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ABSTRACT

Motivation: How to find motifs from genome-scale functional
sequences, such as all the promoters in a genome, is a challenging
problem. Word-based methods count the occurrences of oligomers
to detect excessively represented ones. This approach is known to
be fast and accurate compared with other methods. However, two
problems have hampered the application of such methods to large-
scale data. One is the computational cost necessary for clustering
similar oligomers, and the other is the bias in the frequency of fixed-
length oligomers, which complicates the detection of significant
words.

Results: We introduce a method that uses a DNA Gray code and
equiprobable oligomers, which solve the clustering problem and
the oligomer bias, respectively. Our method can analyze 18000
sequences of ~1kbp long in 30s. We also show that the accuracy
of our method is superior to that of a leading method, especially for
large-scale data and small fractions of motif-containing sequences.
Availability: The online and stand-alone versions of the application,
named Hegma, are available at our website:
http://www.genome.ist.i.kyoto-u.ac.jp/~ichinose/hegma/
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1 INTRODUCTION

The technological development of next-generation sequencing has
enabled us to obtain genome-scale promoter sequences (Wakaguri
et al., 2008). The first step toward unraveling the regulatory
mechanisms from such large-scale data is to identify cis-regulatory
motifs. Existing computational algorithms used for motif finding
may be categorized into three classes: (1) motif discovery from
promoter sequences in a single genome (Sandve and Drablgs, 2006);
(2) phylogenetic footprinting that uses promoter sequences from
multiple species (Das and Dai, 2007); and (3) motif search relying
on known motif models, such as JASPAR (Sandelin et al., 2004)
and TRANSFAC (Wingender, 2004). To predict the locations of
motifs, each class adopts a distinct strategy: Class (1) tries to find
particular words or sets of similar words significantly enriched
in promoters; Class (2) aligns orthologous genomic sequences
and extracts the sites that are well-conserved among species; and
Class (3) finds the sites that match a list of known motifs cataloged
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in a library. Although the latter two classes are applicable to genome-
scale promoter sequences in principle, the high computational cost
prohibits application of the first class to large-scale data, despite
the fact that motif discovery is the only way if we have no prior
knowledge of other species or known motifs.

Of the several different approaches adopted in motif discovery,
word-based methods are much more scalable than other approaches
(Das and Dai, 2007), such as expectation maximization (Bailey and
Elkan, 1994) or Gibbs sampling (Lawrence et al., 1993). In principle,
a word-based method exhaustively counts all the oligomers in a
given set of sequences and detects the ones that are represented
more abundantly than the background frequencies. However, there
are two problems hindering the application of this method to large-
scale data. First, it is not trivial to cluster similar oligomers into
fewer groups. Fundamentally, a word-based method initially detects
interesting oligomers without allowing any substitutions, whereas
a motif is typically a set of similar oligomers that contain some
variations among them. Hence, we need to apply a clustering
method to gather similar oligomers. However, the computational
cost rapidly increases with the number of initial oligomers or the
degree of allowed variations. Second, the detection of significantly
abundant oligomers is complicated by the variable background
frequencies of different oligomers with a fixed length. For example,
the background frequencies of AT-rich and GC-rich oligomers
can differ extensively in human promoter sequences. Moreover,
the difference becomes more remarkable for longer oligomers.
Thus, we have to carefully evaluate the statistical significance of
over-representation of particular oligomers in large-scale data.

Here, we report a new motif discovery method that can analyze
tens of thousands of DNA sequences each ~1kbp long. We solve
the first problem by using a DNA Gray code [originally proposed by
Gray (1947), see also Er (1984)]. The DNA Gray code is an ordering
of oligomers in which adjacent oligomers differ from each other by
only one nucleotide. Since neighboring oligomers in the DNA Gray
code are similar to one another, we can solve the first problem by
searching only neighborhoods within the DNA Gray code. To solve
the second problem, we use ‘equiprobable’ oligomers, the lengths
of which are variably adjusted so that every oligomer should have
an approximately equal background probability. It is easily shown
that the equiprobable oligomers can be naturally combined with the
DNA Gray code.

