined as above in step 2), the crude prevalence of unexposed
subjects, person-time, or controls (for cumulative inci-
dence, incidence rate, and case-control data, respectively),
and the overall ratio of noncases (or noncase person-time)
to cases. An iterative algorithm for solving this system of
nonlinear equations is given in Appendix A of the article
by Hamling et al. (3), although many other options exist
for solving systems of nonlinear equations.

Table 1. Hypothetical Data From a Single Study in a Dose-Response Meta-Analysis

Exposure
Level

No. of
Cases

No. of
Controls

Total No. of
Subjects

Unadjusted Multivariate-Adjusted

RR Variance of Log RR RR Variance of Log RR

0 670 1,000 1,670 1 Referent 1 Referent

0.01 8,309 10,539 18,848 1.18 0.0025 1.17 0.11

0.40 149 176 325 1.26 0.0027 1.75 0.11

Total 9,128 11,715

Abbreviation: RR, relative risk.
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2. Approximate the correlations among the log relative
risks as rkl ¼ s0=ðskslÞ1=2 as defined above for the GL
method.

3. Approximate the multivariate covariances between the
adjusted log relative risks as ckl ¼ rkl 3ðvkvlÞ1=2 as de-
fined above for the GL method. Because the Hamling
method provides the effective counts that correspond ap-
proximately to the published multivariate relative risks and
their confidence intervals, sk ¼ vk and the covariances of
the multivariate log relative risks are all equal to ckl ¼
rkl 3ðvkvlÞ1=2 ¼ s0=ðskslÞ1=2 3ðvkvlÞ1=2 ¼ s0 for all k 6¼ l.

Interestingly, if the relative risks were reported using the
FAR method, the average covariance s0 would be directly
available from the publication (variance of the log relative
risk used as reference category), and thus neither the GL
procedure and approximations nor the Hamling procedure
and approximations described above would be needed (5).

Evaluation of the assumptions used in the GL and
Hamling methods

An assumption of the GL method is that the correlation
matrices of the unadjusted and adjusted relative risks are
approximately equal. The GL method of approximating
the correlations is valid when there is no confounding by
other model covariates in the published results of each study
included in the meta-analysis. When there is no confound-
ing, the correlation matrix of the crude relative risks will
equal that of the adjusted relative risks because no confound-
ing implies no correlation between the exposure of interest
and the other risk factors. When the crude analysis is valid,
the covariances of the relative risks are inversely related to the
number of cases in the referent group (A0) for all study de-
signs. In a study with a small number of cases in the referent
exposure level, the GL approximation will be more unstable
because it is derived from an unstable estimate.

When the original data are available, as in the examples
given here, we can check the validity of the GL assumptions

Table 2. Adjusted 23 (K þ 1) Pseudocounts for Hypothetical Data

Reconstructed by Using the Greenland and Longnecker Method and

the Hamling Method

Exposure
Level X

Method

Greenland and
Longnecker

Hamling

No. of
Cases

No. of
Controls

No. of
Cases

No. of
Controls

0 670 1,000 16 28

0.01 8,282.6 10,565.4 120 180

0.40 175.4 149.6 120 120

Total 9,128 11,715 256 328

Table 3. Estimates of Linear Trend in Colorectal Cancer RRs From Fixed-Effects and Random-Effects Meta-

Analysis According to Alcohol Intakea

Model and Method
Relative
Riskb

95%
Confidence Interval

P for
Trend

P for
Nonlinearity

P for
Heterogeneity

Fixed-effects model

Primary data

Age-adjusted 1.09 1.06, 1.13 <0.001 0.05 0.50

Multivariatec 1.08 1.04, 1.12 <0.001 0.04 0.74

Floating absolute risk 1.08 1.05, 1.12 <0.001 0.05 0.62

Greenland and Longnecker 1.08 1.05, 1.12 <0.001 0.05 0.69

Hamling 1.08 1.05, 1.11 <0.001 0.05 0.70

Zero correlationd 1.05 1.02, 1.08 0.003 0.02 0.45

Random-effects model

Primary data

Age-adjusted 1.09 1.06, 1.13 <0.001

Multivariatec 1.08 1.04, 1.12 <0.001

Floating absolute risk 1.08 1.05, 1.12 <0.001

Greenland and Longnecker 1.08 1.05, 1.12 <0.001

Hamling 1.08 1.05, 1.11 <0.001

Zero correlationd 1.05 1.02, 1.08 0.003

a Analyses were based on pooled primary and summarized published dose-response data (Ann Intern Med.

