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ABSTRACT

The Mouse Multiple Tissue Metabolome Database
(MMMDB) provides comprehensive and quantitative
metabolomic information for multiple tissues from
single mice. Manually curated databases that inte-
grate literature-based individual metabolite informa-
tion have been available so far. However, data sets
on the absolute concentration of a single metabolite
integrated from multiple resources are often difficult
to be used when different metabolomic studies are
compared because the relative balance of the
multiple metabolite concentrations in the metabolic
pathways as a snapshot of a dynamic system is
more important than the absolute concentration of
a single metabolite. We developed MMMDB by per-
forming non-targeted analyses of cerebra,
cerebella, thymus, spleen, lung, liver, kidney, heart,
pancreas, testis and plasma using capillary electro-
phoresis time-of-flight mass spectrometry and
detected 428 non-redundant features from which
219 metabolites were successfully identified.
Quantified concentrations of the individual metabol-
ites and the corresponding processed raw data; for
example, the electropherograms and mass spectra
with their annotations, such as isotope and
fragment information, are stored in the database.
MMMDB is designed to normalize users’ data,
which can be submitted online and used to visualize
overlaid electropherograms. Thus, MMMDB allows
newly measured data to be compared with the other
data in the database. MMMDB is available at: http://
mmmdb.iab.keio.ac.jp.

INTRODUCTION

Metabolomics, the newest ‘omics’, is defined as the com-
prehensive identification and quantification of small
molecules that provides a holistic view of cellular metab-
olism. The metabolomic network, downstream of the
central dogma, transfers regulatory information from
other omics data, such as genomics, transcriptomics and
proteomics; thus, the metabolomic profile can be expected
to directly reflect cellular phenotype (1). Metabolomic
profiling has been used in biological studies in various
fields, e.g. microorganism, plant, food, agricultural,
pharmaceutical, clinical and medical sciences.
Nuclear magnetic resonance (NMR) (2) and mass spec-

trometry (MS) (3,4) are the major analytical techniques
that are used in metabolomics. The relatively low sensitiv-
ity of NMR and spectral overlap limits the number and
variety of metabolites that can be observed simultan-
eously. MS combined with a separation system prior to
MS, e.g. gas chromatography (GC)–MS (5), liquid chro-
matography (LC)–MS (6) and capillary electrophoresis
(CE)–MS (7), is currently the leading analytical platform
because it provided higher selectivity and sensitivity.
Because of the diverse physical and chemical properties
of the metabolites, no single analytical method can com-
prehensively profile data sets, and each method has its
own advantages and disadvantages (8). GC–MS is a
well-established technology that is capable of profiling
only volatile compounds and generally requires an initial
derivatization procedure. LC–MS can be used to monitor
a wider variety of non-volatile compounds; however, op-
timization of sample processing and LC column selection
that depends on the target analytes is necessary.
In contrast, CE–MS can monitor all charged metabolites
within two (positive/negative) modes which allows for the
simultaneous profiling of many pathways.
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Metabolomics has contributed to the accumulation of
knowledge about metabolites and their chemical (enzyme)
reactions and this information has been stored in various
databases. These databases can be classified broadly into
two types: (i) databases that contain metabolic pathways
based on information from the literature which has been
integrated and curated manually and (ii) databases that
contain raw or processed data from analytical system
like, for example, mass spectrometry, that allow compari-
sons between stored data and users’ experimental data to
be made. Examples of the first type of database include the
Kyoto Encyclopedia of Genes and Genomics (KEGG)
that contains a large collection of metabolites, enzyme
and chemical drug from various species (9), MetaCyc
(MetaCyc.org) that includes experimentally verified meta-
bolic pathways and enzyme information (10), MetaCrop
(11) containing metabolites from six kinds of crops and
Reactome which contains human metabolites (12). These
databases visualize metabolic pathways using data from
the literature. The Human Metabolome Database
(HMDB) contains the endogenous metabolites in human
biofluids and their quantified concentrations collected
from the literature (13) and the Small Molecular
Pathway Database (SMPD), which is fully linked to
HMDB, provides manually curated pathways (>350)
for the human metabolites (14). There are also several
commercial pathway databases that contain
integrated knowledge and well-studied pathways, e.g.
Cell Signal pathways (www.cellsignal.com), Sigma–
Aldrich pathways (http://www.sigmaaldrich.com/life-
science/cell-biology/learning-center.html), and Ambion
pathways (http://www.ambion.com), and ProteinLounge
(http://www.proteinlounge.com/).
Examples of the second type of database include the

