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ABSTRACT

The laws of thermodynamics constrain the action of
biochemical systems. However, thermodynamic
data on biochemical compounds can be difficult to
find and is cumbersome to perform calculations
with manually. Even simple thermodynamic ques-
tions like ‘how much Gibbs energy is released by
ATP hydrolysis at pH 5?’ are complicated excessive-
ly by the search for accurate data. To address this
problem, eQuilibrator couples a comprehensive and
accurate database of thermodynamic properties of
biochemical compounds and reactions with a
simple and powerful online search and calculation
interface. The web interface to eQuilibrator (http://
equilibrator.weizmann.ac.il) enables easy calcu-
lation of Gibbs energies of compounds and reac-
tions given arbitrary pH, ionic strength and
metabolite concentrations. The eQuilibrator code
is open-source and all thermodynamic source data
are freely downloadable in standard formats. Here
we describe the database characteristics and imple-
mentation and demonstrate its use.

INTRODUCTION

The structure and function of cellular metabolism has
been a central area of biological inquiry for over a
century. The metabolic networks of numerous organisms
have been studied in detail as well as their responses to
changes in internal and external conditions (1-4). More
recently, metabolic models have succeeded in accurately
predicting bacterial growth modes and biologists have suc-
ceeded in designing and implementing novel biosynthetic
pathways for the production of fuels and other valuable
chemicals (5-9). In these metabolic research and engineer-
ing efforts it is essential to account for thermodynamic
constraints: chemical reactions can sustain flux in a
given direction only if they lead to a reduction in the

Gibbs energy (G). That is, the change in Gibbs energy
due to a reaction (A,G) must be negative.

Biochemical reactions have context: they take place
inside cells. The cellular conditions—temperature, pH,
ionic strength, concentrations of metabolites and ions,
etc.—can significantly affect the thermodynamic feasibil-
ity of a particular reaction direction. Therefore, a meta-
bolic reaction or pathway can be subjected to
thermodynamic analysis to determine whether it is
feasible under physiological conditions and which condi-
tions enable it to produce the desired outputs (6,10). For
example, recent work engineering Escherichia coli for
1.4-butanediol production leveraged thermodynamic
analysis to highlight the most promising candidate
pathways and to eliminate those unlikely to flow to
1.4-butanediol (7).

It can be quite time-consuming to apply thermodynamic
analyses to a pathway or reaction of interest. For example,
consider a simple thermodynamic question: in which dir-
ection does the fructose bisphosphate aldolase reaction in
glycolysis proceed when all reactants are present in 1 mM
concentrations at pH 7.5 and ionic strength 0.2? To
answer this question, thermodynamic parameters must
be retrieved from the literature. Care must be taken to
ensure that the various data sources used are compatible
with each other and that all reactions analyzed are
properly balanced. Reaction energies must be transformed
to physiological conditions by applying metabolite con-
centrations, pH and ionic strength values from the litera-
ture. This work is straightforward, but also arduous and
error-prone.

The most reliable way to perform these calculations is
by using a well-tested computer program with access to a
comprehensive and accurate database of thermodynamic
data. Indeed, that is exactly what eQuilibrator is.
eQuilibrator houses a collection of measured and
approximated thermodynamic data. The database is
coupled to a web interface that enables users to perform
thermodynamic calculations with ease. All thermodynam-
ic source data is available for download in standard
formats. eQuilibrator was motivated by the notion that
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thermodynamic analysis is a powerful way to develop and
check hypotheses about biochemical systems, but that
such analyses are underused because of the amount of
effort involved.

ESSENTIALS OF BIOCHEMICAL
THERMODYNAMICS

Hydrogen atoms are not balanced in biochemical reac-
tions as the pH is held constant. Rather, the aqueous en-
vironment is treated as a reservoir of protons and the pH
determines their Gibbs energy. The assumption of
constant pH is quite reasonable since many organisms
use buffers to maintain the intracellular pH (11,12).
Therefore, we use A,G'—the change in Gibbs energy at
a fixed pH—rather than A.G when discussing biochemical
reactions.

If a biochemical reaction carries net forward flux, the
second law of thermodynamics demands that A.G'<0.
A.G’ i1s a function of the standard transformed Gibbs
energy (A,G’°) as well as reactant concentrations.
The effect of concentrations on A.G’ is given by the
apparent reaction quotient Q’, the stoichiometric ratio
of product concentrations to substrate concentrations.
AG° = AG°+ RTIn(Q’), where R is the gas constant
(8.31446Jmol'K™") and T is the temperature in kelvin
(at 25°C RT = 2.47896 kJ/mol). At equilibrium, A,G' =0
and Q’ assumes a characteristic value K’ = exp(—A,G’°/
RT) called the apparent equilibrium constant (11,13,14).