2004;140(8):603–613) and assumed either nonzero or zero covariances across relative risks within each study.
b Relative risk for a 12-g/day increase in alcohol intake.
c Adjusted for energy intake (kcal/day), multivitamin use, family history of colorectal cancer, current smoking, past

smoking, red meat intake (quartiles), total milk intake (quartiles), and dietary folate intake (quintiles).
d Covariances among log relative risks within each study were set to zero.
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by calculating the relative difference between crude relative
risks (RRc) and adjusted relative risks (RRa) ((RRc � RRa)/
RRc3 100), which gives us an overall estimate of the extent
of confounding, and the absolute relative difference between
any pair of correlations between crude and adjusted log rela-
tive risks (jrckl � rakl j=jrckl3100), which quantifies more
exactly the accuracy of the GL approximation. The range and
average of these 2 sets of values provide information about
the conditions under which the GL approximations would
be useful. The crude and adjusted relative risks are usually
published in the literature, whereas the pairwise correlations
between the crude and adjusted relative risks are rarely
published.

The Hamling method accounts for confounding more
explicitly when used to estimate the effective numbers of
subjects. It reconstructs the 2 3 (K þ 1) table of pseudo-
counts that corresponds to adjusted relative risks and their
confidence intervals. Given that adjustment usually increases
the width of the confidence intervals, the estimated effective
numbers of subjects are lower than the published (unadjusted)
numbers of subjects. A practical advantage of the Hamling
method compared with the GLmethod is that less information
needs to be retrieved from the original publications; only the
23 2 tables that classify subjects according to dichotomized
exposure (exposed/unexposed) and disease (cases/noncases)
are necessary.

It is of interest to understand under what circumstances the
correlations among log relative risks estimated by the GL
method are not equal to the correlations estimated by the
Hamling method, and, ultimately, under what circumstances
the log relative risks estimated by the 2 methods become
materially different. It is not possible to write down explicit
closed-form expressions for the correlations given by these
2 procedures; hence, direct analysis of the functional relations
is not possible. In the examples presented here, the estimated
correlations are similar; however, this is not always the case.
Because the Hamling method fixes the multivariate-adjusted
variances of the log relative risks whereas the GL method
preserves the original margins of the crude 23 (Kþ 1) tables
(essentially fixing the crude variance), when the adjustment
factors are strongly associated with either the exposure, the
outcome, or both, the 2 methods will give different results.
In fact, it is noted by Greenland and Longnecker (2) that their
method will generally be valid only when the adjustment
factors are only weakly related to the exposure and outcome
(2). To see this, consider the set of hypothetical data presented
in Table 1 with the corresponding unadjusted andmultivariate-
adjusted relative risks and their variances.

The GL and Hamling methods were used to reconstruct the
adjusted 23 (K þ 1) tables of pseudocounts (Table 2), and
straightforward calculations can be used to establish that the
restrictions of each method are met. The estimated correlations
between the log relative risks are 0.39 by the GLmethod and
0.87 by the Hamling method, giving covariances between
the log relative risks for use in trend estimation of 0.10 and
0.04, respectively. For exposure levels of 0, 0.01, and 0.40,
the Hamling method gives a relative risk for trend of 2.91
(95% confidence interval: 1.46, 5.82), and the GL method
gives a relative risk for trend of 3.58 (95% confidence in-
terval: 0.78, 16.50). This is an example in which the difference

between the 2 methods is quite evident. Using the notation
developed below, it can be seen that, in the case of 3 exposure
levels,

bbfixed ¼ bb1v2X1 � c12ðbb1X2 þ bb2X1Þ þ bb2v1X2

v1v2 � c212

and

VarðbbfixedÞ ¼ v1X
2
2 þ v2X

2
1 � 2c12X1X2

v1v2 � c212
;