We implement our motif discovery method in C to produce the
computer program named ‘Hegma’ and evaluate the performance
of Hegma by using a known database, cisRED (Robertson et al.,
2006). The benchmark test indicates that in most situations Hegma
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outperforms Weeder (Pavesi et al., 2004), the best existing word-
based motif discovery tool (Tompa et al., 2005). As Hegma is three
to four orders of magnitude faster than Weeder, Hegma may be
applicable to unprecedented scales of data analyses.

2 METHODS
2.1 DNA Gray code

A Gray code is a coding system of binary numbers in which adjacent numbers
differ by only one bit. Although Gray has initially proposed this code as such
binary numbers (Gray, 1947), we can easily extend it to quaternary numbers
(Er, 1984) to be applied to a DNA sequence.

The DNA Gray code can be constructed iteratively from monomers to
arbitrary length oligomers. Consider a monomer code (A,G,C,T). This code is
obviously a Gray code because adjacent monomers differ by one nucleotide.
Note that we regard the last monomer to be adjacent to the first monomer,
and this circularity holds for longer oligomers. We prepare four copies of the
monomer Gray code and concatenate them with each nucleotide, but in the
cases of G and T, the copies are arranged in the reverse order. This procedure
yields the dimer Gray code as illustrated in Figure 1. In the same manner
as the dimers, we can construct the DNA Gray code of k-mers (k> 1) by
preparing four copies of the (k — 1)-mer Gray code, two of which are reversed
and concatenating them to each nucleotide.

In general, if the (k—1)-mer code is a Gray code, the k-mer code
constructed by the above procedure is also a Gray code. This fact can be
understood from the following observations. We can partition the k-mer
Gray code into four regions in which the first nucleotides in each region are
identical. Inside each region, the oligomers are arranged in Gray code order
because the first nucleotides are identical and the others are the (k— 1)-mer
Gray code. On the other hand, two oligomers at both sides of a boundary
between neighboring regions are identical except for the first nucleotides
because of the reverse copy. Consequently, the k-mer code is inductively a
Gray code as the monomer code is a Gray code.

The DNA Gray code has an ordered tree structure as a consequence of the
construction process mentioned above (Er, 1984). This implies that we can
apply the depth-first search algorithm to the tree to naturally order oligomers
of variable lengths. This feature is important in combining the DNA Gray
code with the equiprobable oligomers, as discussed later in Section 2.3.

The Hamming distance between oligomers located at a distance d in the
DNA Gray code is smaller than or equal to d. In this regard, when we extract
some consecutive oligomers from the DNA Gray code, those oligomers are
similar to one another. However, all similar oligomers are not necessarily in
a neighborhood in the DNA Gray code, i.e. two oligomers having a small
Hamming distance can be located at distant positions. Nevertheless, we can
show that the property of the neighboring similarity is beneficial for efficient
data processing compared with conventional methods (Section 3).

First nucleotides
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Fig. 1. Construction process of the DNA Gray code of dimers. The ordinary
and reverse copies in the second row are copied from the monomer Gray
code in the first row. The concatenation of the first and second rows yields
the dimer Gray code shown in the third row.

2.2 Shift detection

Two oligomers with a shift relation, for example ACGGT and CGGTC, are
similar to each other in the sense of edit distance, although the Hamming
distance between them is large. Because of the large Hamming distance,
we cannot immediately detect the similarity between such oligomers in the
DNA Gray code. Fortunately, however, we can detect the shift relations of
the oligomers at a low cost by taking advantage of the feature that the DNA
Gray code is left shift continuous.
Let S be a semi-infinite sequence, S=sos1---5;---,5; € {A,G,C,T}. The left
shift o of the sequence is defined by:
o(S)=o0(ses1--)=5182""-. (D
Note that the left shift is the inverse of the construction of the DNA Gray code;
in the construction process, we concatenate oligomers with each nucleotide,
whereas we remove the first nucleotides from the oligomers in the left shift.
To explain the left shift continuity, we introduce a real-valued
representation of the sequence in the DNA Gray code. Let Gip=
{g0.&1,-.-,8i,.--.8nv—1} be a DNA Gray code with N =4 oligomers,
where g; is an oligomer of length k, g;=sjos;1---Sik—1. The real-valued
representation ¢y of g; is defined by:

x,-=¢k<g,->=;—k,x,-e[o,1). 6))

