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ABSTRACT

IDEAL, Intrinsically Disordered proteins with
Extensive Annotations and Literature (http://www.
ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/), is a collec-
tion of knowledge on experimentally verified intrin-
sically disordered proteins. IDEAL contains manual
annotations by curators on intrinsically disordered
regions, interaction regions to other molecules,
post-translational modification sites, references and
structural domain assignments. In particular, IDEAL
explicitly describes protean segments that can be
transformed from a disordered state to an ordered
state. Since in most cases they can act as molecular
recognition elements upon binding of partner pro-
teins, IDEAL provides a data resource for functional
regions of intrinsically disordered proteins. The
information in IDEAL is provided on a user-friendly
graphical view and in a computer-friendly XML
format.

INTRODUCTION

The discovery of intrinsically disordered proteins (IDPs)
has brought about a paradigm change in structural biology
(1,2). Although proteins were believed to adopt unique 3D
structures to function, IDPs do not, by themselves, assume
any stable 3D structure under physiological conditions,
and yet they participate in crucial biological processes such
as signal transduction and transcription control (3–5).
Some proteins contain long intrinsically disordered
regions (IDRs) while others are fully disordered. In
contrast to the long studied 3D structures of proteins, in-
vestigations on IDPs started only about 10 years ago and,
as yet, knowledge of IDPs is not well collected and
integrated. Although the first database of IDPs, Disprot

(6), has more than 600 well-annotated entries, this number
is much smaller than the over 70 thousands entries in the
Protein Data Bank (PDB) (7). Considering that the
protein 3D structural databases such as PDB, SCOP
(Structural Classification of Proteins) (8) and CATH (9),
have played important roles in deepening our understand-
ing of the nature of protein structures and functions, the
development of IDP databases are essential to the
progress of IDP research.
We have developed a database, IDEAL (IDPs with

Extensive Annotations and Literature) in which experi-
mentally verified IDRs are collected. In the database con-
struction process, we paid special attention to the
functional regions in IDRs, for example, regions that
interact with other molecules and post-translational modi-
fication sites. In particular, we have extensively curated
IDRs that adopt unique 3D structures when they bind
to other molecules by the ‘coupled folding and binding’
process (10–16). We have called these IDRs the protean
segments (ProS). The information in IDEAL is provided
on a user-friendly web-interface and in computer-friendly
XML files.

CONTENTS OF IDEAL

Summary of the annotation process

We used the UniProt amino acid sequence (17) as the ref-
erence, and marked structural and functional features
along the sequences. A unique serial identifier, IID
(IDEAL Identification), was assigned to each protein in
IDEAL, starting with IID0001 for human proteins,
IID5001 for other eukaryotic proteins and IID9001 for
all other proteins including virus proteins. Ordered and
disordered regions were annotated as follows: First,
ordered regions were obtained from the structural
regions atomically detailed in the PDB. Then, disordered
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regions were located by careful assessment of PDB coord-
inates and by reading the literature. After identifying the
ordered and disordered regions, the ProSs were manually
determined. Finally, miscellaneous information, such as
binding sites and post-translational modifications, was
derived mainly from UniProt annotations, and structural
domains were assigned by homology searches.

Proteins stored in IDEAL

As a starting point for the annotation, we chose UniProt
human nuclear proteins with PDB structures (712
proteins), because eukaryotic nuclear proteins are known
to contain long IDRs (18,19). We have annotated more
than 120 human nuclear proteins. Out of them, the overlap
with DisProt is only one-third at most, indicating IDEAL
and DisProt complement each other. Most of the PDB
structures for these proteins are hetero-oligomers in
which the protein was associated with its binding partners.
Annotations for these partner proteins are also in IDEAL,
regardless of the source organism or the presence or
absence of IDRs.