A.G’° is defined in standard conditions where all react-
ants aside from protons have unit (1 M) concentrations.
However, in E. coli, for instance, metabolite concentra-
tions range from ~0.1 uM to ~100mM, spanning about
six orders of magnitude (15). A 10-fold increase in the
concentration of a single reaction product will add RT
1n(10) = 5.708 kJ/mol to A.G" (13). For example, the
citrate dehydratase reaction in the TCA cycle (citrate =
H2O + cis-aconitate) has a positive A.G"° of 8.5kJ/mol
(where pH = 7.0, ionic strength = 0.1 and
T =298.15K), but when concentrations measured in
E.  coli are applied ([citrate] = 610uM, [cis-
aconitate] = 16 uM) A,G” is reduced to —0.5kJ/mol (15).
Furthermore, changes in multiple reactant concentrations
could potentially change A,G’ by tens of kJ/mol.

Similarly, changes in }gH, ionic strength and the concen-
trations of ions like Mg>* and Ca** can have a significant
effect on A.G’ by way of altering A.G’°. Indeed, the A,G"°
of ATP hydrolysis is quite dependent on pH: it is roughly
—33kJ/mol at pH 5 and —41kJ/mol at pH 8,
implying more than an order-of-magnitude change in K'.
As such, it is crucial to account for metabolite
concentrations, pH and ionic strength in thermodynamic
analyses (11,13).

ESTIMATING STANDARD REACTION ENERGIES

A,G’° must be measured or estimated in order to calculate
A.G'. Measuring K’ is equivalent to measuring A,G’® and
K’ has been measured for roughly 400 unique biochemical
reactions (16). Alternatively, A.G’° can be calculated from
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the Gibbs energies of formation (A¢G’°) of the reactants
participating in the reaction. Indeed, the decades-long
efforts of Robert Alberty and colleagues have produced
accurate AG’° values for approximately 200 biochemical
compounds (11). However, even this approach is
somewhat limited as there are thousands more
metabolically-interesting compounds and reactions that
remain thermodynamically uncharacterized (11,17,18).

Unknown AG’° values can be estimated accurately
using group-contribution approximation methods. These
methods assume that compounds are composed of
chemical groups that each have characteristic contribu-
tions to A¢G’° independent of all other groups present in
the compound (19,20). Applying the group-contribution
method yields formation energies for a large fraction of
metabolites, enabling thermodynamic analysis of
pathways and genome-scale metabolic models (21,18).
Moreover, recent work has integrated acid dissociation
constants into the group-contribution framework to ac-
curately account for the effect of pH and ionic strength
on compound and reaction Gibbs energies (Noor, E. et al.,
Submitted for publication).

THE DATABASE

The eQuilibrator web interface is designed to guide users
to A,G'° values as quickly as possible, detecting and cor-
recting mistakes along the way (Figure 1). Users can
search for biochemical reactions in free text or by the
name of a catalyzing enzyme. For example, the aldolase
reaction can be written as ‘fructose 1,6 bisphosphate =
glyceraldehyde 3-phosphate + dihydroxyacetone phos-
phate‘. The same reaction can also be found by searching
for ‘aldolase’ or ‘fructose bisphosphate aldolase.” As you
type, the search interface suggests matching compound
and enzyme names, helping to avoid errors.

eQuilibrator detects chemical and charge imbalance
and can automatically correct it in some cases. In the
case of the putative reaction ‘glucose = gluconate’,
eQuilibrator recognizes that this hydration is missing a
water molecule and offers to automatically balance the
reaction. Once the water is added, eQuilibrator detects
that ‘glucose + H20 = gluconate’ is not redox balanced:
glucose and water have two more electrons than
gluconate. eQuilibrator offers to balance the half-reaction
with  NAD and NADH. In our experience balance
checking prevents common errors in analyzing reactions.

If a reaction query is properly balanced then
eQuilibrator shows a reaction page including A,G’° and
K', the formation energies of all reactants and any known
catalyzing enzymes (Figure 2). In calculating A,G’°,
eQuilibrator ensures that formation energies are from con-
sistent sources, avoiding errors stemming from contradict-
ory assumptions. The reaction page also allows users
to transform A,G’° into A.G’ by applying arbitrary pH,
ionic strength and reactant concentrations and to
plot A,G° as a function of pH and ionic strength
(Figure 2).

