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ABSTRACT

Motivation: No individual assembly algorithm addresses all the
known limitations of assembling short-length sequences. Overall
reduced sequence contig length is the major problem that challenges
the usage of these assemblies. We describe an algorithm to
take advantages of different assembly algorithms or sequencing
platforms to improve the quality of next-generation sequence (NGS)
assemblies.
Results: The algorithm is implemented as a graph accordance
assembly (GAA) program. The algorithm constructs an accordance
graph to capture the mapping information between the target and
query assemblies. Based on the accordance graph, the contigs or
scaffolds of the target assembly can be extended, merged or bridged
together. Extra constraints, including gap sizes, mate pairs, scaffold
order and orientation, are explored to enforce those accordance
operations in the correct context. We applied GAA to various chicken
NGS assemblies and the results demonstrate improved contiguity
statistics and higher genome and gene coverage.
Availability: GAA is implemented in OO perl and is available here:
http://sourceforge.net/projects/gaa-wugi/.
Contact: lye@genome.wustl.edu
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1 INTRODUCTION
The need for cost efficient whole genome assemblies has driven the
adoption of many assembly programs exclusive to short sequence
lengths, such as CABOG (Miller et al., 2008), Newbler (Roche
454 Life Sciences), ABYSS (Simpson et al., 2009), ALLPATHs-
LG (Gnerre et al., 2011) and SOAPdenovo (Li et al., 2010).
Compared to Sanger read-based assemblies, NGS assemblies are
less representative of genome content, especially in regions with
repetitive structure, for example segmental duplications (Alkan
et al., 2010). Furthermore, fragmentation of assemblies can limit
further annotation processes, such as gene prediction in silico.

Several factors present challenges for NGS assembly. However,
the predominant barriers to sequence assembly are repeats and
polymorphism in genomes. Typically, one assembly algorithm can
outperform others in assembling certain genomic regions. Even
the same assembler performs differently over varying parameter
settings such as different k-mer sizes. A longer k-mer is better
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for resolving high coverage repetitive regions, whereas a shorter
k-mer is better for finding paths in low-coverage polymorphic
regions. The latter is analogous to what is a known hurdle for
transcriptome assemblies, which is significantly unbalanced
representation of each transcript due to expression level variation
in different tissue types. Moreover, sequencing platforms have
various biases (Harismendy et al., 2009), thus assemblies generated
from different platforms can complement each other (DiGuistini
et al., 2009; Nagarajan et al., 2010). Therefore, a combination of
assemblies from different sequencing platforms or algorithms (or
parameter settings for the same algorithm) is very promising to
improve assembly qualities. Existing hybrid assembly and merging
methods are mostly developed for small genomes, such as MIRA
(http://sourceforge.net/apps/mediawiki/mira-assembler/index.php?
title=Main_Page), Minimus2 (http://sourceforge.net/apps/media
wiki/amos/index.php?title=Minimus2) and MAIA (Nijkamp et al.,
2010). Reconciliator (Zimin et al., 2008) and GAM (Casagrande
et al., 2009) can only merge assemblies generated from the same
dataset.

We have developed an efficient algorithm to generate an
accordance assembly from two or more large genome assemblies.
It uses the BLAT aligner (Kent, 2002) to align a query assembly
to a target assembly. Based on the alignment, we construct an
accordance graph, which is searched for maximal sub-paths. Contigs
along each sub-path are candidates to be merged together. Besides
weighing the edges in the graph using alignment scores, contig
lengths and overhang sizes, scaffold information including order,
orientation and gap sizes, are fully explored to validate each merging
event. The query and target assemblies go through a misassembly
detection stage, where potential breakpoints were evaluated by the
‘CE statistic’ (Zimin et al., 2008).

This algorithm is implemented as a program named GAA. It takes
as inputs two draft assemblies, one as the target and the other as the
query. The query is utilized to improve the target assembly.

2 METHODS
A novel data structure called accordance graph is proposed to capture the
alignments between a target and a query assembly. In the accordance graph
(Fig. 1), each node represents a contig in the target assembly, while each
edge represents a link between two contigs in the target assembly. Links
occur when one query contig maps to multiple target contigs. The length of
an edge is the gap size between the two target contigs represented by the two
nodes incident to the edge.