Golm Metablome Database (GMD@CSB.DB) and
FiehnLib that contain GC/MS spectra (15), METLIN
that provides the mass spectra of metabolites and drugs
(16), MassBank that contains mass spectra from various
types of MS (17) and HMDB that contains NMR data
and the mass spectra of LC–MS and GC/MS along with
data comparison and search functions.
Metabolic systems intricately vary in their response to

environmental change; these variations are controlled by
enzyme regulation. Thus, the simultaneously observed
concentrations of metabolites in many pathways are
indicators that provide insights to a more holistic under-
standing of their biological significance. This is in contrast
to the integrated profiles available in the literature.
Therefore, we established MMMDB, a database that
contains a large collection of metabolites in multiple
tissues from single mice that were obtained using capillary
electrophoresis time-of-flight MS (CE-TOFMS) (18,19).

DATABASE DESCRIPTION

Database content

CE-TOFMS was used to analyze 10 tissues, cerebra,
cerebella, thymus, spleen, lung, liver, kidney, heart,
pancreas and testis, and also plasma in a non-targeted
manner (<1000Da) so that all possible metabolite peaks

were profiled. Wild-type mice have been backcrossed to
C57BL/6J for 10 or more generations, and were subse-
quently bred for 2 years in specific pathogen-free animal
housing facilities at Yamagata University Medical School
(20). Plastic cage with sawdust on the floor were used with
keeping the day lights on 12-h light/dark cycle, maintain-
ing the temperature between 23�C and 24�C. Diet
(Oriental MF, Oriental Yeast Co., Tokyo, Japan) and
water were available to the mice at all times. Two of
8-week-old male mice were sacrificed between 10:00 am
and 12:00 pm. Duplicated data from two mice were
included in the database.

Raw data were analyzed using MasterHands software
(21), which detects all possible peaks, eliminates noise
(e.g. spike noise) and interprets redundant features
(e.g. isotopic and adduct noise) commonly observed
in ESI–MS data (22). Migration times of CE–MS
electropherograms were normalized by dynamic
programming-based correlation methods to generate an
aligned data matrix (23). We detected 428 kinds of peaks
without redundant features [on an average, 351±54
peaks (SD) on each sample] and identified 219 metabolites
(192±20).

For details of the measurement methods, the conditions
used for CE-TOFMS, and the data processing procedure
see Methods in Supplementary Data. Quantified concen-
tration for each peak were identified with matched
standard compounds and recorded in the database. To
eliminate systematic bias, the peak areas of the 209
unidentified peaks were normalized using the same
internal standards and this data was also included in the
database. An overview of the profiled data and the results
of the multivariate analyses are depicted in Supplementary
Figures S1 and S2 using visualization software (24).

Reproducibility of migration times in CE–MS data,
i.e. the peak location along the electropherogram axis, is
lower than the retention/elution times in LC–MS and GC/
MS data. This makes data comparison between different
runs difficult. To help address this problem, the migration
times of internal standards simultaneously measured in
each data were registered for each metabolite entry.
Both raw and background-subtracted mass spectrum
with their interpreted annotations, such as isotope,
fragment, adduct ions, were also registered. Identified
metabolites were linked to KEGG (9), HMDB (13),
ChEBI (25) and PubChem (http://pubchem.ncbi.nlm.nih
.gov/).