where it is evident that the values of bbfixed obtained from the
2 methods will increasingly diverge as jbb1X2 þ bb2X1j in-
creases, and the value of VarðbbfixedÞ obtained from the
2 methods will increasingly diverge as jX1X2j increases.
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Figure 1. Dose-response relations between alcohol intake and rel-
ative risks of A) colorectal cancer (P for nonlinearity ¼ 0.05) and
B) lung cancer (P for nonlinearity ¼ 0.22). Data were modeled with
fixed-effects restricted cubic spline models with 4 knots and using
the Greenland and Longnecker method to estimate the covariances
of multivariable-adjusted relative risks. Lines with long dashes rep-
resent the pointwise 95% confidence intervals for the fitted nonlinear
trend (solid line). Lines with short dashes represent the linear trend.
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The methods described above have been implemented in
publicly available macros we have written in Stata (located
at http://nicolaorsini.altervista.org/stata/tutorial/g/glst.htm) and
in SAS (located at http://www.hsph.harvard.edu/faculty/
donna-spiegelman/software). Our SAS macro implements
restricted cubic splines with 4 knots at the 5th, 35th, 65th,
and 95th percentiles of the exposure data assuming the fixed-
effects model. Because of the sparseness of data in most
settings for estimating the variance-covariance matrix of
the random effects that would involve the estimation of
6 parameters and an underpowered and difficult-to-interpret
multivariate test for between-studies heterogeneity, we did not
implement a nonlinear random-effects model in our current
version of the software.

RESULTS

Alcohol and colorectal cancer

We first examined the relation between total alcohol intake
and colorectal cancer risk in the 8 eligible prospective cohort
studies participating in the Pooling Project of Prospective
Studies of Diet and Cancer (16). A total of 3,646 cases and
2,511,424 person-years were included in the analysis. Be-
cause the raw data were available to us, each study provided
5 nonreferent dose levels with the same cutpoints, for a total
of 40 (5 3 8 ¼ 40) log relative risks. Ordinarily, the number
of reference levels and the median dose corresponding to each
level vary in the published data, and the methods considered
here generalize directly to this data structure. Table 3 shows

Estimation procedure for linear and nonlinear exposure-response relations and software

Once the covariances of the published multivariate-adjusted log relative risks for each exposure level relative to the referent are
calculated as described above using either the GL method or the Hamling method, the pooled exposure-response relation and
its variance can be estimated using standard fixed-effects and random-effects models for meta-analysis (12, 13). A principal
reason why epidemiologists report exposure-response relations through relative risks corresponding to ranges of exposure
levels is to avoid making an assumption of linearity of the exposure-response relation, even at the expense of a (sometimes
substantial) loss of statistical power (14). Therefore, at the meta-analysis stage, it will be useful to model the relation in a flexible
nonlinear manner and explicitly assess the evidence (or lack thereof) of nonlinearity, both graphically and through formal
statistical testing procedures. When a log-linear exposure-response relation is established, the estimated linear trends can be
pooled in the usual manner under the assumption of log-linearity of the exposure response association, using fixed and random-
effects models for meta-analysis (1, 6).

Liu et al. (9) presented a method to fit a quadratic random-effects model for meta-analysis. Here, we develop a more
flexible restricted cubic splines method that can be used to assess nonlinearity graphically and through a formal statistical
hypothesis test (11, 15). Briefly, for each study s ðs ¼ 1; . . . ; SÞ contributing to the analysis, there are Ks nonreferent log relative
risks bbks ðk ¼ 1; . . . ;KsÞ corresponding to Ks doses Xks ðk ¼ 1; . . . ;KsÞ, which are typically taken at the midpoint of the range
of each exposure group. A common q-knot restricted cubic spline transformation is applied to the vector of aggregated
exposure data (including the midpoint of the reference category), X ¼ ðX01; . . . ;XK11; . . . ;X0S; . . . ;XKSSÞ

T ; out of which is
obtained a matrix of q � 1 spline transformations Z ¼ ðZ1; Z2; . . . ; Zq�1Þ (11). Then,

bbfixed ¼
"XS

s¼1

Z#
sV

�1
s Zs

#�1XS
s¼1

Z#
sV

�1
s

bbs
and

VarðbbfixedÞ ¼
"XS

s¼1

Z#
sV

�1
s Zs

#�1

;

where for the fixed-effects model, Vs ¼ VarsðbbsÞ, in which VarsðbbsÞ is the variance-covariance matrix for bbs for study s, the
variances are obtained from the published confidence intervals, and the covariances are reconstructed using either the GL
method or the Hamling method. The procedures for calculating P values and predictions are derived using standard techniques
available for simpler parametric models. For example, given that the log-linear dose-response model is nested within the
restricted cubic spline model (Z1¼ X), to obtain the P value for nonlinearity, we test the joint null hypothesis that the regression
coefficients of the spline transformations Z2; . . . ; Zq�1 are all equal to zero.

