
Liver-Specific Commd1 Knockout Mice Are Susceptible to
Hepatic Copper Accumulation
Willianne I. M. Vonk1,2, Paulina Bartuzi3, Prim de Bie1,2¤, Niels Kloosterhuis3, Catharina G. K. Wichers1,

Ruud Berger1, Susan Haywood4, Leo W. J. Klomp1, Cisca Wijmenga2,5, Bart van de Sluis3*

1 Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, and Netherlands Metabolomics Center, Utrecht, The Netherlands, 2 Complex

Genetics Section, University Medical Center Utrecht, Utrecht, The Netherlands, 3 Department of Pathology and Laboratory Medicine, University Medical Center Groningen,

University of Groningen, Groningen, The Netherlands, 4 Department of Veterinary Pathology, Faculty of Veterinary Science, University of Liverpool, Liverpool, United

Kingdom, 5 Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Abstract

Canine copper toxicosis is an autosomal recessive disorder characterized by hepatic copper accumulation resulting in liver
fibrosis and eventually cirrhosis. We have identified COMMD1 as the gene underlying copper toxicosis in Bedlington terriers.
Although recent studies suggest that COMMD1 regulates hepatic copper export via an interaction with the Wilson disease
protein ATP7B, its importance in hepatic copper homeostasis is ill-defined. In this study, we aimed to assess the effect of
Commd1 deficiency on hepatic copper metabolism in mice. Liver-specific Commd1 knockout mice (Commd1Dhep) were
generated and fed either a standard or a copper-enriched diet. Copper homeostasis and liver function were determined in
Commd1Dhep mice by biochemical and histological analyses, and compared to wild-type littermates. Commd1Dhep mice were
viable and did not develop an overt phenotype. At six weeks, the liver copper contents was increased up to a 3-fold upon
Commd1 deficiency, but declined with age to concentrations similar to those seen in controls. Interestingly, Commd1Dhep

mice fed a copper-enriched diet progressively accumulated copper in the liver up to a 20-fold increase compared to
controls. These copper levels did not result in significant induction of the copper-responsive genes metallothionein I and II,
neither was there evidence of biochemical liver injury nor overt liver pathology. The biosynthesis of ceruloplasmin was
clearly augmented with age in Commd1Dhep mice. Although COMMD1 expression is associated with changes in ATP7B
protein stability, no clear correlation between Atp7b levels and copper accumulation in Commd1Dhep mice could be
detected. Despite the absence of hepatocellular toxicity in Commd1Dhep mice, the changes in liver copper displayed several
parallels with copper toxicosis in Bedlington terriers. Thus, these results provide the first genetic evidence for COMMD1 to
play an essential role in hepatic copper homeostasis and present a valuable mouse model for further understanding of the
molecular mechanisms underlying hepatic copper homeostasis.
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Introduction

As a redox catalyst, the trace element copper is essential to the

well-being of all living organisms (reviewed by [1,2,3,4]), in excess

however, copper can be highly toxic due to its participation in the

formation of reactive oxygen species (ROS). It is therefore

important to maintain a strict balance between the essentiality

and the toxicity of copper, and this involves a range of mechanisms

mediating copper uptake, transport, storage and excretion. The

importance of a balanced copper homeostasis in preventing

toxicity is clearly illustrated by various inherited hepatic copper

storage disorders such as Wilson disease (WD; OMIM #277900),

Indian childhood cirrhosis (ICC; OMIM #215600), endemic

Tyrolean infantile cirrhosis (ETIC; OMIM #215600) and

idiopathic copper toxicosis (ICT; OMIM #215600). In WD,

mutations in the ATP7B gene lead to copper accumulation in

different tissues, particularly in liver and brain. The genetic defects

underlying ICC, ETIC and ICT remain elusive, but the clinical

manifestation of these non-Wilsonian copper storage disorders

depends in most cases on an excessive dietary intake of copper

[5,6,7].