Web interface

A screenshot of MMMDB is shown in Figure 1. All
quantified data sets can be downloaded as separate csv
files for each tissue or plasma. In addition to the search
and browse metabolites functions, users can upload their
own data and compare it on the website with the data that
is stored in the database. The distribution of the quantified
data in each tissue can be visualized as a bar graph and the
chemical structure is also visualized. The web interface can
be customized interactively on the website.

Similar to the search in HMDB and MassBank, users
can use m/z or molecular weight as a query to search
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the metabolites. The search results list the possible metab-
olites along with redundant features, such as isotope and
fragment, which may help identify the interesting peaks.

For users to be able to compare their CE–MS data with
the stored data, user can upload a data file containing the
electropherogram, mass spectrum and migration times of
internal standards in a structured csv format. In
MMMDB, the migration times of the electropherogram
are corrected using a polynomial equation derived from
the migration times of multiple internal standards (26),
and the overlaid electropherograms are visualized. Based
on the difference between m/z and migration times, the
searched results are evaluated and assigned scores which
indicate the matched possibility. For non-CE–MS users,
the electropherogram can be omitted from the upload
data, and comparison are then made based only on mass
spectrometry data. These functions help identify the peaks
in the users’ data sets. To use the data visualization tools
in the pathway mode, a part of the data sets, for example,
all the metabolites in a tissue, can be exported and used as
the input data file for the Pathway Projector (27) and for
Vanted (28).

In addition to the data sets, web interfaces provide a
data browsing navigator, a tutorial movie and document,

and an example of users’ data that can be compared
on-line. A tool for formatting users’ data is also provided.

Database implementation

The sever programs are designed as a versatile independ-
ent to operating system (OS). Client Adobe Flex 3
was used for the framework server program which was
implemented on a Java platform [standard edition
6.0 (1.6.0_26)]. Although users are required to install the
Adobe Flash Player, the interactive operations without
reloading that are used, for example, to visualize
overlaid electropherograms, are enabled and the user
interface does not depend on the browser programs. We
used Tomcat 6.0 for the web server and PostgreSQL 9.0.4
for the database. The server programs were implemented
on CentOS 5.6 with 4GB memory.

DISCUSSION

The principal feature of MMMDB is the comprehensive
large collection of the absolute concentrations of metab-
olites in various pathways in multiple tissues from single
mice using a single measurement platform. In contrast to

Figure 1. An MMMDB screenshot. (A) List of metabolites that fulfilled the search condition. (B) List of the registered entries of the metabolites
selected from panel (A). (C) Overlaid electropherograms displayed by the Multi Graph option. The other options, Electropherogram and Mass
Spectrum, will display a single electropherogram or the mass spectrum, respectively. (D) The search conditions used. (E) The molecular structure of
the displayed metabolite. (F) Tissue graph showing the quantified concentrations of the selected metabolites in each tissue.
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changes in a single metabolite, profiles of multiple metab-
olites in many pathways are important for metabolomics
research. Metabolic pathway databases containing a large
amount of related information are currently available;
KEGG (9), HumanCyc for human specific metabolic
pathways (29), BioCarta Collections visualizing well-
curated pathways (http://www.biocarta.com/genes/
allPathways.asp) and Ingenuity Pathways Analysis (IPA)
(http://www.ingenuity.com) providing both pathway and
structured literature information are examples of these.
MouseCyc is a mouse specific metabolic database and a
subset of MetaCyc, provides various build-in pathway
visualization tools and a pathway characteristics compari-
son function for mouse and human (30).
Excellent tools to visualize the quantified concentra-

