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Sound Analysis in an In Vitro Endotracheal Tube Model
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Background/Aims: Complete endotracheal tube obstruction is a medical emergency, and partial occlusion causes in-
creased breathing rates and failure to wean off mechanical ventilation. Partial occlusion may be underestimated due to the 
lack of proper detection methods. We tested whether the sound of an endotracheal tube could be used to detect an endo-
tracheal tube obstruction using an in vitro model. 
Methods: An endotracheal tube was connected to a ventilator on one end and a test lung on the other. Sounds were 
recorded with a microphone located inside the endotracheal tube via a connector. During mechanical ventilation, we 
changed the endotracheal tube internal diameter from 5.0 to 8.0 mm and different grades of obstruction at different sites 
were used along the tube. Sound energy was compared among the different conditions. 
Results: The energy of endotracheal tube sounds was positively correlated with the internal diameter and negatively cor-
related with the degree of obstruction. The rate of decline in energy differed with obstruction location. When the obstruction 
was more distal, the rate of decline in endotracheal sound energy was more rapid. 
Conclusions: Changes in the sound of an endotracheal tube can be used to detect an obstruction. Further studies are 
needed for clinical application.
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INTRODUCTION

Endotracheal tube volume loss is observed during me-

chanical ventilation [1,2]. This is frequently caused by the 

accumulation of secretions and biofilm formation on the 

internal surface of the tube. These inevitable processes 

may worsen clinical outcomes through increased airway 

resistance, increased breathing work, delayed ventilator 

weaning, and ventilator-associated pneumonia [3-5]. Par-

tial obstruction may be underestimated or unrecognized 

because of its insidious nature and lack of proper detection 

methods. 

Endotracheal tube obstruction causes an increase in 

airway pressure or a decrease in tidal volume in volume-

controlled or pressure-controlled ventilation modes in 

mechanically ventilated patients, respectively. However, 

these changes are usually detected once obstruction has 

reached a significant level [6-8]. Acoustic reflection meth-

ods and pressure oscillation analyses have been proposed 

as alternative methods [9,10], and although they have 

potential, these methods require specialized equipment. 

Changes in expiratory time constants, which can be calcu-
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lated from flow-volume curves, are another good indicator 

for detecting a partial obstruction [7,8,11]. Expiratory time 

constants are higher in obstructed compared to unob-

structed tubes. Although changes in expiratory flow occur 

earlier than peak airway pressure or tidal volume changes, 

obstruction that does not change expiratory flow could oc-

cur.

Sound signals from endotracheal tubes contain various 

frequencies that can be easily recorded and analyzed non-

invasively. We hypothesized that those sounds change 

with the degree of endotracheal tube obstruction. We con-

ducted this study to identify whether endotracheal tube 

sound could be used to detect an obstruction using an in 

vitro model. 

METHODS

Experimental setup
An experimental model was built to simulate mechani-

cal endotracheal tube ventilation using a ventilator (Servo-

I, MAQUET, Rastatt, Germany) with an internal diameter 

(ID) of 5.0–8.0 mm, a Murphy-tipped endotracheal tube 

(Euromedical Industries, Kedah, Malaysia), and a rubber 

test lung (volume, 2 L). The distal end of the endotracheal 

tube was connected to the rubber lung, and the proximal 

end was connected to the ventilator circuit. An L-shape 

connector was inserted between the ventilator circuit and 

the endotracheal tube, with a small microphone (STG 

Stethoscope, Stethographics Inc., Boston, MA, USA) locat-

ed inside the artificial respiratory system (Fig. 1A). When 

the test lung was ventilated, airflow through the endotra-

cheal tube made sounds, which were recorded using the 

microphone connected to a computer. 

Ventilator settings
We used the pressure-controlled mode of ventilation. 

Positive end-expiratory pressure (PEEP) was 5 cmH2O, 

over-PEEP pressure was 20 cmH2O, respiratory rate was 

15, the ratio of inspiration to expiration was 1:2, and the O2 

fraction was 0.21. 