In general, there is also a real-valued representation ¢ of a semi-infinite
sequence S, x=¢(S) as k — co. Our aim here is to show the function f that
corresponds to the left shift o in the real-valued domain x.

In order to understand the left shift function f, we consider the construction
process of the DNA Gray code in the real-valued domain, as shown
in Figure 2. The copies and reverse copies in the construction process
correspond to the linear maps that have positive and negative slopes in
the real-valued domain, respectively. Therefore, the process is expressed
as shown in Figure 2a. Since the left shift is the inverse process of the
construction, we can obtain the left shift function as the inverse map, as
shown in Figure 2b. This function is equivalent to the composition map of
the tent map well known in chaos theory (Alligood et al., 1997).

It should be noted that the function f is continuous. The left shift continuity
implies that the image mapped from a contiguous region in the DNA Gray
code, which corresponds to a set of similar oligomers, is also contiguous.
If the functions were discontinuous, a contiguous region would be mapped
to scattered regions. The left shift continuity ensures that we can obtain a
single region whenever a contiguous region is mapped.

Figure 3 illustrates two examples of contiguous regions | and r7, and their
images r| and . The region r, overlaps with the image r| (Fig. 3b), which
corresponds to the left shifts of oligomers in r; (Fig. 3a). Since this implies
that r; is included in the left shifts of r|, we can judge that those regions
have a shift relation. Thanks to the left shift continuity, a shift relation can
be detected by mapping only two oligomers at the beginning and end of the
region even though the contiguous region is composed of many oligomers.

To detect overlapped pairs in a set of contiguous regions, we compare
the regions with a sorted list of their images. We can compare those lists in

a b
(@ 1 ( )1 A G C T
reverse copy l T f A A
copy C ) .
reverse copy G g
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Fig. 2. Construction process and left shift of the DNA Gray code in the
real-valued domain. (a) The construction process can be expressed as linear
maps that have positive (A and C) and negative (G and T) slopes. (b) The left
shift function f can be understood as the inverse of the construction process.
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Fig. 3. Mappings from two contiguous regions (r| and r») to their images (r{
and r}). (a) The relations between the contiguous regions and their images are
indicated on the left shift function f. (b) All contiguous regions are illustrated
on the same unit line. Since the region r; overlaps with the image r/, there
is a shift relation between r; and rp.
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Equiprobable oligomers

Fig. 4. An example of equiprobable oligomers arranged in the order of Gray
code. We use the O-th order Markov model with I(A)=2 and I(C)=3. We
fix the threshold parameter 6=8. The height of a box corresponds to its
information content.

a linear order of the number of regions. Consequently, we can detect shift
relations of oligomers quite efficiently.

2.3 Equiprobable oligomers

The background probability is a model that represents an intrinsic property
of DNA sequences regardless of the presence of motifs. We can statistically
detect an oligomer as a motif when the frequency of its occurrence is
significantly higher than the background probability. In this work, we use
the m-th order Markov model of the given sequences as the model of the
background probability.

As we mentioned in Section 1, a variation among the background
probabilities causes statistical bias in the significance detection. To overcome
this problem, we propose equiprobable oligomers whose lengths are variable,
but whose background probabilities are adjusted to be nearly identical to one
another.

Let I(S) be the background information content of an oligomer S, where
I1(S)=—log, P(S) and P(S) is the background probability. Let S’ be the
oligomer in which the right-most nucleotide is removed from S. We define
the equiprobable oligomer S such that it has the following property,

I1(S")<6 and I(S) >0, 3)

where 6 is a threshold parameter.

