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ABSTRACT

Summary: High-throughput genotyping arrays provide an efficient
way to survey single nucleotide polymorphisms (SNPs) across the
genome in large numbers of individuals. Downstream analysis of
the data, for example in genome-wide association studies (GWAS),
often involves statistical models of genotype frequencies across
individuals. The complexities of the sample collection process and
the potential for errors in the experimental assay can lead to
biases and artefacts in an individual’s inferred genotypes. Rather
than attempting to model these complications, it has become a
standard practice to remove individuals whose genome-wide data
differ from the sample at large. Here we describe a simple, but robust,
statistical algorithm to identify samples with atypical summaries of
genome-wide variation. Its use as a semi-automated quality control
tool is demonstrated using several summary statistics, selected to
identify different potential problems, and it is applied to two different
genotyping platforms and sample collections.
Availability: The algorithm is written in R and is freely available at
www.well.ox.ac.uk/chris-spencer
Contact: chris.spencer@well.ox.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The advent of new technologies, which can simultaneously genotype
hundreds of thousands of single nucleotide polymorphisms (SNPs)
across the genome, has permitted large-scale studies of human
genetic variation. A major application of these technologies is to
undertake genome-wide association studies (GWAS) to identify
SNPs that correlate with phenotypes such as disease. An important
step in providing convincing evidence of association is to argue that
the observed correlation is not an artefact of either the sampling
strategy (for example, hidden population structure) or systematic
biases in inferring genotypes (for example, differences in call
rates). In doing so, it has become standard practice to calculate
summaries of genome-wide variation that are not expected to vary
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systematically between study individuals, and then to identify and
remove outlying individuals.

Under the correct statistical model, losing data (that is collected
at some expense) nearly always results in reduced statistical power
to detect real effects. However, when the model fails to capture the
data generating process, inclusion of outlying individuals often leads
to an increase in false positives. Exclusion of individuals prior to
analysis is a trade-off between loss of power due to reduced sample
size, and the benefit of controlling the number of false positives.

The typical approach to identify potentially problematic samples
is to calculate summary statistics of genome-wide data and then, by
visualizing their distributions across individuals, to manually choose
a threshold based on their values for the majority of the data. To
automate this process requires an algorithm to infer the distribution
of ‘normal’ study individuals, therefore allowing inference of
outliers. For the approach to be applicable in many settings (different
summary statistics, genotyping platforms and sample collections)
requires a robust model for the outlying individuals.

2 METHODS

Inference of outliers
We implemented a simple mixture model to identify individuals with atypical
genome-wide patterns of diversity as measured by m summary statistics of
their genotypes or SNP assay intensities data X; S1(Xi),...,Sm(Xi) (i=1,...,n
with n the number of individuals). To do so, we assume each individual
is either ‘normal’ or an ‘outlier’, which we index by Zi ∈{0,1}, and use
a Bayesian approach to infer the posterior probability of each individual’s
membership to the two classes. As summary statistics are averages of many
(typically over 500,000) SNPs or assays, the central limit theorem should
apply to these statistics across individuals. We consider the distribution of
the m summary statistics to be sufficiently well described by independent
Gaussian distributions in both the normal and outlier class so that

Sj(Xi)|Zi,μZi,j,σ
2
Zi,j ∼N(μZi,j,σ

2
Zi,j).

Having observed the summary statistics, our knowledge of which individuals
are outliers is given by the posterior distribution

P(Z|S(X))∝
∫

P(S(X)|Z,μ,σ2)P(Z,μ,σ2)dμdσ2,

where P(Z,μ,σ2) is the prior distribution. Integrals of this form arise
commonly in Bayesian statistics, and it is often not possible to compute
them directly. However, there are efficient Monte Carlo methods to sample
from the distribution of the unobserved labels Z and the model parameters,
μ and σ2, conditional on the observed data S(X):

P(Z,μ,σ2|S(X)).
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Fig. 1. Outlier identification for 2918 58C samples genotyped on Affymetrix Genome-Wide Human SNP 6.0. ‘Normal’ individuals are coloured from black
to grey, with darker colours denoting higher density of individuals. Outliers are coloured from orange to red, with redder colours denoting higher posterior
probability of being an outlier. The 99% confidence ellipse of the inferred distribution of ‘normal’ individuals is shown as a dashed grey line.

