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ABSTRACT

Motivation: In genome-wide association studies (GWAS), up to
millions of single nucleotide polymorphisms (SNPs) are genotyped for
thousands of individuals. However, conventional single locus-based
approaches are usually unable to detect gene–gene interactions
underlying complex diseases. Due to the huge search space
for complicated high order interactions, many existing multi-locus
approaches are slow and may suffer from low detection power
for GWAS.
Results: In this article, we develop a simple, fast and effective
algorithm to detect genome-wide multi-locus epistatic interactions
based on the clustering of relatively frequent items. Extensive
experiments on simulated data show that our algorithm is fast and
more powerful in general than some recently proposed methods.
On a real genome-wide case–control dataset for age-related
macular degeneration (AMD), the algorithm has identified genotype
combinations that are significantly enriched in the cases.
Availability: http://www.cs.ucr.edu/∼minzhux/EDCF.zip
Contact: minzhux@cs.ucr.edu; jingli@cwru.edu
Supplementary information: Supplementary data are available at
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1 INTRODUCTION
With recent development in high-throughput single nucleotide
polymorphism (SNP) genotyping technologies, the number of SNPs
that can be typed simultaneously on a DNA chip has grown from
10 000 in 2002 to 1 million in 2007 (Altshuler et al., 2008). Genome-
wide genotype data as well as phenotype information for some
common diseases have been accumulated in an accelerated rate
for the past 5 years (e.g. Melum et al., 2011; Stuart et al., 2010;
WTCCC, 2007). These genome-wide association studies (GWASs)
have proven to be a powerful approach to reveal susceptibility genes
for some complex diseases (Goldstein, 2009; Hardy and Singleton,
2009). Nevertheless, the primary analysis paradigm for GWAS is
dominated by single locus-based statistical approaches (He and Lin,
2011). However, epistatic interactions (epistases) among multiple
genes play an essential role in the pathogenesis of human complex
diseases (Cordell, 2009; Phillips, 2008). Many studies have also
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demonstrated that epistasis contributes to diseases such as breast
cancer (Ritchie et al., 2001), diabetes, obesity (Cordell, 2009) and
coronary heart disease (Nelson et al., 2001). Single locus-based
approaches may not be able to detect all interacting genes, especially
for those with small marginal effects.

Recently, the problem of detecting genome-wide epistases has
drawn much attention. Many computational algorithms have been
proposed (Cordell, 2009; Li et al., 2011a, b; Moore et al., 2010; Tang
et al., 2009; Wan et al., 2010a, b, c; Zhang and Liu, 2007). Existing
approaches for searching gene–gene or SNP–SNP interactions can
be grouped into four broad categories: exhaustive search, stochastic
search, data mining/machine learning approaches and stepwise
search. Methods based on exhaustive search enumerate all possible
combinations of multiple loci and perform desired interaction
tests (e.g. χ2 or logistic regression) for each combination. Nelson
et al. (2001) proposed a combinatorial partitioning method (CPM),
which searches all possible ways of dividing m-locus genotype
combinations into k genotypic partitions, and selects the best one
to account for quantitative traits. CPM is only computationally
feasible for small datasets even for two-locus interactions due to the
enormous number of possible partitions. Inspired by CPM, Ritchie
et al. (2001) proposed a multifactor-dimensionality reduction
method (MDR), which partitions the multi-locus genotype space
into two classes and exhaustively searches for the best classification
model in predicting the disease status. It utilizes repeated cross-
validations and permutation tests to evaluate classification accuracy
and significance, respectively. Similar to CPM, MDR cannot handle
large datasets, even for two-locus interactions (Cordell, 2009).
Though many extensions of MDR have been proposed recently,
including MB-MDR (Cattaert et al., 2011) and RMDR (Gui et al.,
2011), they are unable to tackle large GWAS data efficiently. In
another attempt, Wan et al. (2010c) proposed a boolean operation-
based screening and testing (BOOST) method, which can detect
two-locus interactions for currently available GWAS data. However,
because the search space grows exponentially with the number
of involved genes/SNPs, methods based on exhaustive search can
hardly be extended to include more than two loci.

Instead of explicitly enumerating all possible combinations
of m-locus, stochastic methods (Li et al., 2011a; Tang et al.,
2009; Zhang and Liu, 2007) use random sampling procedures to
search the space of interactions. Among them, Bayesian epistasis
association mapping (BEAM) (Zhang and Liu, 2007) is one of
the representatives. BEAM takes case–control genotypes as its
input, and iteratively uses the Markov chain Monte Carlo (MCMC)
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approach to calculate the posterior probability of a locus being
associated with the disease and/or being involved with other loci in
epistasis. Tang et al. (2009) further extended BEAM in their epistatic
module detection (epiMODE) method, which uses Gibbs sampling
and a reversible jump MCMC procedure to search for significant
epistatic modules.