As an example, we consider equiprobable oligomers that consist of only
A and C with the 0-th order Markov model as the background probability.
In the 0-th order Markov model, the background information content /(S)
of an oligomer S is expressed as the sum of the background information
contents of individual nucleotides, i.e. I(S)=1(sps| ~~~sk,1)=2f;01 1(s;).
Figure 4 illustrates such equiprobable oligomers. Each box corresponds to

a nucleotide and its height is drawn to be proportional to the information
content of that nucleotide. Therefore, when the (downwardly) heaped boxes
exceed the threshold 6, the column of those nucleotides becomes an
equiprobable oligomer. All the equiprobable oligomers do not have exactly
the same probability; for example, /(AAAA)=8 and /(CCC)=9. However,
the equiprobability is considerably improved compared with fixed-length
oligomers, especially in the cases of longer oligomers and a higher order
Markov model. The validity of the digitizing approximation is discussed in
Section S.1 in Supplementary Material.

Consider two oligomers, S; and Sy, such that S; is shorter than S;. If S
is an equiprobable oligomer and S| matches a prefix of S, S| cannot be
an equiprobable oligomer because /(S1) should be smaller than 6 under the
property of Equation (3). This observation implies that the set of equiprobable
oligomers is a prefix code in which no oligomer matches a prefix of any other
oligomer. Recall the feature that the DNA Gray code has the ordered tree
structure. In the prefix code, a code word is always located at a leaf of the
tree. Therefore, the equiprobable oligomers can be ordered on the tree and
hence we can naturally combine the equiprobable oligomers with the DNA
Gray code so that adjacent oligomers differ from each other by just one
nucleotide up to the length of the shorter oligomer.

Algorithm 1 Display equiprobable oligomers with DNA Gray code

procedure equigraycode(string S,boolean f)
if 1(S) >0 then
print S
else
if / then
equigraycode(S+"A”, true)
equigraycode(S+"G”, false)
equigraycode(S+"C”, true)
equigraycode(S+"T”, false)
else
equigraycode(S+"T”, true)
equigraycode(S+"C”, false)
equigraycode(S+"G”, true)
equigraycode(S+"A”, false)
end if
end if

Algorithm 1 shows the recursive procedure that performs the depth-first
search on the tree of the DNA Gray code. By calling equigraycode(””, true),
one can display all of the equiprobable oligomers with the DNA Gray code.
If we use the i.i.d. uniform distribution as the background model, we can
obtain the DNA Gray code with a fixed length of 6/2, because I(S)=2|S|
in this case. Therefore, Algorithm 1 can generate the DNA Gray code as a
special case.

2.4 Significance detection

We have now obtained the DNA Gray code of equiprobable oligomers.
To detect significant motifs from a given set of sequences, we count the
occurrences of equiprobable oligomers. Let C be a set of occurrence counts
of equiprobable oligomers:

C={co,Cc1,--+:Cis--rCM—1}, 4)

where M is the number of equiprobable oligomers and c; is the count of the
i-th oligomer in the DNA Gray code. We define a contiguous region [i,j] as
a cluster if it satisfies the following conditions,

i<j,ci-1=cjy1=0and ¢ >0,k e[i,j]. 5)

The cluster is a set of similar oligomers that appear in the given sequences.
We detect the significance of the cluster by using its width w=j—i+1
and the total count o=2‘§(:ick. The null hypothesis is that the cluster is
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obtained from random sequences generated by the background model. In
the background model, the occurrence probability p of each oligomer can
be approximated by p=1/M because oligomers are equiprobable. Let ¢
be the probability of an oligomer that occurs at least once. Thus, ¢ is
expressed as g=1—(1—p)T, where T is the total number of oligomers in
the given sequences. The random width W against w can be understood as
Bernoulli trials where there are W-successes with the probability ¢ between
two failures. Therefore, the probability distribution of W is a geometric
distribution represented by:

PW)=¢" (1-¢)*. ©)