We used Gibbs sampling to obtain T samples from this joint posterior
distribution. The posterior probability of the i-th individual being an outlier
is then estimated as

1

T

T∑
t=1

I(Z (t)
i =1),

where Z (t)
i is the class membership of the i-th individual for the sample t and

I is the indicator function. An individual is then considered as an outlier if
its estimated posterior probability of being an outlier is >50%.

This approach easily generalizes to correlated summary statistics. Here
we consider only two summary statistics jointly, but the model could
be extended to more. Information on either the distribution of summary
statistics for normal individuals, perhaps from previous analysis, or the
fraction of individuals which are outlying can both be specified through
prior distributions. See Supplementary Material for details.

Approximation for robust detection of outliers
To facilitate the use of Gibbs sampling, we used conjugate priors for the
model parameters, except for the variance of the outlier class. To ensure
identifiability, we assume that the SD of the outliers (for which Zi =1) is
factor λ larger than the SD of the normal individuals (for which Zi =0)
so that:

σ2
1,j =λ2σ2

0,j .

The parameter λ is fixed a priori and controls the stringency of the outlier
classification. Using this hard prior assumption, the variance of outlier class
is completely determined by the variance of the normal class. We made the
additional assumption that the percentage of outlier samples is small, so that
all the information about the variance of the normal class is assumed to come
from the normal individuals:

P(σ2
0,j|Sj(X),Z,μ0,j,μ1,j)≈P(σ2

0,j|Sj(XZ=0),Z,μ0,j).

This assumption adds robustness to the model: the distribution of the
outliers will have little impact on the model fit which, because of the light
tails of the Guassian distribution, can be heavily influenced by outlying
observations. The approximation is similar in motivation to the concept
of trimmed-likelihoods, where the likelihood is computed after trimming
the least likely observations (Hadi and Luceno, 1997) or perhaps also to
contamination models, where the influence of the outliers goes to zero.

3 APPLICATION
We applied the clustering approach independently to four different control
datasets genotyped as part of the Wellcome Trust Case Control Consortium
2 (WTCCC2). These comprised 2918 samples from the 1958 Birth Cohort
(58C) and 2530 National Blood Service controls (UKBS) genotyped on the
Affymetrix Genome-Wide Human SNP 6.0 and the Illumina custom Human

1.2M-Duo chips. We considered four different quality control criteria, based
on summaries of each individual’s genotypes or probe intensities:

• Genotyping bias: genome-wide heterozygosity (the fraction of
heterozygote calls) and call rate (the proportion of missing genotypes).
Indicative of assay failure, contamination or inbreeeding.

• Ancestry: projection of individual’s genotypes onto two axes of
variation which differentiate individuals with European, Asian and
African ancestry. Indicative of individuals with atypical ancestry with
respect to the majority of the sample.

• Intensity: genome-wide average of the probe intensities which target
the two alleles at each autosomal SNP. Indicative of partial assay failure
or insufficient normalization.

• Gender: for females and males separately, the mean probe intensities
across SNPs on chromosome X. Indicative of incorrect gender
assignment.

Results are shown in Figure 1 and Supplementary Figures S1–S3 for,
58C and UKBS samples genotyped on Affymetrix and Illumina platforms,
respectively. As well as being statistically principled, in practice, it is
helpful that, once the prior distributions have been specified, identification
of outliers is automatic. Empirically, it appears to make sensible inference
for a range of normal and outlier distributions, suggesting it is useful for
quality control in GWAS [successfully applied in, for example Genetic
Analysis of Psoriasis Consortium & the WTCCC2 (2010); The International
Multiple Sclerosis Genetics Consortium & the WTCCC2 (2011); The UK
IBD Genetics Consortium & the WTCCC2 (2009)] and perhaps in other
settings.
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