Data mining and machine learning approaches, such as neural
networks (Ritchie et al., 2003), random forests (Schwarz et al.,
2010), boosting (Li et al., 2011b) and predictive rule learning
algorithms (Wan et al., 2010b), have all been used in search
for significant interactions. Most of these algorithms use some
heuristics to avoid exhaustive searches. For example, SNPruler
(Wan et al., 2010b) first uses a rule searching algorithm to find
potential interactions and then adopts the χ2 statistic to evaluate
their significance. Stepwise search approaches first select a subset
of SNPs based on some single-locus tests (or measures); tests for
multi-locus interactions are then conducted based on the subset of
SNPs detected in the first step (Li , 2008; Marchini et al., 2005).
Comparing to exhaustive approaches, stepwise algorithms usually
are much faster, and may perform reasonably well for diseases
with some marginal effects. On the other hand, stepwise search
procedures may not be able to find interactions involving loci with
small or no marginal effects. Similarly, methods based on stochastic
search or machine learning algorithms cannot guarantee to find all
significant interactions.

In this article, we propose an algorithm called Epistasis Detector
based on the Clustering of relatively Frequent items (EDCF) to
detect multi-locus epistatic interactions in case–control studies.
EDCF adopts the stepwise search strategy and starts with two-
locus interaction models. It groups all genotype combinations into
three clusters, representing frequent genotypes in cases, frequent
genotypes in controls and the remaining genotypes. Items in the
three groups for higher order interactions are then constructed
sequentially. The significance of the final partitions can be evaluated
by Pearson’s χ2 test. Extensive experiments on simulated data
show that EDCF is faster and more powerful, in general, in
finding the epistatic interactions than some of the recently proposed
methods including MB-MDR, BOOST, SNPRuler and epiMODE.
By applying the algorithm on a real genome-wide case–control data
set for age-related macular degeneration (AMD), some genotype
combinations have been found that are significantly enriched in
the cases.

2 METHODS AND MATERIALS

2.1 Notations
We assume all SNPs are diallelic and a genotype is encoded as 0, 1 or 2
according to the number of copies of the minor allele present at each SNP
locus. For example, suppose A is the major allele and a is the minor allele
at SNP locus A. The genotype A/A, A/a and a/a are encoded as 0, 1 and 2,
respectively. For a case–control GWAS study, given the genotype data at M
SNPs of N individuals with their dichotomous disease status, we use S to
denote the ordered set of the M SNPs, si to denote the i-th SNP in S, fm(si)
to denote the minor allele frequency at si and gi(j) to denote the genotype of
the j-th individual at si.

Let Na and Nu denote the number of affected individuals (i.e. cases) and
the number of normal individuals (i.e. controls), respectively. Let (v1,...,vd )
be a d-locus genotype combination at si1 ,...,sid . Let na

v1,...,vd
and nu

v1,...,vd
be

the number of affected and unaffected individuals with genotypes (v1,...,vd )

at loci si1 ,...,sid , respectively. Let nt
v1,...,vd

=na
v1,...,vd

+nu
v1,...,vd

. Let fv1,...,vd

denote the population frequency of (v1,...,vd ), which can be obtained based
on genotype frequencies at each locus when assuming linkage equilibrium
among all the involved loci. Let pv1,...,vd denote the penetrance of (v1,...,vd )
(i.e. the probability of being affected given the genotype combination). The
population prevalence p can then be calculated as:

p=
∑

v1,...,vd=0,1,2

fv1,...,vd pv1,...,vd . (1)

2.2 Genotype combination clustering
The primary goal of association analysis is to find SNPs with allele and/or
genotype frequencies in cases that are significantly different from those
in controls. Many factors, including effect size, allele frequency, linkage
disequilibrium between markers and disease loci, as well as sampling errors,
may affect the distribution. The underlying assumption is that at the disease
loci, the penetrance of their genotype combinations has drastic differences
(see Table 1 for an example.) One can view the genotype combinations with
penetrance greater than the population prevalence as high-risk combinations,
as shown in bold with grey background in Table 1, while the others
are regarded as low-risk combinations. However, in practice, one cannot
directly use the assumption because the true disease genes/SNPs as well
as their penetrance tables are unknown. Instead, we have to rely on the
observed distributions of genotype combinations in cases/controls, usually
organized in a contingency table (e.g. Table 2). A popular program, MDR
(Ritchie et al., 2001) adopts a simple strategy in defining high/low-risk
genotype combinations, by comparing the case/control ratio of each genotype
combination with the overall case/control ratio. However, because of random
sampling errors, this simple method may not work well in practice, especially
with combinations whose case/control ratio is close to the overall ratio (Park
and Hastie, 2008) , as illustrated in Table 2. Therefore, MDR may fail to
detect such interactions.