Another well-documented copper overload disorder is copper

toxicosis (CT) in Bedlington terriers. CT is an autosomal recessive

disease linked to a homozygous genomic deletion, encompassing

exon 2, of the COMMD1 gene [8]. Affected dogs are characterized

by hepatic copper overload, due to an inefficient copper excretion

via the bile, resulting in liver fibrosis and eventually cirrhosis

[9,10]. In contrast to WD, Bedlington terriers affected with CT do

not display any signs of neurological defects and have normal

serum concentrations of the copper-bound ferroxidase ceruloplas-

min (Cp) [10]. Although COMMD1 has been suggested as a

candidate gene for the non-Wilsonian copper storage disorders

ICC, ETIC and ICT, no mutations in COMMD1 have been

identified in these patients so far [11,12].
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The 21 kDa ubiquitously expressed COMMD1 protein is

considered as the prototype of the COMMD protein family,

which is highly conserved between eukaryotes and in some

protozoa [13,14]. The ten COMMD family members (COMMD1

210) share a C-terminal COMM domain of 70–85 amino acids

that mediates protein-protein interactions and nuclear export of

COMMD proteins [15,16,17]. Except for COMMD1, the

functions of most of the COMMD proteins are largely unknown.

Several studies on COMMD1 have provided supportive evidence

of its role in copper homeostasis. First, COMMD1 interacts with

the copper transporter ATP7B, and is suggested to regulate its

proteolysis [18,19,20]. Second, down-regulation of COMMD1

expression results in increased intracellular copper concentrations

both in HEK293T cells and the mouse hepatoma Hepa1-6 cells

[20,21]. Third, we recently demonstrated that the copper

transporting activity of ATP7A, a copper transporter with high

homology to ATP7B, is also mediated by COMMD1 expression

[22]. Besides its role in copper homeostasis, COMMD1 is also

implicated in several other pathways, such as sodium transport,

antioxidant defense, and NF-kB and hypoxia signaling

[17,23,24,25,26,27,28,29,30]. Interestingly, in contrast to dogs

deficient for COMMD1, a genetic deletion of Commd1 in mice

results in embryonic lethality [31]. Altogether, these data illustrate

that COMMD1 is a protein with a pleiotropic function, although

its role in hepatic copper metabolism is still not well defined. To

gain more insight into the function of COMMD1 in hepatic

copper homeostasis in particular, and to circumvent the

embryonic lethality of the Commd1 knockout mice, we generated

a hepatocyte-specific Commd1 knockout mouse. Here, we provide

the first genetic evidence that Commd1 is essential for hepatic

copper excretion as Commd1-deficient mice show increased

intrahepatic copper levels when their dietary copper intake is

increased.

Results

Generation of a hepatocyte-specific Commd1 knockout
mouse model

To circumvent embryonic lethality in Commd1-deficient mice

and thus study the function of Commd1 in vivo, we generated a

conditional Commd1 knockout mouse. A Commd1 targeting

construct was designed to flank exon 1 of Commd1 with loxP

recombination sites by homologous recombination (Figure 1A).

After confirming homologous recombination by long–range PCR

(data not shown), the mice were further genotyped by multiplex

PCR as described in Materials and Methods and Figure 1B.

Germline deletion of Commd1 resulted in embryonic lethality

between days 9.5 and 10.5 of gestation (data not shown), similar to

what we have demonstrated previously [31].

To elucidate the role of COMMD1 in hepatic copper

metabolism, we deleted Commd1 specifically in hepatocytes using

the transgenic Albumin-Cre (Alb-Cre) mice (Figure S1), referred to

as Commd1Dhep mice from here onwards. Commd1Dhep mice were

born in the expected Mendelian frequency. The total body and

liver weights of the Commd1Dhep mice were comparable to control

littermates (Commd1loxP/loxP) (Table S1). Immunoblot analyses of

liver homogenates prepared from Commd1Dhep mice showed an

almost complete loss of Commd1 expression relative to Comm-

d1loxP/loxP mice (Figure 1C). As expected, a residual Commd1

expression was observed as the Alb-Cre transgene is selectively

expressed in the parenchymal cells, but not in the non-

parenchymal cells present in the liver (e.g. Kupffer, endothelial,

and stellate cells) [32]. Commd1 expression in other tissues of the

Commd1Dhep mice was unaffected (data not shown).

Ablation of hepatic Commd1 results in elevated copper
concentrations in the livers of young mice

Since loss of COMMD1 in Bedlington terriers results in hepatic

copper accumulation, we investigated the consequence of hepatic

Commd1 deficiency on the amount of hepatic copper in the livers

of Commd1Dhep mice of different ages (6, 9, 12, 34, 46 and 58

weeks; Table S1). At an age of six weeks, hepatic copper

concentrations were significantly increased in Commd1Dhep mice

compared to control animals (Commd1loxP/loxP) (46.269.9 vs.

13.762.0 mg/g dlw, respectively; Figure 2A and Table S1).