The main algorithm that we use to integrate two assemblies is as follows:
Aligning assemblies: the aligner module takes as input two assemblies. It

uses BLAT (Kent, 2002) to align the query assembly to the target assembly.
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Fig. 1. Graph accordance of assemblies. (A) Alignments between the target
and query assemblies. (B) An accordance graph capturing the alignments
with four maximal sub-paths included in dashed circles. T and Q represent
contigs in the target and query assemblies, respectively. For example, T1.2 is
the second contig of the first scaffold in the target assembly, and Q1.2 is the
second contig of the first scaffold in the query assembly. M represents contigs
in the merged assembly. Green edges represent consistent links, and red edges
represent inconsistent links. (C) Target contigs are merged or bridged along
each maximal sub-path with gap filling using query bases, and the merged
contigs are renamed accordingly.

All unique high scoring matches are retained for the graph construction. For
example, a score cutoff of 400 can be chosen to reduce sporadic matches.

Constructing the accordance graph: an accordance graph G is constructed
to organize the relationship between target contigs and query contigs based
on their alignments. In accordance graph G, each vertex v represents a target
contig. For vertices v1 and v2, an edge e is added into graph G between v1

and v2 if there is a query contig mapped to both contigs represented by v1

and v2. The length of edge e, also called the observed gap size between
v1 and v2, is the number of bases in the query contig between v1 and v2. We
define the expected gap size as the gap size between v1 and v2 in the target
assembly.

The construction of the accordance graph starts with sorting the target
contigs within each query contig in the order of their start mapping positions
in the query contig. In other words, the target contigs are anchored onto
the query contigs. Then edges are drawn between two neighboring target
contigs. Branches may occur due to non-proper mapping between target and
query contigs, as shown in Figure 1A.

Finding maximal sub-paths: we define a path p in graph G as a maximal
one if there are no more vertices can be appended to the path without
introducing inconsistencies. The inconsistency can be due to non-proper
matches, large difference between observed and expected gap sizes, or
violation of original scaffold order or orientation. One alignment with long
overhangs is a non-proper match, for example, the alignment between T1.3
and Q1.2 in Figure 1A. The length cutoff of an overhang is a user defined
parameter with a default value of 90 bp. If a query contig can be used to
close a gap in the target assembly, the observed gap size (length of edge e)

should be close to the expect gap size estimated from mate pairs in the target
assembly, otherwise, this gap cannot be closed due to the conflict. The order
and orientation of contigs in the maximal sub-paths should be consistent with
those in the original scaffolds. Thus, the contigs along a maximal sub-path are
consistent and can be merged or bridged together based on the alignment of
two assemblies. To find confident paths, edges are weighted based on the size
of contigs, length of alignments and percentage of non-aligned overhangs.
Preference of base and quality calling in the aligned regions can be given to
the more accurate assembly.

A key feature of the graph model is that it can merge scaffolds if their
contigs gear into each other in the alignment with a query contig. In other
words, if the contigs of two scaffolds in the target assembly alternate along a
maximal sub-path anchored by a query contig, they will be merged together.
As a special case, scaffolds that contain only one contig can be dropped into
the longer scaffolds completely.

Closing gaps: gaps are between contigs inside one scaffold. They can also
occur inside contigs if there are deletion events in the alignments between
target and query contigs. Gaps within contigs or scaffolds can be closed
under correct contexts. For gaps inside contigs, we use the CE module to
examine the gap regions in both target and query assemblies. Gaps in the
target assembly can be closed by a corresponding query contig if the query
contig has no CE statistics contradictions. For gaps inside a scaffold, we
compare observed gap sizes with expected gap sizes provided by the target
assembly. The merging operation is dropped if the two gap sizes diverge
too much. One extra constraint in merging scaffolds is the consistency of
neighboring contigs in both target and query scaffolds.