To prevent such cases, in this article, we propose to partition all genotype
combinations into three groups, defined as G0, G1 and G2, where G0 contains
all combinations that occur significantly more frequently in cases than in
controls (presumably high-risk combinations); G2 contains those occurring
significantly more frequently in controls than in cases (presumably low-
risk combinations); and G1 contains the others. To do so, we first need to

Table 1. The penetrance table of an example two-locus interaction model

Here, fm(A)= fm(B)=0.4 and the population prevalence P=0.024. The entries in bold
with grey background are the high-risk two-locus genotype combinations, and the
remaining are low-risk combinations.

Table 2. A two-locus contingency table sampled from a population with the
penetrance table in Table 1

Counts in controls are in the brackets. Na =Nu =400. The entries in bold with grey
background are the ones with ratios greater than Na/Nu , therefore, regarded as high-risk
combinations by MDR. And the others are low-risk combinations. The classification by
MDR may not be consistent with the underlying penetrance (e.g. genotype combinations
‘AAbb’, ‘AaBB’, ‘AaBb’ and ‘Aabb’).
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derive some thresholds for declaring significance. Considering a genotype
combination (v1,...,vd ) at d loci si1 ,...,sid , under the null hypothesis that the
penetrance pv1,...,vd is the same as the population prevalence p, the number of
cases na in the contingency table corresponding to (v1,...,vd ) should follow
a Binomial distribution na ∼B(n=nt,pa =Na/(Na +Nu)). (For brevity, we
omit the subscript ‘v1,...,vd ’ from the notations in this section when it is
implied in the context.) Similarly the number of controls nu ∼B(n=nt,pu =
Nu/(Na +Nu)). For a given significance level αs (e.g. αs =0.05), let Ta

denote the critical value corresponding to αs for cases, i.e. Pr(k >Ta|nt,pa)<
αs. Tu is defined similarly for controls.

Definition 1. If na >Ta, (v1,...,vd) is a relatively frequent item under αs

in cases, and if nu >Tu, (v1,...,vd) is a relatively frequent item under αs in
controls.

Based on the above definitions, for a given αs and for a set of SNPs,
we define G0 as the set of relatively frequent items in cases, G2 as the set
of relatively frequent items in controls, G1 as the set of all other genotype
combinations.

2.3 Evaluation of interactions
Once all genotype combinations of d SNPs have been grouped into G0, G1

and G2, a 3×2 contingency table (Supplementary Table S1) can be easily
obtained, where the rows are the three groups and the columns are cases
and controls. The χ2 statistic with 2 degrees of freedom (Fisher, 1922),
denoted as X2

2 (i1,...,id ) here, can be used as a measure of significance for
the partition. Intuitively, a group of SNPs with high X2

2 may represent a
group of interacting SNPs. However, this is not always true, because it is
possible that some SNPs in the group might be redundant (e.g. when they
do not affect the assignment of the three groups). To avoid such cases, we
define an interaction module as a smallest possible significant SNP subset.

Definition 2. If the following conditions are satisfied, (si1 ,...,sid ) is an
interaction module under the significance level α:

(1) the P-value of X2
2 (i1,...,id )≤α;

(2) there is no subset {i′1,...,i′d′ }(d′ <d) of {i1,...,id} such that
X2

2 (i′1,...,i′d′ )≥X2
2 (i1,...,id ).

When there are many interaction modules, biologists may only be
interested in the k most significant ones. In the next subsection, we propose an
algorithm called EDCF to find the top-k significant genome-wide multi-locus
interaction modules for a given d.

2.4 Algorithm
We develop an iterative algorithm to search for the top-k significant d-locus
interaction modules. The numbers of SNPs in current GWAS range from
several hundreds of thousands to a few millions. For interactions involving
d (d ≥3) loci, it is impractical to exhaustively search the whole space. In
order to obtain the top-k significant d-locus interaction modules, we first
obtain the top-kfs significant (d−1)-locus interaction modules (where fs ≥1
is a scale factor), with the assumption that some subsets of a significant
interaction module will also be ranked high. The algorithm recursively
searches the interaction space with smaller numbers of SNPs until d reaches
2, in which case all 2-locus genotype combinations will be evaluated. We
stop at 2-locus interactions, because with an efficient implementation it is
feasible to examine all pairwise SNPs for current GWAS. The significance
of interaction modules is evaluated based on the X2

2 statistic defined earlier,
with appropriate adjustments for multiple testing (see next subsection). An
efficient implementation of the algorithm, which takes advantage of bitwise
operations (Wan et al., 2010c) and a binary minimum heap structure, is
available from the first author’s website. The details of the algorithm and the
analysis of its properties can be found in the Supplementary Material.

