Table 4. Number of species from the 168 species classified in different accuracy classes of AUC and TSS based on two modelling techniques.
Predictor variables | Climate | Vegetation | Landscape | |||||||||
Evaluation method | AUC | TSS | AUC | TSS | AUC | TSS | ||||||
Model technique | BRT | RF | BRT | RF | BRT | RF | BRT | RF | BRT | RF | BRT | RF |
High-performance | 28 | 35 | 17 | 19 | 23 | 27 | 15 | 21 | 17 | 28 | 5 | 10 |
Good-performance | 61 | 78 | 28 | 32 | 53 | 60 | 21 | 25 | 35 | 71 | 19 | 30 |
Fair-performance | 70 | 53 | 79 | 90 | 78 | 46 | 80 | 74 | 75 | 59 | 66 | 85 |
Poor-performance | 9 | 2 | 44 | 27 | 14 | 28 | 51 | 48 | 41 | 5 | 78 | 43 |
Fail | 0 | 0 | 0 | 0 | 0 | 7 | 1 | 0 | 0 | 5 | 0 | 0 |
AUC: High = AUC>0.9, Good = 0.9<AUC<0.8; Fair = 0.7<AUC<0.8; Poor = 0.6<AUC<0.7. Fail AUC<0.6.
TSS: High = TSS>0.8, Good = 0.8<TSS<0.6; Fair = 0.6<TSS<0.4 and Poor = 0.2<TSS<0.4. Fail TSS<0.4.