Since O >w, the random total count O against o is conditioned by the width
w. If there is no constraint, the probability distribution of O is a binomial
distribution with the success probability wp and the number of observations
T. The conditional probability distribution is represented by:

P(O|w)=Bin(0)/Bin(0O>w), @)

where Bin is the binomial distribution:
. T _
Bin(0)= ( O) wp)?(1—wp)"=C. ®)

Using these distributions, we define the p-value pv of a cluster by:
pv=P(W=w)P(O=o|w). ®

Since there are many clusters in the set of occurrence counts C, a large
number of significance tests must be involved. To reduce the false discovery
rate, we use the e-value ev instead of the p-value, which is adjusted by the
number of equiprobable oligomers M as follows,

ev=P(W=>w)P(O>o|lw)M. (10)

If ev is smaller than a significance level «, the null hypothesis is rejected and
hence the corresponding cluster is judged to be significantly enriched.

2.5 Summary of methods

The flowchart shown in Figure 5 summarizes our motif discovery procedure.
The parameter that characterizes each process is presented beneath the
description of the process.

(1) Threshold parameter 6: the threshold parameter 6 is critical in
our method because it regulates the probability of equiprobable
oligomers p. Empirically, we can obtain good results when we set
p=1/L, where L is the total sum of the lengths of the input sequences.
Therefore, in the application, € is automatically adjusted in accordance
with the input sequences, such that 6 =log, (L) — € (empirically, e=1).
The rationale behind this estimation is discussed in Section S.2 in
Supplementary Material.

Input sequences

A

(2) Construct background
Markov model

(1) Count occurrences of |
equiprobable oligomers

threshold 6

!

(3) Find significant clusters
in DNA Gray code

order m

(4) Detect shift relations
and merge them

number of shifts

Fig. 5. Flowchart of the motif discovery. Each box that corresponds to a
process presents the description (upper) and the parameter (lower) within it.

significance level a

(2) Order of Markov model m: the background Markov model is
constructed from the input sequences that include the motifs
themselves. Since the regions occupied by the motifs are much smaller
than the rest of the sequences, the background model can be properly
estimated if m is small. The default value of m is fixed at 3.

(3) Significance level «: the significance level « is not crucially influential
in our method. We set the default value at 0.01 as a typical value.

(4) Number of shifts: after finding significant clusters, we sort them in the
ascending order of their e-values. We pick up each cluster in this order
and look for other clusters that have a shift relation with it. The clusters
thus found are merged into a single motif. This process is recursively
performed. The depth of this recursion defines the number of shifts
allowed. We set the default value for the depth at 3.

2.6 Data and statistics

As the benchmark data, we use the set of human promoter sequences in
the cisRED database (Human v9.0, Robertson et al., 2006). The cisRED
database consists of a set of promoter sequences and a set of motifs defined
in those sequences, where each motif is conserved among several species and
annotated according to the known motif database TRANSFAC (Wingender,
2004). The number of promoter sequences is 18779. The total number of
nucleotides is ~47 Mbp, of which valid (unmasked) nucleotides amount to
~31 Mbp. After removal of redundancy, the number of conserved motifs is
236208 and the number of nucleotides occupied by the motifs is ~2.3 Mbp.

By comparing the sites predicted by our method with those listed in the
cisRED database, we assess the performance of our method at two distinct
levels, the nucleotide level and the site level. The statistics we use are
essentially the same as those adopted by Tompa et al. in their assessment
strategy (Tompa et al., 2005). At the nucleotide level, each dataset consists
of pairs (i,p), where i is the sequence ID and p is the nucleotide position
within the site. We denote the sets of known sites and predicted sites by nK
and nP, respectively. At the site level, each set consists of triples (i,s,e),
where i is the sequence ID, and s and e are the start and end positions of the
site, respectively. We denote the sets of known and predicted sites by sK and
sP, respectively.