2.5 Type I error control
A challenge in epistasis analysis for GWAS is to appropriately control type
I errors in the presence of multiple comparisons. Permutation tests and
Bonferroni corrections are the two commonly used approaches for correcting
the multiple testing problem. For EDCF, there are two levels of comparisons.
The first level is due to the fact that there are

(M
d

)
d-locus combinations for

a dataset with M SNPs. The second is related to the following fact. For d
loci, EDCF clusters the 3d possible genotype combinations into three groups
and conducts the χ2 test with 2 degrees of freedom. When d increases, even
if the data were generated randomly, the χ2 statistic will increase obviously
because of the non-random clustering of d-locus genotype combinations. In

theory, there are 33d
possible ways to cluster 3d genotype combinations into

three groups. Considering the number of clustering patterns in practice is far

less than 33d
, the simple Bonferroni correction [i.e. dividing the significant

level by
(M

d

)
33d

] is too conservative for EDCF. However, permutation tests
are time consuming when M is large.

To properly control type I error (i.e. false positive) rates of EDCF in an
efficient way, we propose to combine Bonferroni correction with permutation
tests. Considering that the two levels of multiple tests are independent, we
use Bonferroni correction to control the first level and use permutation tests
to control the second level multiple tests. More specifically, the overall
significant level is defined as:

α=α0/

(
M

d

)
, (2)

where
(M

d

)
corresponds to the Bonferroni correction for multi-locus

combinations and α0 can be chosen from permutation tests for different
d values on small datasets to ensure the overall significant level at 0.05.

2.6 Experimental design
To evaluate the effectiveness of EDCF, we perform extensive simulation
experiments using different disease models and compare its power with
that of some recently proposed approaches including MB-MDR (Cattaert
et al., 2011), BOOST (Wan et al., 2010c), SNPruler (Wan et al., 2010b),
epiMODE (Tang et al., 2009), as well as the naive 2-locus χ2 test (ChiSQ).
The procedure to generate background SNP genotypes is the same as the one
used in previous studies (e.g. Wan et al., 2010c). For each SNP si, its minor
allele frequency fm(i) is first sampled uniformly at random from [0.05, 0.5].
Then the genotype gi(j) of an individual j is generated based on the allele
frequency by assuming Hardy–Weinberg equilibrium. Finally, the genotypes
at the disease loci for cases and controls are generated according to disease
models, which will be described in next subsection.

2.6.1 Disease models In our simulation experiments, we consider two
types of disease models: epistasis models with and without marginal effects,
and consider interactions with two or three SNPs. A disease model can be
defined either by specifying the penetrance table [i.e. pv1,...,vd for a genotype
combination (v1,...,vd )] or by specifying the odds table. The odds of a
genotype combination (v1,...,vd ) is defined as

ro(v1,...,vd )= pv1,...,vd

1−pv1,...,vd

. (3)

In theory, one can arbitrarily assign a penetrance (or odds) value to a genotype
combination. In practice, many researchers only focus on constrained
models. In many cases, there are only two free parameters, one representing
baseline effect and the other representing additional effect relative to the
baseline (e.g. Supplementary Tables S2 and S5). Even with two parameters,
it is still hard to directly assign their values. Instead, one usually can specify
the population prevalence p and another factor (either genetic heritability or
marginal effect), and then numerically solve the two free variables based on
their relationship for a given disease allele frequency. The genetic heritability
h2 is defined as Culverhouse et al. (2002)

h2 =
∑

v1,...,vd=0,1,2(pv1,...,vd −p)2fv1,...,vd

p(1−p)
. (4)
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The definition of the marginal effect size λ of a disease locus is the same as
the one used in Zhang and Liu (2007).

λ= pAa/pAA
(1−pAa)/(1−pAA)

−1. (5)

Once the penetrance/odd table is resolved, the conditional genotype
distribution given a disease status can be calculated and genotypes of cases
and controls at these loci can be generated accordingly.

For two-locus models with small marginal effects, we consider Models
1–4 (Supplementary Table S2). Model 1 involves two-locus multiplicative
effects (Marchini et al., 2005). Model 2 is model Ep-6 in Neuman and Rice
(1992), which has been used as a model for handedness and the color of
swine. Model 3 corresponds to model M86 in Li and Reich (2000) and Model
4 is a well-known XOR model (Li and Reich, 2000). The same models
have also been used in previous studies (Wan et al., 2010c). For a fixed
minor allele frequency fm of a disease-associated SNP, the parameters β and
θ of Models 1–4 in Supplementary Table S2 can be solved based on the
population prevalence p and genetic heritability h2. For two-locus models
without marginal effects, we choose the same 60 two-locus pure epistasis
models (Supplementary Tables S3 and S4 ) as those in Wan et al. (2010b) in
our simulation study. For three-locus models, we consider one with marginal
effect (Model 5 in Supplementary Table S5) and one without marginal effect
(Model 6 in Supplementary Table S6). Model 5 has some marginal effects,
which is essentially the same as Model 4 in Zhang and Liu (2007). To be
consistent with the original paper (Zhang and Liu, 2007), we use the marginal
effect size to control the disease effect of Model 5. Model 6 is proposed by
Culverhouse et al. (2002), which yields maximum genetic heritage h2 with
no marginal effect for the population penetrance p∈ (0,1/16] with minor
allele frequency fm =0.5.