Obstruction model
An artificial obstruction was created using focal, 8-mm-

long, extrinsic, non-concentric compression of an ID 8.0 

endotracheal tube (Fig. 1B). The degree of obstruction 

was assessed by semi-quantitative methods, from grade 0 

(defined as unobstructed but with the obstructing device 

attached to the endotracheal tube, 11 mm external short 

diameter) to grade 4 (5 mm external short diameter). The 

location of the obstruction was changed from proximal 

to distal along the endotracheal tube. Proximal, mid, and 

distal were defined as the highest point, just above the 

cuff tube, and just above the endotracheal tube balloon, 

Figure 1. Schematic of the experimental setup. An endotracheal tube was connected to a test lung and a ventilator circuit via an L-
shaped connector. (A) A microphone was inserted inside the respiratory system through the connector. (B) Extrinsic compression of the 
endotracheal tube.
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respectively.

Sound recording and analysis
The sounds were recorded at 22,050 Hz and 16 bits, 

analyzed according to previously described methods [12], 

and saved in wave file format on a computer. The dura-

tion of recording for each sound was 3 minutes, and each 

sound file contained 45 inspirations and expirations. 

Among the recorded inspiratory and expiratory sounds, 

we selected 45 expiratory sounds for data analysis. Un-

wanted noises were rare among original endotracheal tube 

sounds; hence, the recorded sounds were not filtered (Fig. 

2). We calculated the signal energy [W × s] of each expira-

tory sound according to Parseval’s theorem [13,14] after 

fast Fourier transformation. 

Statistical analysis
Energy values are expressed as means and 95% confi-

dence intervals (CI). The Student’s t test was used to com-

pare the means. A p value < 0.05 was considered statisti-

cally significant. We used MATLAB software (MathWorks, 

Natick, MA, USA) for plotting, fast Fourier transformation, 

and sound analysis. SPSS version 17.0 (SPSS Inc., Chicago, 

IL, USA) was used for statistical analysis. 

RESULTS

A positive correlation was found between expiratory 

sound energy and the ID of the endotracheal tube (Fig. 

3): the narrower the tube, the lower the sound energy (p 

< 0.001). Similar results were observed in the obstruction 

model (Fig. 4). As the degree of obstruction was increased 

(narrowed ID), the expiratory sound energy decreased, re-

gardless of obstruction location. The rate of energy decline 

differed depending on the location of the obstruction (Fig. 

4), decreasing at an increasing rate from the proximal to 

the distal area of the tube. The ß values for proximal, mid, 

and distal obstruction were -2.13 × 10-4 (CI, -2.58 × 10-4 to 

-1.69 × 10-4; p < 0.001), -5.66 × 10-4 (CI, -6.18 × 10-4 to -5.13 

× 10-4; p < 0.001), and -8.01 × 10-4 (CI, -8.60 × 10-4 to -7.42 

× 10-4; p < 0.001) respectively, and the rate of decline was 

statistically significant (p for interaction < 0.001). 

Time-flow and flow-volume curves changed as the endo-

tracheal tube was obstructed, but obvious flow change was 

observed only under a grade 4 obstruction (Fig. 5). Less 

than a grade 4 obstruction resulted in no change in flow.

Figure 2. Spectrograms of expiratory sounds at internal diameters of 5.0 mm (A) and 8.0 mm (B). 
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Figure 3. Sound energy was correlated with the internal diam-
eter of the endotracheal tube. As the diameter was increased, the 
energy delivered to the microphone increased (p < 0.001).
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Figure 4. Energy was associated with obstruction location, decreasing at an increasing rate from the proximal to the distal area of the 
tube. The ß values of proximal, mid, and distal obstruction were -2.13 × 10-4 (95% confidence interval [CI], -2.58 × 10-4 to -1.69 × 10-4; p 
< 0.001), -5.66 × 10-4 (CI, -6.18 × 10-4  to -5.13 × 10-4; p < 0.001), and -8.01 × 10-4 (CI, -8.60 × 10-4  to -7.42 × 10-4; p < 0.001) respectively. 
The rate of decline was statistically significant (p for interaction < 0.001).