The predicted relation between the relative risks and the exposure X modeled with spline transformations is given as
expððZ � ZrefÞbbfixed#Þ, where Zref is a vector containing the values of the spline transformations corresponding to the chosen
reference value. Based on asymptotic normality, the approximate pointwise 95% confidence interval of the predicted relative
risks is then calculated as follows:

expððZ � ZrefÞbbfixed#61:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagonalððZ � ZrefÞVarðbbfixedÞðZ � ZrefÞ#Þ

q
Þ:
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comparisons of the estimated slopes for the log-linear
exposure-response relations and their 95% confidence intervals
from the pooled primary data (2-stage meta-analysis of the
individual data) with the slope estimated from the 2-stage
meta-analysis of the published data, assuming nonzero cor-
relations using the FAR, GL, and Hamling methods, as well
as when incorrectly assuming zero correlations between the
study-specific relative risks. Based on primary data, it ap-
peared that the risk of colorectal cancer increased by 8% for
every 12-g/day increase in total alcohol intake (95% con-
fidence interval: 1.04, 1.12). In this example, no important
differences were observed between the results obtained from
the meta-analyses of the primary and published data when
either nonzero or zero correlations among the estimated log
relative risks were assumed. When using the heterogeneity
test, we did not detect any significant differences among the
study-specific slopes (P ¼ 0.74), so the fixed-effects and
random-effects models gave similar results. The average
relative difference between the crude and adjusted relative
risks was 11%, which indicated little evidence of confounding
by the measured risk factors for colorectal cancer, and the
average relative difference between crude and adjusted corre-
lations among relative risks was 17%. There was borderline-
significant nonlinearity detected (Figure 1A), with no effect
of alcohol intake up to 20 g/day of intake, followed by a sharp
increase in risk at the higher levels.

Smoking, alcohol, and lung cancer

We next examined the 4 eligible prospective studies among
men in which alcohol consumption was hypothesized to con-
tribute to lung cancer risk (17). A total of 1,762 cases and
673,766 person-years were included in this analysis. Be-
cause the raw data were available to us, each study provided
4 nonreferent dose levels with the same cutpoints, for a total
of 16 (43 4¼ 16) log relative risks. The risk of lung cancer
increased by 7% for every 12-g/day increase in total alcohol
consumption (Table 4). No between-study heterogeneity in
the log-linear slopes was detected (P ¼ 0.11); hence, there
was little difference between the relative risks for linear trend
estimated from the fixed model and those estimated using
the random-effects model. However, when incorrectly assum-
ing no correlation between relative risks from the same study,
falsely significant evidence for between-study heterogeneity
was given. We found no material difference between the
widths of the confidence intervals when comparing the meta-
analysis of the primary data and the published data using the
FAR, GL, or Hamling method. However, when we incorrectly
assumed zero correlation, the trend test P value was consid-
erably larger for both the fixed-effects model (P¼ 0.28) and
the random-effects model (P¼ 0.58) meta-analyses of pub-
lished data than it was when either the GL method or the
Hamling method was used (P ¼ 0.002 for the fixed-effects

Table 4. Estimates of Linear Trend in Lung Cancer Relative Risks From Fixed-Effects and Random-Effects Meta-

Analysis According to Alcohol Intakea

Model and Method
Relative
Riskb

95%
Confidence Interval

P for
Trend

P for
Nonlinearity

P for
Heterogeneity

Fixed-effects model

Primary data

Age-adjusted 1.21 1.16, 1.26 <0.0001 0.22 <0.0001

Multivariatec 1.07 1.03, 1.12 0.001 0.17 0.11

Floating absolute risk 1.07 1.03, 1.12 <0.001 0.19 0.11

Greenland and Longnecker 1.07 1.02, 1.12 0.002 0.22 0.11

Hamling 1.07 1.03, 1.12 0.002 0.17 0.10

Zero correlationd 1.03 0.98, 1.08 0.28 0.15 0.02

Random-effects model

Primary data

Age-adjusted 1.20 1.08, 1.34 0.0009

Multivariatec 1.07 1.01, 1.14 0.03

Floating absolute risk 1.07 1.01, 1.14 0.03

Greenland and Longnecker 1.07 1.00, 1.13 0.04

Hamling 1.07 1.01, 1.14 0.03

Zero correlationd 1.02 0.94, 1.11 0.58

a Analyses were based on pooled primary and summarized published dose-response data (Am J Clin Nutr.