To further evaluate the effect of linkage disequilibrium (LD) between
markers and disease SNPs on the detection power of each approach, we
consider two scenarios in our experiments. We either randomly insert the
disease SNPs themselves into the background genotypes, or embed SNP
markers of the same frequencies but in LD (r2 =0.7) with the disease loci.

2.6.2 Statistical power In comparing the performance of different
algorithms, we adopt the same measure of discrimination power proposed
by Wan et al. (2010b, c), which is defined as nc/n, where nc is the number of
replicates in which the true interaction loci are detected by the algorithm and
n is the total number of replicates. The true interaction loci are detected if the
set is the most significant one and its P-value is smaller than the predefined
threshold for all the programs except epiMODE. epiMODE does not output
the significance levels of epistasis modules. Therefore, if there is a module
in its output that contains and only contains the embedded loci, epiMODE is
considered to be successful in detecting the true epistasis. Only algorithms
that can explicitly output d-locus interactions on d-locus disease models are
compared against one another. In our simulation study, we consider different
sample sizes with the balanced design (i.e. Na =Nu). For EDCF, we set
αs =0.05, k =20 and fs =M/k unless otherwise stated.

3 RESULTS
We first discuss the control of false positive rates using simulated
background genotype data, then compare the performances of
EDCF, MB-MDR, BOOST, SNPruler, epiMODE and ChiSQ on
different disease models. At last, we present the results of EDCF
on a real GWAS dataset. The programs of MB-MDR (C++
implementation), BOOST (64 bit), SNPRuler and epiMODE are
downloaded from the websites of their authors. Recall that MB-
MDR is a recent extension of MDR, BOOST is a fast exhaustive
search approach to detect two-locus interactions, SNPRuler uses rule
inference and can deal with three-locus and higher order interactions,
and epiMODE is a recent extension of BEAM using stochastic

(a)

(b) (c)

Fig. 1. False positive rates under the null model. The plot in (a) shows the
false positive rates of EDCF using different α0s for different ds, and the plots
in (b) and (c) show the false positive rates of EDCF and BOOST when the
sample size (b) and the number of SNPs (c) vary.

search. ChiSQ is the two-locus Pearson’s χ2 test with 8 degrees
of freedom that is implemented in C++. All tests are conducted
on a 64 bit Linux platform with 2.8 GHz CPU and 16 GB RAM.
Unless otherwise stated, for each model and each parameter set,
100 replicates are randomly generated and each replicate contains
2000 SNPs.

3.1 False positive rate

We set the significance level α=α0/
(M

d
)

and test EDCF on simulated
genotype data without any disease loci embedded to obtain the false
positive rate. One thousand datasets are generated and the false
positive rate is defined as nf /1000, where nf is the number of
datasets from which EDCF reports one or more interaction modules.
Each dataset consists of 2000 SNPs (i.e. M =2000) and 800
individuals (400 cases and 400 controls). The test results (Fig. 1a)
show that if α0 is set 0.02 for d =2, 0.002 for d =3 and 0.00002 for
d =4, the overall false positive rate of EDCF is <0.05. Therefore,
in the following simulations, we let α0 =0.02,0.002,0.00002 for
d =2,3,4, respectively, to control the overall false positive rate of
EDCF.

To properly control the false positive rates for programs MB-
MDR, BOOST, SNPruler and epiMODE, we mainly follow the
recommendations from the original authors while considering the
number of SNPs (mostly 2000 SNPs in our tests). MB-MDR uses
permutation tests to control type I errors and its significance level is
set to be 5%. By default, BOOST outputs all two-loci interactions
with τ ≥30 (definition see Wan et al., 2010c), which corresponds to
an unadjusted P ≤4.89×10−6. SNPRuler outputs the top-k rules
that contain d loci (k is set to be 20 in the following tests). The
rules are then filtered using an unadjusted P-value of 1.5×10−7.
ChiSQ uses the same threshold value as that of SNPRuler. epiMODE
does not output the P-value and does not allow users to change its
threshold.

We empirically evaluate the false positive rates of all the
approaches using the significance level thresholds defined above
on 1000 replicates with no genetic effect, each with 2000 SNPs, and
400 cases and 400 controls (For MB-MDR, the number of SNPs
is decreased to 100 so that the test can be completed in a day).
The false positive rates of EDCF, MB-MDR, BOOST, SNPRuler,
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Fig. 2. Performance comparison of EDCF and MB-MDR on four disease
models for different allele frequencies. The sample size is 800 individuals
including 400 cases and 400 controls and the LD level r2 =1. The black, red
and green bars show the power of EDCF when αs is set to be 0.01, 0.05 and
0.3, respectively. The blue bars show the power of MB-MDR.

epiMODE and ChiSQ are 0.024, 0.056, 0.087, 0.028, 0.019 and
0.042, respectively. We further evaluate the effect of the sample
size and the number of SNPs on the false positive rates of EDCF.
Neither of the measures greatly affects the false positive rate of
EDCF (Fig. 1b and c). The false positive rate of BOOST does not
change much when increasing the sample sizes. Obviously, for a
fixed threshold, the type I error rate of BOOST increases with the
number of SNPs.