At the nucleotide level, the true positive nTP is simply defined by:

nTP=|nK NnP|, (11)

where |-| implies the size of the set. At the site level, the true positive sTP
is expressed as:

sTP= |{uesK\3vesP; u.i:v.i,ov(u,v)zlen(u)/4}}, (12)

where ov(u,v)=min(u.e,v.e)—max(u.s,v.s)+ 1 (overlap) and len(u) = u.e —
u.s+1 (length). This expression implies that s7P is the number of known
sites that overlap with the predicted sites by at least one-quarter of the length
of the known site.

The false positive and the false negative are defined as follows,

xFP=|xP|—xTP,xFN = |xK| —xTP, (13)

where x =n (nucleotide level) or x = (site level). The true negative is defined
only at the nucleotide level:

nTN =L—nFP—nFN —nTP, (14)

where L is the number of valid nucleotides in the promoter sequences.

Of the above definitions, only the false positive at the site level sFP is
different from that of Tompa et al. (2005). Tompa et al. allowed overlaps
between the predicted sites and removed such sites from sFP if each site
overlapped with a known site. In contrast, we use a slightly more stringent
criterion to check whether the clustering of motifs is appropriately performed,
i.e. we include the overlaps of the predicted sites in sFP even if the sites
overlap with a known site.
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Either at the nucleotide (x=n) or at the site (x=s) level, the sensitivity
xSn and the positive predictive value xPPV are defined as usual:

xSn=xTP/(xTP+xFN), (15)
and
xPPV =xTP/(xTP +xFP). (16)
To average these quantities to give a single statistic, we adopt the correlation
coefficient nCC at the nucleotide level, which is defined by:
nTP-nTN —nFN -nFP

nCC= .
\/(nTP+nFN)(nTN+nFP)(nTP+nFP)(nTN+nFN)

an

In a similar way, we adopt the average site performance sASP at the site
level, which is defined by:

SASP = (sSn+sPPV)/2. (18)

3 RESULTS AND DISCUSSION

3.1 Performance evaluation with all meotifs in ciSRED

To examine the performance of our method, Hegma, we adopt
essentially the same evaluation scheme as that used by Tompa et al.
(2005). To evaluate the effects of data size on the performance, we
prepare sets of sequences that are randomly selected from the human
promoter sequences of the cisRED database. In the following results
shown in Figure 6, we prepare 10 sets for each number of sequences.

Figure 6a indicates that nPPV at the nucleotide level is insensitive
to the variation in the number of sequences. In the default setting, our
method adjusts the threshold parameter such that the equiprobable
oligomers should have the probability p=1/L under the background
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Number of sequences
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Fig. 6. Prediction statistics at the nucleotide level (a) and the site level (b),
as a function of the number of sequences. The default parameter set described
in Section 2.5 is used for calculation. Each symbol indicates the average of
10 tests with the sequences randomly selected from the full data. Error bars
indicate the maximum and minimum values of the statistics. The right-most
statistics correspond to those for the full data: where nSn=0.27, nPPV =
0.11 and nCC =0.067 at the nucleotide level; sSn=0.34, sPPV =0.13 and
SASP =0.23 at the site level.

model, as discussed in Section 2.5. This adjustment maintains the
null distribution at a constant precision, which accounts for the
constant rate of false positive (or type I error) and hence nearly
constant nPPV. In contrast, nSn is improved as the number of
sequences is increased. This improvement can be explained by the
general characteristics of statistical analysis, where a larger data size
leads to more precise results.

The results at the site level are similar to those at the nucleotide
level except that sPPV decreases for larger numbers of sequences
(Fig. 6b). This decrease in sPPV originates from overlaps between
predicted sites, which augment sFP under our definition. Our
method can detect a shift relation between overlapped sites and
merge them. If this process were perfectly performed, the overlaps of
the predicted sites would be repressed. However, we fail to eliminate
all the overlaps partly because we restrict the size of shifts to 3 in
the default setting. We impose this restriction to avoid the risk of
merging unrelated motifs. Improved discrimination between related
and unrelated motifs is one task to be explored in the future.