However, during adolescence, the amount of copper in the livers

of Commd1Dhep mice declined to levels similar to those of the

control mice (Figure 2A and Table S1). Although hepatic

Commd1 ablation resulted in elevated hepatic copper pools,

analysis of the mRNA expression of the copper-responsive genes

metallothionein I and II (Mt-I and Mt-II) revealed no significant

changes between six week-old Commd1Dhep and Commd1loxP/loxP

mice (Figure 2B). Interestingly, the protein levels of Atp7b were

markedly reduced in the livers of Commd1Dhep mice at this age

(Figure 2C, 2D), while the Atp7b mRNA expression remained

unaffected (Figure 2E). However, over time, Atp7b increased to

levels comparable to those seen in control mice (Figure 2F), and

correlated perfectly with the decline in hepatic copper concentra-

tions in Commd1Dhep mice, starting at an age of nine weeks

(Figure 2A and Table S1). Further, no alterations in the serum Cp

activity or protein levels could be detected in six week-old

Commd1Dhep compared to Commd1loxP/loxP mice in spite of the

reduced Atp7b levels upon Commd1 deficiency (Table S1 and

data not shown). As no differences in serum Cp activity were seen

between the two groups at all studied ages (Table S1), our data

imply that incorporation of copper into Cp in the trans-Golgi

network is not affected by hepatic Commd1 ablation.

Despite the increased hepatic copper levels in six week-old

Commd1Dhep mice, no overt macroscopic nor microscopic differ-

ences were identified between livers of Commd1Dhep and Comm-

d1loxP/loxP mice (data not shown). Furthermore, copper deposits

could not be visualized in Commd1Dhep mice livers (data not shown).

Consistent with the absence of liver pathology, no differences in

the liver enzyme serum levels of glutamic oxaloacetic transaminase

(GOT) and glutamic pyruvic transaminase (GPT) were observed

(Table S1). Taken together, these data demonstrate that ablation

of hepatic Commd1 results in a temporary copper accumulation in

young mice without inducing any hepatocellular damage.

Progressive hepatic copper accumulation in Commd1Dhep

mice fed a high copper diet
Since the occurrence of copper toxicosis is often dependent on

dietary copper intake [5,6,7,9], we challenged Commd1Dhep and

control mice with a copper-enriched diet and followed them over

time. For this, CuCl2 was supplemented to the drinking water to a

final concentration of 6 mM (fed ad libitum). High dietary copper

had no effect on the total body and liver weights of either

Commd1loxP/loxP or Commd1Dhep mice (Table S2), but clearly

affected the hepatic copper concentrations (Figure 3A and Table

S2). After three weeks of high dietary copper intake, starting at an

age of six weeks, Commd1 deficiency resulted in markedly raised

hepatic copper relative to Commd1loxP/loxP mice fed a standard diet

(195.8658.9 vs. 22.667.9 mg/g dlw, respectively). In contrast, the

hepatic copper concentrations of Commd1loxP/loxP mice were

unaffected by the copper-enriched diet (25.8610.7 vs.

22.667.9 mg/g dlw). The highest copper concentrations were

measured in the livers of Commd1Dhep mice fed the copper-enriched

diet for six weeks (338.3682.4 vs. 11.866.3 mg/g dlw), which
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subtly declined during aging (Figure 3A and Table S2). This

decline in hepatic copper was observed in both genetic groups

(Figure 3A and Table S2).

Although a significant accumulation in hepatic copper was

observed in Commd1Dhep mice fed a high copper diet, no

macroscopic or microscopic alterations in their liver pathologies

were identified (Figure S2 and data not shown). Neither were there

differences in the enzymatic activities of serum GOT and GPT

between the two groups (Table S2). Additionally, histological

hepatic copper deposits were undetectable in Commd1Dhep mice

(data not shown). It was noteworthy that mRNA expression of Mt-

I and Mt-II was significantly increased in the livers of Commd1Dhep

mice fed the copper-enriched diet for three weeks compared to

controls. However, no differences in Mt-I and Mt-II expression

were seen between the two genetic groups fed the copper-enriched

diet for six or more weeks (Figure 3B and data not shown).

Furthermore, we did not observe any differences in hepatic Atp7b

levels between Commd1loxP/loxP and Commd1Dhep mice (Figure 3C).

Yet, during aging, the serum Cp activity of Commd1Dhep mice (28,

40 and 58 weeks old) was significantly increased relative to controls

(Figure 3D and Table S2).