3.2 Two-locus disease models
For the four two-locus disease models (Supplementary Table S2)
with marginal effects, we adopt the same parameters as those in
Wan et al. (2010c), namely, h2 =0.03 for Model 1 and h2 =0.02 for
Models 2, 3 and 4. Minor allele frequencies are the same for both
loci at three levels: fm = 0.1, 0.2 or 0.4.

We first compare the performance of EDCF and MB-MDR on
a small dataset with 100 SNPs. The results in Figure 2 show that
the power of EDCF varies for different αs, and in most cases EDCF
performs the best when αs =0.05. In such a case, EDCF outperforms
MB-MDR for Models 1 and 3, especially when fm =0.1 for Model 1.
In other cases, EDCF and MB-MDR have similar performance.
When the number of SNPs gets larger, MB-MDR becomes extremely
slow. We cannot finish MB-MDR on the large datasets with 1000
SNPs within a reasonable amount of time.

We further test the performances of EDCF, BOOST, SNPruler,
epiMODE and ChiSQ on the large dataset with 2000 SNPs. The
test results are illustrated in Figure 3. Not surprisingly, the power of
all algorithms improve significantly when the sample size increases
from 800 to 1600 and when r2 changes from 0.7 to 1.0. For Models 1
and 3, the power of most algorithms increases when the minor
allele frequencies of the disease associated markers vary from 0.1
to 0.4. The trends are not that obvious for Models 2 and 4. It
is not clear why BOOST shows a different trend for Model 1,
although the trend is consistent with the results in their original
paper (Wan et al., 2010c). When N =800 and r2 =0.7, all algorithms
perform poorly; but the power of EDCF is the highest except
a few cases where the power is comparable with BOOST (e.g.

Models 2 and 4 when fm =0.4). For all other cases, EDCF also
achieves the highest or comparable power. Many of these differences
in power are statistically significant (as measured by the z-score
test with P=0.01). For example, EDCF significantly outperforms
BOOST in 28 out of all 48 parameter combinations, while they are
comparable in the remaining cases. For many models and parameter
settings, the power of ChiSQ is only a little bit lower than that of
EDCF, and it is actually more effective than all other complicated
approaches. BOOST only outperforms ChiSQ in some cases in
Models 3 and 4. epiMODE and SNPRuler are not very stable and
have no discrimination power under some parameter sets.

In addition, we test the five programs on the 60 two-locus epistasis
models (Supplementary Tables S3 and S4) without marginal effects,
which were also used in Wan et al. (2010b). The genetic heritability
h2 varies from 0.025 to 0.4 and fm from 0.2 to 0.4. For each model,
we fix the sample size to be 800 with a balanced design and only
consider the disease SNPs themselves. The experimental results are
shown in Supplementary Figure S2. On this dataset, when h2 ≥0.1,
EDCF, BOOST, SNPRuler and ChiSQ have strong discrimination
power, all of which reach or nearly reach 100%. However, when
h2 <0.1, the power of these algorithms decreases significantly. To
our surprise, epiMODE has no power on these 60 models under
the above parameter settings, which may suggest that it has some
limitations in capturing the two disease SNPs as the interaction set.

3.3 Three-locus disease models
Since we only test programs that can explicitly output all three
loci, BOOST is dropped from further comparisons because it can
only deal with two-locus interactions. Exhaustive search for three-
locus epistatic modules using three-locus χ2 test is time consuming.
Therefore, we only test the performance of EDCF, SNPRuler and
epiMODE for three-locus interaction detections.

For Model 5, the sample size N varies from 2000 to 4000 and
the allele frequency fm varies from 0.1 to 0.5. The corresponding
parameter l in the odds table of Model 5 is set to be 4, 1.5, 1,
0.7 and 0.5 for fm = 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. All
other parameters are kept the same. The effect parameters β and θ

in Model 5 (Supplementary Table S1) are determined numerically
[for details see Zhang and Liu (2007)] to keep the marginal effect
size fixed (0.2). For Model 6, the sample size N varies from 400
to 800 with a fixed allele frequency of 0.5 and the population
prevalence P=0.01. The experimental results on Models 5 and 6
are shown in Figure 4a and b, respectively. Figure 4a shows that
when the allele frequency fm is small, all algorithms have no or little
discrimination power. In all other cases, EDCF shows strong power
and significantly outperform SNPRuler and epiMODE, except in the
case of N =4000,fm =0.5 and LD r2 =1.0 where SNPRuler shows
comparable power. For Model 6, Figure 4b indicates that EDCF is
powerful even when LD r2 =0.7 and N =400 and it outperforms
SNPRuler under all parameter settings. epiMODE shows no power
on this three-locus pure epistasis model.