A CE module is implemented for detecting misassembled locations in
query and target assemblies using mapped paired reads. In misassembled
regions, the distribution of paired reads deviates from the entire genome.
The module is an implementation of CE statistic as in the paper of Zimin
et al. (2008). The statistic is defined as below

Z = M −μ

σ/
√

N
,

where M is the mean of the local insert sizes and is the library mean, N is
the number of read pairs mapped to this location and is standard deviation of
the library. It is based on the fact that the variance of the sum of independent
random variables is the sum of their variances. When Z deviates from the
library mean at a location, it is likely that the sample of inserts is compressed
or expanded. These inserts variations are an indication of misassembly
events, where a chunk of sequence might be deleted from or inserted into
the contig at this location.

3 RESULTS
We applied GAA to the chicken genome (Gallus gallus) with an
estimated genome size of 1.2 Gb. Two 454 de novo assemblies
were generated with Newbler (Margulies et al., 2005) and CABOG
(Miller et al., 2008) and one Illumina assembly was generated with
SOAPdenovo (Li et al., 2010). The raw coverages of 454 data and
Illumina data are 14- and 74-fold, respectively (Ye et al., 2011).

3.1 Assembly contiguity
We generated the N50 statistics for all the de novo and merged
assemblies (Table 1). The N50 statistics is defined as the
largest length L, such that 50% of all nucleotides are contained
in contigs/scaffolds of size at least L. Here, we calculated
N50 statistics based on the size (1.1 Gb) of the Gallus_gallus-
2.1 reference assembly (Consortium, 2004). GAA significantly
improved assembly contiguities overall (Table 1). Comparing with
the target 454/Newbler assembly, the merged 454/Newbler and
454/Cabog assembly (NC) has an N50 contig length 37% longer
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Table 1. Chicken assemblies

Statistics 454/Newbler 454/Cabog Illumina/SOAP NC NS Reconciliator

Contig N50 (kb) 13 11 10 18 38 15
Scaffold N50 (kb) 353 44 263 448 752 358
Assembled size (Mb, > 500 bp) 930 900 948 957 975 969
Gene coverage (%) 54.8 42.4 66.1 61.1 69.1 56.7
BAC coverage (%) 96.0 89.8 95.6 97.4 98.2 97.3
Base error (‰) 0.568 1.028 0.08 0.827 0.561 0.579
Mis-assembly (%) 3.90 4.30 4.54 4.30 4.40 4.12
Supporting pairs (%) 79.1 72.4 83.6 82.6 86.8 79.0

NC, Newbler + CABOG; NS, Newbler + SOAP.

Fig. 2. Gene recovery in merged assemblies. Blue represents target contigs,
purple query contigs and red genes. ‘−’ represents the reverse complement
of a contig.

and scaffold length 27% longer, whereas, the merged 454/Newbler
and Illumina/SOAP assembly (NS) has an N50 contig length about
3-fold longer and an N50 scaffold length about 2-fold longer. We
also merged two 454 assemblies with Reconciliator as it can only
merge assemblies generated from the same dataset. Reconciliator
improved about 10% of N50 contig length.

3.2 Gene representation
We used 17 934 unspliced G. gallus gene transcripts from Ensembl
59 to evaluate gene coverage of each assembly. We use BLAT (Kent,
2002) to align gene transcripts to each assembly. To evaluate the
quality of the assemblies, we define a gene is covered if its best
match can cover >90% of the gene with a percent identity over
95%. Comparing with the target 454/Newbler assembly, 6.3 and
14.3% more genes were found in merged NC and NS assemblies,
respectively (Table 1), whereas, only 3.5% more genes were found
in the merged assembly from Reconiliator.

We further examined the cases where some genes are not detected
in original target assemblies but show up in the merged assemblies.
Several explanations emerge: (i) a gene is completely missing from
the target assembly and the query assembly brings the gene in after
merging the contig containing this gene to a target contig (Fig. 2A),
(ii) a gene spans two target contigs, which have a small overlap in
the gene region but are not assembled together.

Aquery contig overlaps with both contigs and merge them into one
contig (Fig. 2B). (iii) A gene spans two contigs inside one scaffold,
between which there is a gap in the target assembly. GAA filled this
gap with query contig bases and the gene shows up in the merged
assembly (Figure 2C).