Altogether, these results show that liver-specific Commd1-

deficient mice are susceptible to progressively accumulate hepatic

copper when overexposed to environmental copper. However,

hepatic deletion of Commd1 does not affect the incorporation of

copper into Cp.

Discussion

Although a genomic deletion of COMMD1 is associated with

CT in Bedlington terriers, the significance of COMMD1 in

mammalian copper homeostasis remains poorly defined. Here, we

examined the role of COMMD1 in hepatic copper homeostasis

using a liver-specific Commd1-deficient mouse model, and were

able to provide substantial evidence that Commd1 plays a role in

controlling copper homeostasis in hepatocytes. We demonstrated

that mice deficient for hepatic Commd1 are more susceptible to

hepatic copper accumulation compared to wild-type mice when

their dietary copper intake is increased. A significant increase in

hepatic copper concentrations was also observed in six week-old

Commd1Dhep mice fed a standard diet, but these elevated levels

declined during adolescence to concentrations similar as seen in

Figure 1. Generation of hepatocyte-specific Commd1 knockout mouse. A.) Schematic representation of the Commd1 gene-targeting
strategy to generate a hepatic-specific Commd1 knockout mouse, including a map of the COMMD1 exon 1 allele and the targeting vector with loxP
sites (solid boxes), FRT sites (open boxes), and neomycin selection gene (Neo). Homologous recombination is marked with dotted lines. Hepatocyte-
specific deletion of Commd1 was accomplished by cross-breeding of Commd1loxP/loxP mice with Alb-Cre mice. This resulted in the generation of
Commd1Dhep mice (null allele). The locations of the PCR primer (P1, P2 and P3) binding sites used for genotyping are shown as open arrows.
(Expected fragments: WT: 500 bp, LoxP: 350 bp, Null: 300 bp) B.) PCR analysis of liver tissue DNA of Commd1 WT, WT/loxP, loxP/loxP and Null/WT
mice at six weeks of age. C is a negative control (H2O). C.) Immunoblot analysis of Commd1 expression in liver tissue of Commd1loxP/loxP and
Commd1Dhep mice. 30 mg tissue homogenates were analyzed by SDS-PAGE, and immunoblotted (IB) for Commd1 and a-Tubulin expression.
doi:10.1371/journal.pone.0029183.g001
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wild-type littermates. This increase in hepatic copper in six week-

old Commd1Dhep mice probably results from residual copper pools

accumulated in the preweaning period [33,34]. Dietary studies

have not been reported in Bedlington terriers with the homozy-

gous COMMD1 deletion, but since most commercial dog food

contains copper levels that exceed the minimum recommended

Figure 2. Ablation of hepatic Commd1 expression results in increased intracellular copper concentrations accompanied with
decreased Atp7b expression in young mice. A.) Hepatic copper concentrations were measured in dried liver tissue of Commd1loxP/loxP (white
bars; n = 6) and Commd1Dhep mice (black bars; n = 5) (6, 9 and 12 weeks of age) by means of FAAS. Data are represented as the hepatic copper
concentrations (mg/g dry liver weight) in all mice at indicated ages. * indicates significantly different values compared to Commd1loxP/loxP mice
(p,0.05). B.) Relative mRNA expression of metallothioneins Mt-I and Mt-II in liver tissue of Commd1loxP/loxP (open dots; n = 6) and Commd1Dhep mice
(black dots; n = 5) (six weeks of age) as determined by qPCR analysis. Expression was normalized for b-Actin mRNA levels, and relatively expressed to
Commd1loxP/loxP mice. C.) Immunoblot analysis of liver tissue of Commd1loxP/loxP and Commd1Dhep mice at six weeks of age. 30 mg of liver
homogenates were analyzed by SDS-PAGE, and immunoblotted (IB) for expression of Atp7b and Commd1. Actin protein expression was used as the
loading control. D.) Densitometric quantification of Atp7b expression at six weeks of age (Figure 2C), normalized to Actin expression. Mean
expression of Commd1loxP/loxP mice was set at 1 6 SD. p = 0.0010. E.) Relative mRNA expression of Atp7b in liver tissue of Commd1loxP/loxP (open dots;
n = 5–6) and Commd1Dhep mice (black dots; n = 5–6) (6, 9 and 12 weeks of age) as determined by qPCR analysis. Expression was normalized for b-Actin
mRNA levels, and relatively expressed to Commd1loxP/loxP mice. F.) Immunoblot analysis of Atp7b expression in liver tissue of Commd1loxP/loxP and
Commd1Dhep mice at 12 and 52 weeks of age.
doi:10.1371/journal.pone.0029183.g002
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daily intake [10,35], together with the presented data, suggest that

reducing the gastrointestinal copper uptake by decreasing the

dietary copper content would be beneficial to the liver pathology

of affected dogs.