Ordered/disordered regions

The most important part of the IDEAL annotation is to
identify the ordered and disordered amino acid segments.
Ordered regions can be assigned by referring to the PDB.
It is not straightforward to identify the disordered regions.
In IDEAL, disordered regions are judged using several
criteria; (i) missing residues in the X-ray structures, (ii) re-
gions that interfere with protein crystallization in X-ray
experiments, (iii) regions that fluctuate greatly in ensemble
number of NMR model structures and (iv) regions that
have been shown to be flexible in experiments using NMR,
CD and other methods, and that have no corresponding
structures in PDB. Of the four categories, (i) can be auto-
matically obtained from PDB. Regions that were identi-
fied using the other three categories could only be judged
manually. Although fluctuating regions in category
(iii) could be found automatically by comparing the
PDB coordinates of a group of models, the regions were
only accepted as IDRs after curators confirmed the fluc-
tuations by examining the corresponding literature.
Category (iv) requires the most laborious procedure to
be obtained, but provides variable information. Curators
conduct manual literature searches to obtain such infor-
mation as much as possible.

Protean segment

One of the reasons why IDPs have drawn so much atten-
tion is the discovery of the phenomenon known as coupled
folding and binding in which a short flexible segment binds
to its binding partner by forming a specific structure which
acts as the molecular recognition element (10–16). In
IDEAL, we explicitly annotated this short flexible region
as ProS when both unstructured and structured informa-
tion is available for the region. We defined two categories
for ProS, verified ProS and possible ProS. A verified ProS is
a sequence for which there is evidence of both a disordered
isolated state and an ordered binding state. A possible ProS
is a sequence for which there is only evidence of an ordered

binding state, but circumstantial evidence suggests that the
sequence is disordered in the isolated state. A possible ProS
is, for example, a sequence from a protein whose homolog
contains a verified ProS in the corresponding position.
Another example would be the one in which the binding
partner of a possible ProS binds a verified ProS using the
same interface.

Sequences involved in coupled folding and binding have
been addressed in several ways, for example, molecular
recognition features (MoRFs) (20) and eukaryotic linear
motifs (ELMs) (21) have been studied. Although ProS,
MoRF and ELM are similar concepts, MoRF has a
length limitation of 70 residues and an ELM should
have a motif that can be described in a regular expression.
On the other hand, the definition of ProS depends only on
evidence of a disorder-order transition. Although most
ProSs bind to a partner protein, by its definition, ProS
can include IDRs whose structures are induced upon bind-
ing to small ligands. ProSs do not necessarily assume sec-
ondary structures in the binding state, and long IDRs or
IDRs without a motif can also be ProSs. Some relatively
long IDRs, such as p27Kip1 (PDB:1jsu) and Tcf3
(PDB:1g3j), can transform into ordered states (22).
ProSs can also cover these IDRs.

MISCELLANEOUS INFORMATION

We integrate the miscellaneous information from UniProt,
namely, regions interacting with other molecules, motifs
and post-translational modifications. During the annota-
tion process, the curators find interaction sites, sequence
motifs or other information that has not been described in
UniProt, the new information is included in IDEAL.
IDEAL also provides SCOP (version 1.75) and Pfam
(23) (version 24.0) domain assignments using reverse
PSI-Blast (24) and HMMer (25). Note that ordered
regions assigned in the order/disorder annotation process
are experimentally verified ordered regions, while the
structural domain assignments were done using
homology searches.

USING IDEAL

Browse and search entries

‘The list’ on the top page of IDEAL provides an easy way
to access any of the entries in IDEAL. The list enumerates
all entries in IDEAL, where IID, protein name, organism,
total sequence length and the presence/absence of ProS are
tabulated. IDEAL also provides a search tool, which
always appears in the blue bar at the top of each page
([1] in Figure 1). Users can choose from ‘Full text’,
‘UniProt accession’, ‘Protein Name’ and ‘PDB id’ catego-
ries, and enter some words or an ID into the input field.
The BLAST search is available through the ‘BLAST
search’ link button, and the user can input an amino
acid sequence to find homologs in the IDEAL entries.