Figure 7 shows the memory usage and the calculation time.
Calculations are made on a computer with 3 GHz Intel Xeon® with
16 GB memory running under Linux® 2.6. Both time and memory
linearly increase with the number of sequences. It is noteworthy that
we need only 30 s for calculation of the full data (18 779 sequences,
31 Mb). The memory usage of 1.1 GB is also sufficiently feasible
for current conventional computers.

3.2 Performance evaluation with specific motifs

We compare the performance of our method to that of Weeder
(version 1.4.2, Pavesi et al., 2004), a representative word-based
method based on exhaustive enumeration with a limited number
of mutations. We choose Weeder because it performed best in the
assessment of Tompa et al. (2005).

Almost all the conventional tools, including Weeder, assume that
given promoter sequences are derived from coregulated genes. This
assumption implies that most of the given sequences have at least one
specific motif that contributes to the specific regulation. Therefore,
we prepare a set of sequences in which the fraction of sequences
holding the motif is variably specified. We adopt the motif AAR
as the specific motif, because it is the most frequent motif in the
TRANSFAC annotations. Let R and U be the sets of sequences
with and without the motif AAR, respectively. We select sequences
from R and U according to a predefined percentage that we control.
For example, when the total number of sequences is 1000 and the

1200 - - - 35
o | 30 &
g 1000 =
25 £
S 800} =
g 20 §
> 600 =
g 15 (—é
2 400 | 10 &
200 b - - 5
5000 10000 15000 20000

Number of sequences
memory usage —e— calculation time =

Fig. 7. Dependence of memory usage and calculation time on the number
of sequences. Each value is the average of 10 trials. For the full data, the
memory usage is 1.1 GB and the calculation time is 30 s.
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Fig. 8. Performance comparison between Hegma and Weeder at the
nucleotide level (a) and the site level (b). The number of sequences is
fixed at 1000. Boxes show the average values of statistics of 10 sets of
sequences. Error bars show the maximum and minimum values of statistics.
The fractions of the motif-containing sequences are varied from 40% to
100%. The parameter setting of our method is default. See the text for the
parameter setting of Weeder.

percentage of motif-containing sequences is 80%, we select 800
sequences from R and 200 sequences from U. In the following
results, we fix the number of sequences at 1000. In order to evaluate
the performance of single-motif detection, we regard only the known
sites as the right sites of the motif AZR, even though the motifs may
be present at other sites in the sequence.

We run Weeder under the following settings: the species code is
HS; the minimal sequence percentage on which the motif has to
appear is 5 (to increase sensitivity); and the top 20 000 (sufficiently
large) motifs are reported. We try the following pairs of motif length
and maximal number of mutations: (6,1), (8,2) and (10,3). Although
motif length 12 is also allowed, we do not try it because of the
prohibitively long calculation time. We determine the positions of
the predicted sites with the tool locator.out included in the Weeder
tools.

Figure 8a shows the results at the nucleotide level. When the
percentage of motif-containing sequences is 100%, i.e. all the
sequences have the specific motif AhZR, nCC of Weeder (0.093) is
superior to that of Hegma (0.087). However, Hegma outperforms
Weeder under all other situations. The performance of Weeder
becomes worse as the percentage of motif-containing sequences
decreases, whereas Hegma is little affected by this variation. Since
the average length of equiprobable oligomers in this evaluation is
10.7, our setting of the motif length of Weeder should be impartial.
Furthermore, Weeder also adopts statistical measures based on
Z-score, in a similar way to our method. Therefore, it is most likely
that the equiprobable oligomers adopted in Hegma contribute to
improving performance compared with the fixed-length oligomers
used in Weeder.
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Fig. 9. Average statistics for the 10 most frequent motifs at the nucleotide
level. Boxes show the average values for the statistics of motifs. Error bars
show the maximum and minimum values of the statistics. The setting is the
same as that in Figure 8.