Although our mouse model partially recapitulates the copper

accumulation phenotype of Bedlington terriers affected with CT,

the exact mode of COMMD1 action in regulating hepatic copper

metabolism remains elusive. However, several assumptions can be

drawn from our data. Similar to Bedlington terriers, hepatic

Commd1 deficiency in mice does not affect the incorporation of

copper into Cp by Atp7b. Importantly, probably due to the

increased bioavailable hepatic copper, the biosynthesis of

holoceruloplasmin was even enhanced in middle-aged Commd1Dhep

mice fed a copper-enriched diet compared to controls. Together

with the observation that the copper-induced trafficking of ATP7B

to the cell periphery is unaffected in COMMD1-deficient cells

[18,20], it is tempting to speculate that, in excess copper,

COMMD1 acts downstream of ATP7B and might be involved

in the final step of the secretory pathway to efficiently release

copper into the bile. This idea is further supported by the fact that

COMMD1 partly localizes to vesicles of the endocytic pathway

and cellular membranes, and shows only limited co-localization

with ATP7B in HepG2 cells [18,20]. However, COMMD1 is also

implicated in regulating the protein levels of ATP7B [18,20].

Whereas we previously demonstrated that COMMD1 expression

augments the protein degradation of ATP7B in vitro [18], others

have shown a decline in Atp7b expression after depletion of

Commd1 in the mouse hepatoma Hepa1-6 cells [20]. In line with

this latter observation, a marked decrease in hepatic Atp7b in six

week-old Commd1Dhep mice was observed, and may account for the

increased hepatic copper levels observed in these animals.

However, no correlation was seen between the degree of copper

accumulation and Atp7b levels in Commd1Dhep mice fed a copper-

enriched diet, which argues against the role of impaired Atp7b

protein stability in progressive copper accumulation in Commd1-

deficient hepatocytes. Additionally, no discrepancies in Atp7b

stability in primary Commd1-deficient hepatocytes compared to

WT control cells were seen (data not shown). Altogether, our data

indicate that COMMD1 controls hepatic copper homeostasis

downstream of ATP7B and may participate in the release of

copper into the bile. Further studies are however needed to

complete our understanding on the molecular function of

COMMD1 in hepatic copper homeostasis.

Interestingly, although Commd1Dhep mice fed a copper-enriched

diet displayed a progressive increase in hepatic copper, no obvious

liver pathology using histological analysis were seen, even after

chronic exposure to high dietary copper. These data, supported by

biochemical parameters and together with the observation that the

mRNA expression of the copper-responsive genes Mt-I and Mt-II

was only increased in mice fed a copper-enriched diet for three

weeks, suggest that the accumulating copper upon Commd1

deletion is stored safely and does not reach a threshold

concentration sufficient to induce hepatocellular toxicity as seen

in CT-affected Bedlington terriers and mouse models for WD

[9,10,36]. Potentially, under these studied conditions, the levels of

Mt-I and Mt-II are sufficient to chelate the elevated copper.

Therefore, it would be of interest to complementary deplete Mt-I

and Mt-II [37] in our hepatic-specific Commd1 knockout mice and

assess the protective role of Mt-I and Mt-II in copper toxicity in

the absence of Commd1. In contrast to Commd1Dhep mice fed a

high copper diet, which display copper concentrations of

approximately 340 mg/g of dlw, CT-affected dogs with moderate

to severe liver pathology show significantly more hepatic copper,

often in excess of 1,000 mg/g of dlw. The reason for the

interspecies differences is currently unknown and further studies

are required. Of particular interest in this would be defining the

degree of redundancy between the members of the Commd

protein family in murine copper homeostasis, as in addition to

COMMD1, COMMD2, 8 and 10 have also the ability to interact

with ATP7B (Figure S3A). Importantly, these interactions are

independent of COMMD1 expression (Figure S3B).