Figure 5. Flow changes on mechanical ventilation were a late event in the obstruction model. Distinct expiratory flow changes (upper: 
time-flow, lower: flow-volume) were observed between grade 3 and 4, regardless of obstruction location. 
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DISCUSSION

This study is the first description of the changes in the 

sound of an endotracheal tube, using an airway-obstruc-

tion model. The sound made by an endotracheal tube can 

easily be recorded without disconnecting ventilation, and 

rarely contains random noises. The aim of this study was 

to evaluate the feasibility of using such sounds to detect a 

partial obstruction. When air flows through an endotra-

cheal tube, sound energy can be measured and quantified, 

which can be used as a comparative parameter. Our re-

sults showed a correlation between sound energy and the 

ID and degree of obstruction. 

In the obstruction model, comparison of time-flow and 

flow-volume curves obtained from the mechanical venti-

lator for grade 0–3 obstructions showed little change in 

flow, indicating that these levels of obstruction were not 

significantly different from a grade 0 obstruction (Fig. 5). 

Significant changes in flow were only observed for grade 

3–4 obstructions. However, changes in sound energy were 

observed during early obstruction (Fig. 4), suggesting that 

changes in sound energy are an earlier event compared to 

changes in flow during endotracheal tube obstruction. 

The sound energy clearly decreased with an increased 

degree of obstruction. Expiratory airf low was gener-

ated by elastic recoil in the test lung, which was the same 

force regardless of the degree of obstruction. When the 

obstruction was increased, laminar flow changed to tur-

bulent flow, and the loss of energy was delivered to the 

microphone. As the distance of the microphone from the 

location of the obstruction was increased, the rate of en-

ergy loss decreased rapidly (Fig. 4). This finding was also 

observed in a previous study using a large airway-obstruc-

tion model [15].

Several previous studies have used sound for airway 

management. Acoustic reflectometry has been used to 

identify esophageal intubation [16,17] and endotracheal 

tube volume loss [1,2]. Although this method acquires en-

dotracheal tube images in a few seconds, the tubes must 

be disconnected from the ventilator during measurement, 

and the patients cannot be supported by mechanical venti-

lation with oxygen during that time. This procedure could 

be harmful to critically ill patients and requires special-

ized equipment.

Our study has several limitations. We compared re-

corded sound energy, and thus the quantity not the quality 

of sound. The energy was recorded differently in various 

situations depending on factors such as hardware settings 

of the recording system. To minimize this variation, we 

recorded all sounds from the same place in 1 day under 

the same recording system settings. We did not observe 

any differences in frequency. The model used extrinsic 

and non-concentric semi-quantitative obstructions, which 

do not represent real luminal narrowing. In practice, en-

dotracheal tube obstruction is mostly caused by the accu-

mulation of biomaterial inside the tube, which may change 

sound quality in the clinical setting.

Some other considerations are essential before applying 

these results to clinical practice. Most of all, many noises 

are prominent in real-world intensive care units. Different 

machines such as hemodialysis devices, intra-aortic bal-

loon pumps, and suction apparatuses are used, and many 

other sounds are generated from these machines. Thus, 

noise-canceling technologies and algorithms are needed. 

Second, patients who require endotracheal intubation and 

mechanical ventilation usually have diseased lungs, such 

as acute respiratory distress syndrome or chronic obstruc-

tive pulmonary disease, and these conditions could also 

affect the recorded sounds. Third, a qualitative sound 

analysis is needed.

In conclusion, endotracheal tube sounds can be record-

ed with minimal random noises in vivo, and can be used 

to detect endotracheal tube obstruction by measuring 

sound energy. Further studies are needed to evaluate its 

clinical application.
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