From the reaction page it is simple to explore
the properties of reactants and catalyzing enzymes.
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Search Interface

« Search for compound, enzyme or reaction
* Free-text reaction search
« As-you-type search suggestions

ola.

eQuilibrator

Compound Search

Enzyme Search

Pyruvate Kinase

Reaction Search
Pyruvate + ATP -> PEP + ADP

Search Results

« Results for compounds and enzymes
* Links to catalyzed reactions
« Links to compound details

Balance Checking

* Chemical balance
» Redox balance
Compound Link

Catalyzed Reaction Link Balanced or Corrected

Compound A.G' Reaction A.G'

* AG”, AG' and K" values

« Change pH, ionic strength, concentrations
* Links to catalyzing enzymes

* Links to external databases

* A¢G" and AG' values
» Change pH, ionic strength
* Links to external databases

Update conditions

7 T

Update conditions, concentrations

Figure 1. Summary of the flow and features of usage of the eQuilibrator web interface. Users arrive at the main page and may search for a
compound (‘pyruvate’), an enzyme (‘pyruvate kinase’) or a reaction (‘PEP+ ADP = pyruvate + ATP’). Users who enter a reaction formula are taken
directly to a reaction page where the chemical and redox balance of the reaction is checked and the A,G’° is given. The reaction can be transformed
easily to different cellular conditions and reactant concentrations to yield A.G’. Users who search for a compound or enzyme are taken to a search
results page. Search results offer links to catalyzed reactions for enzymes and links to a summary page with chemical and thermodynamic data for
compounds.

Search

m ‘D—Fructose 1,6-bisphosphate <=> Glycerone phosphate + D-Glyceraldehyde 3-phosphate

eQuilibrator

D-Fructose 1,6-bisphosphate - Glycerone phosphate + D-Glyceraldehyde 3-phosphate

Estimated A,G'
Estimated A,G™

4.4kJ I mol

21.5k3/mol  [Keq=0.00017]

Catalyzed by fructose-bisphosphate aldolase

pH Mo

lonic strength (M) o1

Concentrations Standard conditions (1 M) «1mM o Custom

Update Save Reverse

Compound Formation Energies

Compound AG° MG Source

D-Fructose 1,6-bisphosphate -2673.9 -2205.9 Alberty (2006)
Glycerone phosphate -1328.8 -1096.0 Alberty (2006)
D-Glyceraldehyde 3-phosphate -1321.1 -1088.4 Alberty (2006)

Figure 2. A reaction page for the fructose bisphophate aldolase reaction showing A,G’°, K’ and A,G’ for | mM reactant concentrations at pH 7 and
ionic strength 0.1.

Each compound and enzyme in the database has a
dedicated page that can be reached from a reaction page
(or via the search interface). Enzyme pages list all known
catalyzed reactions and provide links to KEGG and
BRENDA (17,22). eQuilibrator’s compound page shows
the compound formula, mass, structure and formation

energy and enables transformation of A{G’° to different
pH and ionic strength (Figure 1).

The structure of the eQuilibrator database is
summarized in Table 1. General biochemical data like
compound structures and molecular weights are drawn
from the KEGG database (17). In all, eQuilibrator
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Entity Description

CommonName The name of a compound or enzyme.

Species A protonation state of a biochemical compound. Contains the number of hydrogens, net charge and formation energy.

SpeciesGroup A consistent group of Species for a specific compound from a single data source. Contains a source reference.

Compound A biochemical compound. Contains a list of CommonNames, links to external databases, the chemical formula, mass,
compound structure, and a list of SpeciesGroups for computing formation energies.

StoredReaction A known biochemical reaction. Contains a list of compounds and their stoichiometric coefficients and a list of references
to any catalyzing enzymes.

Enzyme An enzyme. Contains a list of CommonNames and a list of StoredReactions catalyzed by this enzyme.

draws data on approximately 13 500 compounds, ~6400
reactions and ~2800 enzymes from KEGG. eQuilibrator
catalogues formation energies for the various protonation
states of ~11700 of the compounds. As discussed above,
these formation energies are of two general types: those
inferred from measurements (11,23,24) and those
approximated according to the group-contribution as-
sumption (Noor, E. et al. Submitted for publication).
Source references are given for all formation energies
(Figure 2).

eQuilibrator also serves an important pedagogical role,
providing detailed explanations of essential matters
including the appropriate handling of pH, redox reactions
and dissolved CO,. Links to these explanations are
provided during use. For example, if a reaction query is
not redox balanced, we link to a discussion of redox reac-
tions and a description of how eQuilibrator handles them.
In this way, users are exposed to the basics of biochemical
thermodynamic analysis through repeated wuse of
eQuilibrator.