Together, our data conclusively shows that COMMD1 plays a

significant role in copper homeostasis and demonstrates that

hepatic copper accumulation due to loss of Commd1 is dependent

on excessive dietary copper intake. Given that elevated asymp-

tomatic hepatic copper in Atp7b deficient mice has a significant

effect on different metabolic pathways, such as lipid metabolism

[38,39,40], it would be of interest to investigate whether diet-

induced copper accumulation in Commd1Dhep mice also affects

these pathways. We believe that our Commd1Dhep mice represent a

valuable and interesting model for further elucidating the

molecular mechanism controlling hepatic copper homeostasis

and to understand the role of excess copper in various metabolic

pathways.

Materials and Methods

Generation and housing of transgenic mice
Detailed information regarding the generation of the hepato-

cyte-specific Commd1 knockout mice is available in Data S1 and

Figure S1. Mice were genotyped by a standard PCR method using

the primers as described in Table S3, and fed ad libitum with a

standard rodent diet containing 16.44 mg copper per kg (Special

Diet Services Ltd., UK). Animals of both sexes were included in

this study, and age-matched siblings were used as controls in all

experiments. All animal protocols (ID 2007.III.09.123) were

approved by the Institutional Animal Care and Use Committee

of Utrecht University (Utrecht, the Netherlands).

Copper treatment of mice
Starting from the age of six weeks, a subset of mice (consisting of

genotypes Commd1loxP/loxP and Commd1Dhep; n = 5–8) were given

water supplemented with 6 mM CuCl2. As described previously,

these mice ingested approximately 50–100 times more copper

than mice fed a standard rodent diet [41].

Figure 3. Progressive copper accumulation in livers of Commd1Dhep mice after copper challenging. A.) Hepatic copper concentrations
were measured in dried liver tissue of Commd1loxP/loxP (white bars; n = 4–6) and Commd1Dhep mice (black bars, n = 5–7) (fed a copper-enriched diet for
3, 6, 28, 40 and 52 weeks) by means of FAAS. Data are represented as hepatic copper concentrations (mg/g dry liver weight). *, ** and *** indicate
significantly different values compared to Commd1loxP/loxP mice (* p,0.05, ** p,0.005, *** p,0.0005). B.) Relative mRNA expression of
metallothioneins Mt-I and Mt-II in liver tissue of Commd1loxP/loxP (open dots; n = 5–6) and Commd1Dhep mice (black dots; n = 5–7) (three and six weeks
fed a copper-enriched diet) as determined by qPCR analysis. Expression was normalized for b-Actin mRNA levels, and relatively expressed to
Commd1loxP/loxP mice. C.) Immunoblot analysis of Atp7b and Commd1 in liver tissue of Commd1loxP/loxP and Commd1Dhep mice fed a copper-enriched
diet for 6 and 52 weeks. D.) Ceruloplasmin activity was determined in sera of Commd1loxP/loxP (white bars; n = 4–6) and Commd1Dhep mice (black bars;
n = 5–7) fed a copper-enriched diet for 3, 6, 28, 40 and 52 weeks. Data are represented as serum holoceruloplasmin activity (U/ml). * and ** indicate
significantly different values compared to Commd1loxP/loxP mice (* p,0.05, ** p,0.01).
doi:10.1371/journal.pone.0029183.g003
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Tissue preparation, protein isolation and immunoblot
analysis

Mice were sacrificed and tissues were rapidly isolated, frozen in

liquid nitrogen, and stored at 280uC until use. Dissected tissues

were homogenized in ice-cold lysis buffer (25 mM kPi buffer;

pH 7.4, 0.5 M EDTA), supplemented with 100 mM PMSF and

protease inhibitors (Complete; Roche, Basal, Switzerland)). After

centrifugation, supernatants were used for further procedures.

Protein concentrations were determined by the Bradford Protein

Assay (Bio-Rad Laboratories Inc., Hercules, CA, USA).

Western blot analyses were performed using the following

antibodies: rabbit-anti-COMMD1 antiserum [42], polyclonal

rabbit-anti-Atp7b antiserum (kindly provided by Dr. J. Gitlin, St.

Louis, MO, USA), polyclonal rabbit-anti-Actin (Sigma-Aldrich, St.

Louis, MO, USA), and rabbit-anti-a-Tubulin (Abcam, Cam-

bridge, UK). In all analyses, equal amounts of proteins were

loaded on SDS-PAGE gels prior to transfer on to nitrocellulose

membranes.