2005;82(3):657–667) and assumed either nonzero or zero covariances across relative risks within each study.
b Relative risk for a 12-g/day increase in alcohol intake.
c Adjusted for smoking status (never, past, or current), smoking duration for past and current smokers (years),

number of cigarettes smoked daily for current smokers (continuous), educational level (less than high school grad-

uate, high school graduate, or postsecondary education), body mass index (weight (kg)/height (m)2; <23, 23–<25,

25–<30, or �30), and energy intake (kcal/day).
d Covariances among log relative risks within each study were set to zero.
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model with both the GL and Hamling methods and P ¼ 0.04
and P ¼ 0.03 for the random-effects model with the GL and
Hamling methods, respectively). The average relative differ-
ence between the crude relative risk and the adjusted relative
risk was 19%, which provided substantial evidence of con-
founding by the measured risk factors for lung cancer. The
average relative difference between crude and adjusted cor-
relations among relative risks was 2%. There was no evidence
of a nonlinear association in the pooled multivariate analysis
of the original raw data (Figure 1B). When we assumed zero
correlation between relative risks from the same study, falsely
significant evidence for between-study heterogeneity was
indicated.

We conducted an empirical comparison of the actual av-
erage covariances from the primary data with the average
covariances estimated by the GL method and the Hamling
method in the 4 studies available in the pooled analysis of
alcohol in relation to lung cancer risk. Although the mean
biases of the covariances estimated by the 2 methods were
similar (about 1%), there was slightly more variation in the
covariance biases by study when using the GL method than
when using the Hamling method (�9%, 14%,�5%, and 3%
vs. �8%, 12%, �4%, and 1%, respectively).

DISCUSSION

In the present study, we found that the differences between
the results of meta-analyses of summarized published data
using the FAR, GL, or Hamling method and a meta-analysis
of individual original data were negligible, even when there
was evidence of substantial confounding. In addition, we found
that assuming zero correlations led to biased point estimates
and confidence intervals for the trend, biased tests for non-
linearity, and biased tests for between-study heterogeneity
when confounding of the estimated dose-specific relative
risks was evident. This was especially evident in the second
example (the relation between alcohol consumption and
lung cancer), in which cigarette smoking was a strong con-
founder (17). The average relative difference between the
crude and adjusted relative risks was twice that in the first
example (in which there was little evidence for confounding).

There are several strengths of the present article. First,
we provided the correct formulas for the variance of the
relative risk in cohort studies for both incidence rate and
cumulative incidence data, rectifying errors in the original
publication (2). Second, we developed publicly available
user-friendly programs for these methods in the environments
of 2 statistical packages commonly used by epidemiologists
and biostatisticians, and we demonstrated their use in the
appendices (Web Appendix 1 and Web Appendix 2, available
at http://aje.oxfordjournals.org/). Third, we compared results
from the GLmethod with those from the Hamling method and
assessed their validity against a meta-analysis of the pooled
individual data when the need for these methods is obviated.

Some limitations should be mentioned. We did not consider
other important issues, such as optimal choices of dose values
for exposure levels, publication bias, and methodological bias
(6, 10, 18).

In conclusion, we recommend using the Hamling method
or the GL method whenever it is possible to retrieve the

required information from the published articles to be included
in the meta-analysis. It is particularly important to use one
of these methods when the association of interest is strongly
affected by confounding, in which case the standard inverse
variance-weighted regression assuming zero correlations
among log relative risks would lead to biased confidence
intervals for the trends and invalid P values of the hypothesis
tests of interest. In addition, we found that 2 meta-analyses
of summarized published data using the GL and Hamling
methods provided an estimated linear trend and a confidence
interval close to the ones estimated by the pooled analysis
of the original data. Because both methods make somewhat
different assumptions that are unlikely to be exactly true in any
given setting, it is not possible to globally recommend one
method over the other. However, it is clear that one of these
methods should be used in meta-analyses of dose-response
whenever possible.
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