EXAMPLES OF USE
Evaluating reaction reversibility

Many metabolic models rely on tagging the reversibility of
reactions to constrain the space of possible solutions
(25-27,21). eQuilibrator greatly simplifies this process.
For example, the fructose bisphosphate aldolase reaction
mentioned above has a A,G"° of ~21kJ/mol (pH = 7.0,
ionic strength =0.1 and 7 =298.15K here and
throughout). Using eQuilibrator it is trivial to adjust all
concentrations to 100 uM and see that the reaction is
easily reversed at  physiological  concentrations
(A.G"”° = —1.5kJ/mol). Though the aldolase reaction is
reversible, the reaction direction is sensitive to cellular
pH and ionic strength. By using eQuilibrator to plot
A.G' as a function of pH at 1 mM concentrations we
find that acidic pH and high ionic strength favor the
reverse reaction direction and the formation of fructose
1,6 bisphophate.

Some reactions are in fact irreversible given biological
constraints. PEP phosphatase catalyzes the reaction
PEP+H,O = pyruvate+Pi which has a A,G° of
—65kJ/mol. Even if we set the concentration of PEP to
I nM—about one molecule per E. coli cell (28)—and the
concentrations of Pyruvate and Pi to 1M A,G is still
negative (~—14kJ/mol). Indeed, the phosphate moiety

of PEP is particularly energetic: some organisms couple
the hydrolysis of PEP to the production of two ATP
equivalents (29,30). Thus, the PEP phosphatase reaction
always flows in the direction of pyruvate and Pi forma-
tion. Using eQuilibrator it is also simple to verify that
changes in pH and ionic strength don’t alter the reaction
direction.

Thermodynamic feasibility of pathways

Using eQuilibrator we can analyze the net feasibility of a
pathway and examine its sensitivity to pH. Here we
analyze the fermentation of glucose to lactate as an
example. Without accounting for ATP production, the
net reaction of lactic acid fermentation is glucose = 2
lactate (12). Assuming 1 mM concentrations, pH 7 and
ionic strength of 0.1, the A.G’ of this reaction is
—217kJ/mol (31,21,15). In glycolysis this energy is
coupled to ATP production from ADP and inorganic
phosphate, which requires roughly 50-60kJ/mol at
physiological concentrations (12,13).

Most organisms produce two ATP during glucose fer-
mentation (12). The net energetics imply that this is quite
feasible: there is an excess of 120 kJ/mol of glucose. So
why not make three or even four ATP? We can plot the
pH dependence of A,G' for a fermentation strategy
producing four ATP at 1 mM reactant concentrations. It
is clear from the graph that this strategy is only favorable
in a very narrow pH range (~pH 6-7.25), suggesting that
it is perhaps too fragile for biological use.

METHODS
eQuilibrator source code is freely available on Google
Code (http://code.google.com/p/milo-lab)). The

eQuilibrator web interface is composed of a back-end im-
plemented in Python and a user interface implemented
with HTML, CSS and JavaScript. A wide range of open
software and databases significantly aid the development
and maintenance of eQuilibrator. Non-thermodynamic
data including compound names, masses and formulae,
enzyme names, EC classes and catalyzed reactions are
drawn from KEGG (17) and stored in a MySQL
database. Thermodynamic data is drawn from several
sources (11,23,24) and is stored in the same database.
The Django framework is used to simplify database
setup and querying, HTML generation, and web serving.
Search queries are parsed via the pyparsing library and
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search results are ranked according to the degree to which
they match the search query, where the degree of matching
is computed using the edit-distance algorithm. The user
interface is implemented using standard HTML and
CSS. The dynamic portions of the interface, including
real-time search suggestions, are implemented in
JavaScript using the jQuery framework.

Thermodynamic data is available for download in
standard formats—JavaScript Object Notation (JSON)
and Comma-Separated Values (CSV)—and is provided
at several levels of granularity. Files containing
compound A G’° and reaction A.G’° values at various
combinations of pH and ionic strength are available.
For those interested in detailed analyses involving
varying cellular pH and ionic strength, files containing
A¢G° values for the various protonation states of KEGG
compounds are also available.

FUTURE PLANS AND CONCLUSIONS

Though thermodynamic data is available for download,
the eQuilibrator interface performs many calculations that
users may not want to re-implement. Accordingly, we plan
to create a programmatic interface to eQuilibrator that
allows client software to perform thermodynamic
calculations regardless of their programming language of
choice.

We are especially proud that eQuilibrator is fully open
source and that our data is freely available in standard
formats. We have experienced firsthand how open-source
software and data simplifies our work, and we are happy
to contribute to the community. We believe that
eQuilibrator facilitates the development and testing
of novel hypotheses about metabolism and is the appro-
priate resource for those interested in biochemical
thermodynamics.
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