The results at the site level (Fig. 8b) are more remarkable than
those at the nucleotide level. At this level, Hegma outperforms
Weeder under all situations, including the case that 100% of the
sequences contain the motif, where sASP of Weeder is 0.23 and
that of Hegma is 0.25. We consider that the merge of shift-related
motifs introduced in Hegma has effectively reduced sFP and hence
improved sPPV, as mentioned in the previous subsection.

We repeat the same analysis as mentioned above for the 10
most frequent motifs in cisSRED (AhR, aMEF-2, POU2F1, Pax-5,
DEAF-1, CREB, HNF-1o, DP-1, RSRFC4 and POU3F2). Figure 9
summarizes the results for these 10 motifs at the nucleotide level
by averaging their statistics. The detailed results for individual
motifs together with the results of non-parametric statistical tests are
presented in Section S.4 in Supplementary Material. Clearly, Hegma
outperforms Weeder under all the situations tested. The results at the
site level are also similar to those at the nucleotide level (data not
shown). These observations imply that the performance of Hegma
is more stable than that of Weeder regardless of the type of motif as
well as the fraction of sequences that contain the motif. An additional
examination on a smaller ChIP-seq peak dataset also supports this
conclusion as shown in Section S.3 in Supplementary Material.

The average calculation time per dataset (1000 sequences) for
Weeder is 10 h, whereas that for our method is only 1.4 s when tested
under the same condition mentioned in Section 3.1 and averaged
over 40 trials. Therefore, our method shows considerable advantage
in calculation time as well.

3.3 Analysis of unannotated motifs

In Section 3.1, we regard the predicted sites that do not match
any cisRED annotation as ‘false positives’. However, it is probable
that some of them actually represent true motifs absent from the
cisSRED annotation. We then extract such unannotated motifs from
all significant motifs predicted by Hegma in the full data of the
ciSRED promoters such that >95% of the sites comprising each
motif do not overlap with any annotated sites. The number of all
the predicted motifs is 7528 (composed of a total of 620 153 sites),
of which the number of unannotated motifs is 1161 (36443 sites).
Figure 10 illustrates four examples of the unannotated motifs with
the smallest e-values in sequence logos (Schneider and Stephens,
1990).

The unannotated sites tend to be located in distal regions
compared with all the predicted sites; the average position (SD) of
the unannotated sites is —1140£894 bp relative to the transcription
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Fig. 10. Four examples of unannotated motifs absent from the cisSRED
annotation. Each motif is labeled according to the name of the most
similar motif in the JASPAR database (Sandelin et al., 2004). We selected
these motifs as the ones with the smallest e-values: (1) ev = 6.2 x 1074,
(2) 1.2x107%,(3) 1.9x 10733 and (4) 8.6 x 10733,

start sites, whereas that of all the predicted sites is —737+£837 bp
(p-value of t-test: ~0). The unannotated sites are a subset of
the predicted sites and its complementary set is associated with
the ciSRED annotation. Therefore, this disparity suggests that the
positions of the annotated sites in ciSRED may have significant bias
toward proximal regions. These observations may be interpreted as
follows; it may be difficult for a phylogenetic footprinting approach,
including cisRED, to detect conserved motifs in the distal regions,
where the marked sequence divergence or the existence of repetitive
elements hinders reliable sequence alignment compared with more
conserved proximal regions (Suzuki et al., 2004). Therefore, our
method can complement the phylogenetic footprinting approach to
improve the overall sensitivity of motif discovery.

4 CONCLUSION

We have developed a large-scale motif discovery tool, Hegma,
and shown that Hegma is not only applicable to large-scale data,
but also can stably detect motifs even if only a small fraction
of the examined sequences contain the motifs. Thus, Hegma is
applicable to situations where the fraction of motif-containing
sequences is uncontrollable, such as the detection of splicing
enhancers or silencers in exon and intron sequences, or the detection
of microRNA binding sites in UTR sequences. A huge number of
such sequences have already been collected in databases. However,
as our knowledge of those motifs is yet far from complete, it is

difficult to know in advance the percentage of sequences holding the
motifs. We consider that the speed and precision of Hegma would
facilitate discovery of novel motifs from a heap of sequence data.
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