RNA isolation and quantitative - RT-PCR
Total RNA was isolated from mouse liver by means of

TRIZOLH (Invitrogen Life Technologies Corporation, Carlsbad,

CA, USA). cDNA synthesis was performed using random

hexamers and SuperScript II reverse transcriptase (Invitrogen).

mRNA expression of Mt-I, Mt-II and Atp7b (primers previously

described by Huster et al. [36]) was analyzed by quantitative PCR

using iTaqTM SYBRHGreen Supermix with ROX (Bio-Rad) and

7900 HT Fast Real-Time PCR System (Applied Biosystems,

Carlsbad, CA, USA). Results were presented as relative mRNA

expression, normalized to the expression of b-Actin (primer

sequences available on request).

Determination of hepatic copper concentrations
Liver tissues were dried at approximately 100uC until their

weights were stabilized. Dried tissues were digested for 1 h in

HNO3:H2O2 (ratio 3:1) at 95–100uC. After digestion, volumes

were equalized and copper concentrations were determined by

means of flame atomic absorption spectrometry (FAAS; Analytik

Jena ContrAAH 700, Analytik Jena AG, Jena, Germany). Hepatic

copper concentrations were corrected for dry liver weight (dlw)

and protein concentration.

Enzyme activity assays
Activity of the glutamic oxaloacetic transaminase (GOT) and

glutamic pyruvic transaminase (GPT) were quantified in serum

according to the manufacturer’s protocol (Spinreact, Sant Esteve

De Bas, Spain). Serum Cp activity was measured as described

previously [43].

Statistical analysis
The quantitative data in this paper is represented as means 6

SEM, unless stated otherwise. Statistical evaluation was made

using the Student’s t-test and differences were considered to be

significant at p,0.05.

Additional Materials and Methods can be found in the Data S1.

Supporting Information

Figure S1 Generation of hepatocyte-specific Commd1
knockout mouse. Schematic representation of the Commd1

gene-targeting strategy used to generate a hepatic specific Commd1

knockout mouse, including a map of the COMMD1 exon1 allele,

the targeting vector with loxP sites (solid boxes), FRT sites (open

boxes), and neomycin selection gene (Neo). Different restriction

sites are indicated and homologous recombination is marked with

dotted lines. The neomycin selection cassette was deleted by

crossbreed with the FLPe deleter mice, which target the FRT

sequences flanking neomycin. Subsequently, hepatocytespecific

deletion of Commd1 was accomplished by crossbreed of Comm-

d1loxP/loxP mice with Alb-Cre mice. This resulted in the generation

of Commd1Dhep mice (null allele). The locations of the PCR primer

(P1, P2 and P3) binding sites used for genotyping are shown as

open arrows.

(TIF)

Figure S2 Commd1Dhep mice do not display any patho-
logical abnormalities relative to Commd1loxP/loxP mice.
Liver sections (4 mm) of Commd1loxP/loxP and Commd1Dhep mice fed

a copper-enriched diet for 6 weeks were stained with H&E, and

analyzed by light microscopy (magnification 106).

(TIF)

Figure S3 COMMD2, COMMD8 and COMMD10 inter-
act with ATP7B, independently of COMMD1. A.)
Gluthatione-sepharose (GSH) precipitation of HEK293T cell

lysates transfected with cDNA constructs encoding GST or

each of the COMMD proteins fused to GST in combination

with ATP7B-Flag. Precipitates were washed and separated by

SDS-PAGE and immunoblotted as indicated. Input indicates

direct analyses of cell lysates. B.) HEK293T cells expressing a

stable knockdown of COMMD1 (shCOMMD1) were trans-

fected with cDNA constructs encoding an empty vector (pEBB)

or ATP7B-Flag in combination with either COMMD2,

COMMD8, or COMMD10 as GST fusion proteins as

indicated. HEK293T cells stably transfected with an empty

shRNA vector was used as a negative control (shControl). GSH

precipitation and immunoblot analysis was performed as

described under S3A. Equal loading was confirmed by

immunoblotting for SCHAD.

(TIF)

Table S1 Biological parameters of Commd1loxP/loxP and
Commd1Dhep mice fed a standard diet.

(PDF)

Table S2 Biological parameters of Commd1loxP/loxP and
Commd1Dhep mice fed a high Cu diet, starting at an age
of 6 weeks.

(PDF)

Table S3 Oligonucleotide sequences used for genotyp-
ing mice.

(DOC)

Data S1 Supplementary Materials and Methods.

(DOC)
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