3.4 Running time
We compare the running time of different algorithms by varying the
sample size N and the number of SNPs M. Experimental results
show that with a fixed number of SNPs, the running time of all
algorithms increases linearly when the sample size N increases
(Supplementary Fig. S3a and c), except epiMODE, whose running
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(a) (b)

(c) (d)

Fig. 3. Performance comparison of EDCF, BOOST, SNPRuler, epiMODE and ChiSQ on four disease models for different allele frequencies, sample sizes
and LD levels. The black, red, green, blue and cyan bars show the powers of EDCF, BOOST, SNPRuler, epiMODE and ChiSQ. respectively. The absence of
a bar indicates no power. (a) Model 1; (b) Model 2; (c) Model 3; (d) Model 4.

time is not affected by the sample size. For a fixed sample size,
the running time of all algorithms increases quadratically when M
increases (Supplementary Fig. S3b and d). Supplementary Figure S3
also shows that for two-locus detection, the running time of EDCF,
BOOST and ChiSQ has no much differences. In contrast, MB-
MDR, SNPRuler and epiMODE are much slower. For three-locus
interaction detection, EDCF is much faster than SNPRuler and
epiMODE.

3.5 Test on a real GWAS dataset
AMD is the leading cause of blindness for people over 50, and
it is a common eye disease that is associated with aging and
gradually destroys sharp, central vision. We apply EDCF on an
AMD dataset (Klein et al., 2005), which contains genotypes of
103 611 SNPs of 96 affected individuals and 50 controls. We have
removed homogenous SNPs and those containing more than five
missing genotypes. After the filtration, 96 607 SNPs remain. The
parameters of EDCF are set as follows: k =20; α0 = 0.05, 0.02, 0.002
and 0.00002, for single-, two-, three- and four-locus interaction
analysis, respectively; fs = 2000 and 400, for three- and four-locus
interaction, respectively.

For the AMD dataset, Klein et al. (2005) reported two SNPs
(rs380390 and rs1329428) that were associated with AMD, based
on the allelic association test with 1 degree of freedom. The
genotype-based χ2 test employed by EDCF also ranked rs380390
and rs1329428 as the top two SNPs, whose unadjusted P-values
are 1.75×10−6 and 4.61×10−6, respectively. However, they did
not meet our significance requirement after Bonferroni correction.
Similar conclusions have been reached by Zhang and Liu (2007)
and Wan et al. (2010a). EDCF has found no significant two-
locus interaction modules, but has found some three- and four-
locus interaction modules. Though rs380390 does not reach the
significance level based on single-locus test, EDCF does find it in
a significant three-locus interaction module (rs380390, rs3781868,
rs1036995), whose unadjusted P-value is 8.0×10−18. rs380390
is located in gene CFH on the long arm of Chromosome 1, which
encodes a protein that has an essential role in the regulation of
complement activation. rs3781868 is on gene NPAT, located at
11q22-q23. Protein NPAT is required in the progression of G1 and
S phases of the cell cycle. rs1036995 is on gene PCDH9, which is
located at 13q21. Gene PCDH9 encodes a cadherin-related neuronal
receptor that is putatively involved in specific neuronal connections
and signal transduction.
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(a)

(b)

Fig. 4. Performance comparison on two 3-loci epistasis models. (a) Model 5
with some marginal effects. (b) Model 6 without marginal effects. The black,
red and green bars show the powers of EDCF, SNPRuler and epiMODE
respectively. The absence of a bar indicates no power.

EDCF has also detected other significant three-locus and four-
locus interaction modules: (rs1458402, rs2207768, rs4901408),
(rs1476623, rs6967345, rs1408120, rs10506115) and (rs595113,
rs1569651, rs2031175, rs9300104) whose unadjusted P-values are
8.8×10−18,3.2×10−24 and 4.9×10−24, respectively. rs2207768
is in gene NRG3 on Chromosome 10, which is a member of the
neuregulin gene family and has been reported to be a susceptibility
locus for schizophrenia and schizoaffective disorder. rs1476623 is in
gene NXPH1 located at 7p22, which was reported being associated
with Neuroticism to some extent (Oord and Kuo, 2008). rs1408120
is in gene PTPRD located at 9p23-p24. The protein encoded by
PTPRD is a signaling molecule that regulates cell growth procession.
rs2031175 is in gene KANK1 located at 9p24. rs9300104 is in
gene RNF141 located at 11p15, which encodes a protein being
involved in protein–DNA and protein–protein interactions. Though
the validation of relationship of these modules and AMD is beyond
the scope of this work, the significant enrichment of some genotype
combinations from these modules in AMD cases implies that they
might interact and/or be associated with AMD. In 1000 permutation
tests limited to these loci, the P-values of these four interaction
modules are at levels of 3, 3.4, 3.1, 4.5%, respectively. The clustering
details of genotype combinations of these four interaction modules
can be found in Supplementary Tables S7–S10.