Representation of each entry

IDEAL provides a user-friendly web interface for each
entry. An example, a page for catenin b-1, is shown
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in Figure 1. The annotated regions are presented in a
bar diagram to help make annotations intuitively
understandable. Two color bars at the top ([2] and [3] in
Figure 1) summarize ordered/disordered information in
the distinctive ways shown. A protein may have multiple
PDB entries and other information without accompanying
PDB entries from different experimental techniques such
as CD, H/D exchange, etc. Because IDEAL contains all
PDB entries together with the other structural information
associated with a query protein, all the associated infor-
mation are not necessarily consistent due to different ex-
perimental conditions and other reasons. To summarize
these diverse situations, IDEAL uses two representations:

(1) The bar [2] in Figure 1 shows the summary of
ordered/disordered regions by the ‘at least rule’.
Here an ordered (blue bar) or disordered (red bar)

site is shown if the site has at least one ordered or
one disordered annotation. When a single site has
both an ordered and a disordered annotation, the
site is in ‘conflict’ (orange bar). The inner box [A]
in Figure 1, opened by clicking the bar, shows the
detailed breakdown of the annotations. The first and
the second bars correspond to the at least ordered
regions, and the at least disordered regions, respect-
ively. All of the data sources supporting each of
order/disorder regions can be presented by cricking
the ‘majority rule’ bar explained below.

(2) The bar at [3] shows the summary of ordered/dis-
ordered regions by the ‘majority rule’, in which
majority decision is employed to show the annota-
tion. The inner-box (B), opened by clicking the bar,
shows all the evidence of annotations used to in the
majority vote. They include ordered and disordered

Figure 1. IDEAL annotation for catenin b-1. The identifier, IID, protein name, source organism and the link to UniProt are shown below the blue
bar which contains the search tool ([1]). Bars [2] and [3] show a summary of the annotated regions using the ‘at least rule’ and ‘majority rule’ criteria.
Ordered, disordered and conflict regions are colored in blue, red and orange, respectively. The inner boxes (A) and (B) show a detailed breakdown of
the regions in [2] and [3], respectively. These diagrams appear by clicking on the bars. The inner box (B) provides the link to the experimental
evidence and the technique supporting the order/disorder regions. ProSs are represented in section [4] as the green bars, which can be expanded by
clicking to reveal the inner box (C). Interaction sites and post-translational modification sites are shown in section [5]. These bars expand to show the
detailed information in the inner box (D). The bars in section [6] show the domain assignments.
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regions derived from the literature and PDB struc-
tures. The experimental methods supporting the
order/disorder regions (‘X-ray’, ‘NMR’, etc) are
also shown together with the links to the PubMed
Abstracts (‘Reference’).

A unique feature of IDEAL is the explicit description of
IDRs with the ability to undergo structural transform-
ation, the ProSs, which are shown by the green bars ([4]
in Figure 1). Each of the bars expands by a click to show
the ordered and disordered regions that account for the
‘verified ProS’ status [inner box (C)]. For ‘possible ProS’,
only ordered regions are presented. Note that a verified
ProS should match one of the conflict regions in the bar at
[2].
Below the ProS annotation, the miscellaneous informa-

tion from UniProt, is summarized. These bars can be
clicked on to open up the detailed information shown in
box [D]. The results of the domain assignment ([6] in
Figure 1) show the SCOP and Pfam domains identified
by the reverse PSI-Blast and HMMer. The bars show a
summary of the results and expand to show the details.

The XML files

The XML files are provided and can be downloaded by
clicking on the xml link button at the top right of the page
[2]. A definition of the XML schema is available at http://
idp1.force.cs.is.nagoya-u.ac.jp/IDEAL/help.html.

FUTURE WORK

It took about 1 year to annotate more than 120 proteins.
We now plan to accelerate the annotation rate. We also
expect to collect more ProSs, and investigate the inter-
action mechanism of the ProS. To do this, we aim to
develop an interface showing the binding partner
proteins associated with ProSs and to illustrate their inter-
action networks. As in any databases, updating the
contents is a key issue. We will address this by developing
an update system to keep information in IDEAL as
current as possible.
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