3.3 Assembly validation
We evaluated merged assemblies using 193 finished BAC sequences,
Gallus-gallus-2.1 reference assembly and 126 million short jump
reads (∼2 kb insert size). We estimated base accuracy, including
substitution, insertion and deletion, by aligning finished BACs to
each assembly. Finished BAC clones were aligned against each
assembly using WU-BLASTN, then unique regions were refined
using Cross-Match with default parameters. Both NC and NS have a
higher coverage than original assemblies. As expected, higher error
rates were observed for the assemblies involving 454 sequences
(Table 1). Thus, it is necessary to correct the errors using Illumina
sequences (Otto et al., 2010). Base error rates of both merged
assemblies falls between the target and query assemblies.

To estimate misassembly rates, each assembly was broken
into 1-kb chunks and aligned to the Gallus-gallus-2.1 reference
assembly. Only those 1-kb chunks that can be uniquely placed on
the reference are retained for the analysis. The chunks that are <1 kb
were discarded. We define that an 1-kb chunk has misassembly
events if the error rate is >1% (Gnerre et al., 2011). Both NC and
NS have an error rate not higher than their corresponding query
assemblies, but higher than their corresponding target assemblies.
Reconciliator has a lower error rate, which is slightly higher than
the target assembly.

We further examined long-range connectivity by mapping jump
reads from a 2-kb insert library onto each assembly using the
Burrows–Wheeler Alignment tool BWA (Li and Durbin, 2009). To
assess the accuracy of an assembly, we calculated the percentage of
supporting mate pairs that are within six standard deviation of the
library insert size in the mapping results. The NC and NS assemblies
have 3.5 and 7.7% more supporting pairs than the target assembly,
respectively and 10.2 and 3.2% more than their corresponding
query assemblies, respectively. The NC assembly has ∼3.6% more
supporting pairs than Reconciliator.

3.4 Computational resources
We run GAA on a computer having 2.8 GHz Dual-Core
AMD Opteron Model 8220 processors and 256 GB of RAM.
GAA finished NC and NS in 10 and 13 h, respectively, with
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<10 GB of RAM. Majority of the running time is spent on assembly
alignment, and about 1/5 on graph construction and analysis.
However, Reconciliator uses about 24 h and more than 100 GB of
RAM to merge the 454/Newbler and 454/Cabog assemblies.

4 DISCUSSION
In the era of NGS assemblies with fragmented representation all
methods need to be explored that will improve sequence contig and
scaffold length. A post-assembly that will blend the strengths of
different assembly algorithms or sequencing platforms is one option
we have pursued here. GAA can significantly improve contiguity
of NGS assemblies and resolve most assembly mistakes in the
less stringent assembly. The proposed algorithm can also recover
missing genes. Our previous results showed that both 454 and
Illumina de novo assemblies can reveal some novel sequences that
are missing in the Sanger reference assembly (Ye et al., 2011). The
significant improvement in the merged NS assembly further shows
the advantages of cross-platform merging.

The target assembly is the master and lays out the backbone of
the final assembly. Then the query assembly is explored to piece
together fragmented regions in the target assembly. Some errors
from the query assembly could be introduced into the final assembly.
If the query assembly is more accurate at the base level, we can
update GAAin the future version to generate a more accurate merged
assembly by swapping target assembly bases with query assembly
bases. The underlying algorithm of GAA uses evidences from gap
sizes, mate pairs to enforce the correct context and prevent query
errors. There are more mate pairs that are satisfied in the merged
assemblies, which shows the strength of GAA to generate better
connectivity by merging assemblies in the context besides overlaps.
Since the GAA algorithm can detect and avoid most misassembled
regions due to the lower stringency of query assemblies, we suggest
choosing the more stringent assembly as the target and using the
relaxed assembly to improve it.

In summary, we have implemented a graph accordance assembly
program, which can significantly improve the contiguity and gene
coverage of NGS assemblies. It provides an efficient method for
reducing biases of different sequencing platforms. GAA can also be
easily adapted to combine transcriptome or metagenomic assemblies

generated with different k-mer sizes as suggested by Surget-Groba
and Montoya-Burgos (2010).
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