4 DISCUSSION
By partitioning all d-locus genotype combinations into two groups,
MDR (Ritchie et al., 2001) significantly reduces the dimensionality
of the d-locus genotype combination space from 3d to 2, which
potentially improves its detection power. However, the simple
partitioning method utilized by MDR may not work well in
practice, especially when the case/control ratios of some genotype
combinations are close to the overall ratio. MB-MDR (Cattaert et al.,
2011) and RMDR (Cattaert et al., 2011) are two recent extensions

of MDR to address this problem. The authors propose to separate
all multi-locus genotype combinations into a high-risk group, a low-
risk group and an unknown risk group. To determine which group
a genotype combination belongs to, MB-MDR uses the χ2 test and
RMDR uses Fisher’s exact test. In general, MB-MDR and RMDR
outperform MDR, especially in the presence of low minor allele
frequencies or genetic heterogeneity. However, Fisher’s exact test
for every genotype combination causes RMDR running even slower
than MDR. Though MB-MDR is faster than MDR, the repeated
cross-validations and permutation tests are still time consuming and
prevents its usage in large-scale GWAS studies. Furthermore, the
validity of χ2 test requires that all cells in the contingency table
are not very small (Fisher, 1922). When the minor allele frequency
is very low, there are always many empty entries in a multi-
locus interaction contingency table, and the χ2 test based grouping
of MB-MDR will be inefficient. EDCF clusters the genotype
combinations into three groups by assuming that the counts of
multi-locus genotype combinations follow Binomial distributions.
EDCF’s clustering is more robust than MB-MDR’s grouping and
much faster than RMDR’s grouping. In our experiments, EDCF
outperforms MB-MDR when fm =0.1 for Models 1 and 3 while in
the other cases, EDCF has similar performance as MB-MDR. After
the clustering, EDCF obtains a 3×2 contingency table and uses the
χ2 test to evaluate the significance of the interaction. By avoiding
the cross-validation step, EDCF is much faster than MB-MDR and
RMDR.

Though EDCF generally outperforms other algorithms in the
simulations, it has some limitations. Since EDCF separates genotype
combinations into G0,G1 and G2 based on clustering relatively
frequent items, when h2 is small, the disease-related genotype
combinations may be not significant enough to be relatively
frequent items. In such a case, all genotype combinations may be
clustered into group G1, and EDCF will lose some power (e.g. in
Supplementary Fig. S2, on some two-locus models with no marginal
effects and low h2). EDCF currently cannot directly address the
problem of population stratification, which, if exists, may alleviate
the type I error of EDCF. One should always test for and correct
stratification (if it exists) before performing association tests. Finally,
like many data mining approaches, EDCF has some parameters
(such as k, fs, αs and α0) that need to be specified by the user.
The choices of these parameters may also affect the efficiency
and/or power of EDCF. Although we have provided some default
values in this article based on simulations, it would have been better
if the parameters were chosen automatically based on input data.
Parameter k is the number of interaction modules that one wishes
to investigate, and fs controls the buffer size of interaction modules
involving a small number of loci. Both parameters primarily depend
on the available computational resources. Obviously, EDCF runs
faster with a smaller fs, but with the price of possibly missing
some real interactions. In our experiments, we chose αs and α0
according to simulations. These values might be too conservative
for real data analysis (of the same sizes) because of correlations
among SNPs and LD structures in real data. How to choose
proper values for αs and α0 using real GWAS data could be
computationally challenging. We will investigate this in our future
work. In this work, we have only tested disease models with risk
allele frequencies >0.1. Detecting rare SNPs in association studies
is a much harder problem, which itself requires special attention and
novel algorithms.
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5 CONCLUSION
In this article, we have developed a new algorithm called EDCF.
Based on the clustering of relatively frequent items, EDCF groups
all d-locus genotype combinations into three groups and uses the
χ2 statistic to measure significance. To control type I error rate,
we have combined Bonferroni correction and permutation tests
and proposed a fast multi-test correction method. By combining
the advantages of the χ2 test and MDR, EDCF is an effective
and efficient algorithm for detecting epistatic effects for GWAS.
Extensive experiments on simulated data illustrate that EDCF is
more powerful, in general, in finding epistatic interactions than some
of the recently proposed algorithms. In terms of efficiency, EDCF is
comparable to BOOST in detecting two-locus interaction modules
and is much faster than MB-MDR, SNPRuler and epiMODE. On
a real genome-wide AMD dataset, several genotype combinations
reported by EDCF are significantly enriched in cases, which may
imply their involvement and association with AMD as interaction
modules.
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