tions of multiple metabolites in metabolic pathways are
also available. Pathway Projector (27) has distributed
various graphs of KEGG pathways using Google
Maps technologies and KEGG Atlas (31). This is useful
to explore the relation of multiple metabolites from large
metabolic pathways using various search functions.
Vanted (28) provides an editable pathway using
a template that can be downloaded from several
databases, such as KEGG (9) and MetaCrop (11), with
several statistical analyses tools, such as, for example, a
self-organizing map (SOM) that can be used to depict
the metabolite relations by reducing the metabolic
complexity. With these visualization tools, the profiled
data sets in MMMDB provide both an overview and
the characteristic relations in complicated metabolic
systems.
Multivariable analyses of the different tissue profiles

allowed their tissue-specific bias to be visualized.
Principal component (PC) analysis (Supplementary
Figure S1) showed, as expected, that along with the first
PC axis, the profiles in liver and kidney were exceptionally
different from those in other tissues. Plots along the third
PC axis also showed that the differences between kidney
and liver profiles were larger than the differences between
any of the other tissue profiles. Plots of cerebra and
cerebella profiles exist close together in all PC spaces,
indicating that these two profiles are similar.
Interestingly, compared to the other tissues, the testis
profiles were closest to the cerebra and cerebella profiles.
Clustering (Supplementary Figure S2) also produced con-
sistent results revealing, for example, the similarities in the
brain profiles. Metabolites categorized as amino acids
(betaine and taurine), organic acids (malate, lactate, suc-
cinate and citrate), those synthesized from arginine
(creatine and carnitine), and involved in nucleotide
pathways (uridine), tryptophan metabolism (indole-3-
acetaldehyde), glutathione metabolism (5-oxoproline)
and other pathways (glycolate, 2-hydroxypentanoate, al-
lantoin and acetohydroxamate) were consistently higher
than other metabolites in both the averaged tissue
profiles and in the plasma profile. The profiles in the
other metabolites in plasma are more constant than
those in the tissues.
MMMDB has several limitations. The observed profiles

include the metabolites in glycolysis, the tricarboxylic acid
cycle, the pentose phosphate pathway, the nucleotide

pathway, the amino acid pathway and the urea cycle.
Because CE–MS can detect only soluble and charged
metabolites, molecules with other feature, for example,
lipids, volatile metabolites and molecules in secondary me-
tabolism, are not covered in the current data sets. Using
LC–MS and GC/MS that are complementary to the
CE–MS data would raise the coverage; however,
when non-CE–MS data is included, several metabolites
that are also monitored by CE-MS make it necessary to
include the instrument and the correlation of the
overlapped metabolite concentrations need to be
evaluated for the data sets to be extended. Another
limitation of MMMDB is that several metabolites in the
data are not in KEGG and therefore the Pathway
Projector and Vanted cannot visualize this data. The de-
velopment of a data converter for other visualization tools
or for the original pathway visualization function is also
necessary.

As for many other databases, the development and ex-
pansion of MMMDB is on-going. Because, the profiling
technique itself does not limit its possible applications
(32,33), new data sets of more segmented brain tissue
and of various biofluids such as urine and saliva, are
being developed. In addition to data from healthy mice
(the control), data from mice with various diseases (34)
could also be integrated. In contrast to profile data,
metabolomic data using stable isotope labeling is also
useful for tracing the metabolite flux distribution (35).
Ideally, the identification of all unknown peaks would
make more comprehensive improve analyses possible.
We also aim to replace the currently unknown data with
computational estimations of the unknown peaks (36) and
their quantification (37).

CONCLUSION

In summary, MMMDB contains the concentrations of a
large number of metabolites simultaneously profiled using
of CE-TOFMS in a non-targeted manner. The collected
profiles are from 10 tissues and the plasma of single mice.
Quantified values of each metabolite and the annotated
mass spectra and electropherograms are also provided.
A functional web interface provides various data search
options and an on-line data comparison function between
data uploaded by users and stored data from mass
spectrum and normalized electropherograms. The
database system itself was developed as a versatile
system that can contain data sets from any other species
or from any tissue. Thus, the next task in the development
of MMMDB is to add data from other organisms and
tissues, obtained under different conditions using a
variety of measurement instruments.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1 and 2 and Supplementary
Methods.
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