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Abstract

A novel locus for autosomal recessive nonsyndromic hearing impairment (ARNSHI), DFNB96, 

was mapped to 1p36.31-p36.13. A whole genome linkage scan was performed using DNA 

samples from a consanguineous family from Pakistan with ARNSHI. A maximum two-point LOD 

score of 3.2 was obtained at marker rs8627 (chr1:8.34Mb) at θ=0 and a significant maximum 

multipoint LOD score of 3.8 was achieved at 15 contiguous markers from rs630075 (9.3 Mb) 

through rs10927583 (15.13 Mb). The 3-unit support interval and the region of homozygosity were 

both delimited by markers rs3817914 (6.42 Mb) and rs477558 (18.09 Mb) and contain 11.67 Mb. 

Of the 125 genes within the DFNB96 interval, the previously identified ARNSHI gene for 

DFNB36, ESPN and two genes that cause Bartter syndrome, CLCNKA and CLCNKB, were 

sequenced, but no potentially causal variants were identified.
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Description

Although >90 autosomal recessive nonsyndromic hearing impairment (ARNSHI) loci have 

been mapped and 41 ARNSHI genes have been identified, hundreds of ARNSHI genes 

remain to be discovered, and the knowledge on the functionality of these genes should aid in 

improving current diagnostic and treatment protocols for hearing impairment (HI). Here a 

new locus is reported, DFNB96 which maps to 1p36.31-p36.13 region with a maximum 

multipoint LOD score of 3.8. The DFNB96 locus was mapped to a region containing 11.67 

Mb using DNA samples from a consanguineous Pakistani family which segregates 
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ARNSHI. Upon study approval from the Institutional Review Boards of Quaid-I-Azam 

University and the Baylor College of Medicine and Affiliated Hospitals, informed consent 

was obtained from participating family members. Family 4514, consanguineous kindred 

from Sindh province, Pakistan, clearly segregates ARNSHI (Figure 1a). No possible cause 

of environmental HI such as perinatal events, infections, ototoxic drug use and trauma was 

elucidated. Careful physical examination was performed to rule out syndromic or vestibular 

disease. Audiograms from two HI individuals IV-1 and IV-6 revealed bilateral severe-to-

profound HI that is pre-lingual by clinical history (Figure 2).

Standard DNA extraction from venous blood was performed for nine family members, four 

of whom have HI (Figure 1a). The GJB2 gene (MIM 121011) was sequenced in HI 

individuals and was negative for GJB2 variants. DNA samples from the nine family 

members were used to perform a whole genome linkage scan at the Center for Inherited 

Disease Research (CIDR) using the Infinium iSelect array which has ~6,000 SNP markers. 

No Mendelian inconsistencies in the genotype data were identified through PEDCHECK1. 

Likewise double recombination events over short genetic distances, which are most likely 

due to genotyping error, were not detected with MERLIN2 software.

Linkage analysis was performed using a completely penetrant autosomal recessive mode 

inheritance with a disease allele frequency of 0.001. Marker allele frequencies were 

estimated using observed and reconstructed genotypes of founders from 60 Pakistani 

families that underwent a genome scan at the same time. Using MLINK of the FASTLINK 

package3, the maximum two-point LOD score of 3.2 was achieved at marker rs8627 

(chr1:8.34Mb) at θ=0 (Table 1). Genetic map distances according to the Rutgers combined 

linkage-physical map of the human genome Build 36 version4 were used to carry out the 

multipoint analysis. For markers which are not on the Rutgers map, the physical map 

position from the human reference sequence (Build 36) was used to interpolate the genetic 

map position. Multipoint linkage analysis was performed using ALLEGRO1.2c5 on 

chromosome 1p36 region. A significant maximum LOD score of 3.8 was obtained at 15 

adjacent markers from rs630075 (9.29 Mb) to rs10927583 (15.13 Mb). The observed LOD 

score of 3.8 is greater than a LOD of 3.3 which is the criterion for genome-wide significance 

for parametric linkage studies6. The 3-unit support interval lies between SNP marker loci 

rs3817914 (6.42Mb) and rs477558 (18.09Mb) (Table 1). When haplotypes were 

reconstructed using SimWalk27, the region of homozygosity was found to be bounded by 

the same markers that flank the 3-unit support interval (Figure 1a). The upper and lower 

boundary of homozygosity was delimited by historic recombination events between the 

markers rs3817914 and rs8627 and markers rs10927583 and rs477558, respectively.

The linkage interval spans 17.53 cM region, which contains 11.67 Mb and 125 known 

genes. Nine hearing impairment loci involved in syndromic or nonsyndromic HI have been 

mapped to the short arm of chromosome 1 (1p). The syndromic loci include (a) STL2 

(Stickler syndrome) at 1p21.1 which is due to mutations in the COL11A18 (MIM 120280) 

gene, (b) WS2B9 (Waardenburg syndrome type 2B; MIM 600193) at 1p21-p13.3, and (c) 

Bartter syndrome due to three genes, BSND10 (MIM 606412) at 1p32.3, and CLCNKA11 

(MIM 602024) and CLCNKB11 (MIM 602023) both at 1p36.13. For autosomal dominant 

NSHI three loci have been mapped, (a) DFNA2A at 1p34.2 which is due to mutations in the 
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KCNQ412 (MIM 603537) gene, (b) DFNA2B at 1p34.3 due to GJB313 (MIM 603324) 

mutations, and (c) DFNA3714 at 1p21 for which the gene is unknown. For ARNSHI only 

DFNB36 at 1p36.31 which is due to mutations in ESPN15 (MIM 606351) gene (Figure 1b) 

has been identified. Of these loci, the DFNB96 interval partially overlaps with the ESPN 

gene and also contains two Bartter syndrome genes, CLCNKA and CLCNKB. The genes 

ESPN, CLCNKA and CLCNKB were sequenced in hearing individual III-2 and two HI 

individuals IV-1 and IV-6 (Figure 1a). After sequencing using the BigDye Terminator v3.1 

Cycle Sequencing Kit and Applied Biosystems 3730 DNA Analyzer, no potentially causal 

variants were found to segregate with HI in family 4514, thus excluding the three genes as 

the cause of HI in family 4514. The linkage region at 1p36.31-p36.13 was therefore assigned 

as the interval for the novel ARNSHI locus DFNB96. The identification of the gene for 

DFNB96 will provide us with additional insight into the genetic etiology of HI.
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Figure1. 
Panel 1a. Pedigree drawing and haplotype of family 4514. Filled symbols denote individuals 

with ARNSHI, while clear symbols represent hearing individuals. The haplotype 

segregating with ARNSHI is shown in a box, with paternal haplotypes shown on the left-

side and materal haplotypes to the right. The region of homozygosity in individuals with 

ARNSHI is delimited by markers rs3817914 (chr1:6.42Mb) and rs477558 (chr1:18.09Mb).

Panel 1b. Chromosome 1p displaying the genetic interval for DFNB96. The locations of 

NSHI gene ESPN and syndromic genes CLCNKA and CLCKNB with their direction of 

transcription denoted by an arrow are also displayed.
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Figure2. Audiograms of individuals IV-1 and IV-6 of family 4514
Air conduction testing is marked using circles for the right ear and crosses for the left ear. 

Black markings are for individual IV-1 while gray markings are for individual IV-6. Testing 

was performed for individual IV-1 at age 24 and for IV-6 at age 38. Hearing impairment for 

both individuals was bilateral and severe-to-profound involving all frequencies.
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