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Abstract

(1,3;1,4)-b-D-glucans (mixed-linkage glucans) are found in tissues of members of the Poaceae (grasses), and are
particularly high in barley (Hordeum vulgare) grains. The present study describes the isolation of three independent

(1,3;1,4)-b-D-glucanless (betaglucanless; bgl) mutants of barley which completely lack (1,3;1,4)-b-D-glucan in all the

tissues tested. The bgl phenotype cosegregates with the cellulose synthase like HvCslF6 gene on chromosome arm

7HL. Each of the bgl mutants has a single nucleotide substitution in the coding region of the HvCslF6 gene resulting

in a change of a highly conserved amino acid residue of the HvCslF6 protein. Microsomal membranes isolated from

developing endosperm of the bgl mutants lack detectable (1,3;1,4)-b-D-glucan synthase activity indicating that the

HvCslF6 protein is inactive. This was confirmed by transient expression of the HvCslF6 cDNAs in Nicotiana

benthamiana leaves. The wild-type HvCslF6 gene directed the synthesis of high levels of (1,3;1,4)-b-D-glucans,
whereas the mutant HvCslF6 proteins completely lack the ability to synthesize (1,3;1,4)-b-D-glucans. The fine

structure of the (1,3;1,4)-b-D-glucan produced in the tobacco leaf was also very different from that found in cereals

having an extremely low DP3/DP4 ratio. These results demonstrate that, among the seven CslF and one CslH genes

present in the barley genome, HvCslF6 has a unique role and is the key determinant controlling the biosynthesis of

(1,3;1,4)-b-D-glucans. Natural allelic variation in the HvCslF6 gene was found predominantly within introns among 29

barley accessions studied. Genetic manipulation of the HvCslF6 gene could enable control of (1,3;1,4)-b-D-glucans in

accordance with the purposes of use.
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Introduction

The non-starch cell-wall polysaccharides of cereal grains in-

clude cellulose, (1,3;1,4)-b-D-glucans (mixed-linkage glucans),

and arabino-xylans as major components. Of these, (1,3;1,4)-

b-D-glucans are found in tissues of members of the Poaceae

(grasses). Barley (Hordeum vulgare) and oat (Avena sativa)

grains are rich in (1,3;1,4)-b-D-glucans, while wheat (Triticum

aestivum), rice (Oryza sativa), and maize (Zea mays) have

much lower amounts. (1,3;1,4)-b-D-Glucans are linear, un-

branched molecules, which contain both (1,3)- and (1,4)-b-D-

glucosidic linkages. (1,3;1,4)-b-D-Glucans consist primarily of
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cellotriosyl and cellotetraosyl units linked by single (1,3)-b-D-

glucosidic linkages, but they also contain a small proportion

of blocks of 5–11 contiguous (1,4)-linked b-D-glucosyl resi-

dues. Adjacent (1,3)-b-D-glucosyl residues are absent in the

case of the barley (1,3;1,4)-b-D-glucans (Fincher, 2009).

High (1,3;1,4)-b-D-glucan content in barley grains nega-

tively affects the processes of malting and brewing because it

prolongs endosperm modification and filtration of wort and
beer, lowering the production efficiency and leaving beer

with an unpleasant haze (von Wettstein, 2007). Therefore,

a low (1,3;1,4)-b-D-glucan content is one of the desirable

characteristics in the breeding of malting barley. On the other

hand, (1,3;1,4)-b-D-glucan are dietary fibres that have

beneficial effects in the prevention of various human diseases,

including high serum cholesterol and cardiovascular disease

(Brennan and Cleary, 2005). Thus, (1,3;1,4)-b-D-glucan is
considered an important functional ingredient when barley is

consumed as food. Although (1,3;1,4)-b-D-glucan content in

ordinary barley cultivars is in the range of 2.9–6.4% (Kato

et al., 1995), genotypes containing as high as 11–20% have

been bred for food barley (Fujita et al., 1999; Munck et al.,

2004). Several quantitative trait loci (QTLs) associated with

(1,3;1,4)-b-D-glucan content are known (Han et al., 1995;

Meyer et al., 2000; Molina-Cano et al., 2007; Li et al., 2008;
Emebiri, 2009).

Recent studies have advanced our understanding of the

genes involved in the synthesis of (1,3;1,4)-b-D-glucans

(Burton et al., 2006, 2008; Doblin et al., 2009). CslF genes

have been implicated in the biosynthesis of (1,3;1,4)-b-D-

glucans (Burton et al., 2006). This was shown by inserting

several genes from a cluster of six rice OsCslF genes on

chromosome 7 into Arabidopsis thaliana, which does not
have CslF genes or (1,3;1,4)-b-D-glucans in its walls; a small

amount of (1,3;1,4)-b-D-glucans in the cell walls of trans-

genic plants was detected using a specific monoclonal

antibody and enzymatic analysis. Comparative genomic

studies have shown that, in contrast to the eight CslF genes

in rice, barley has seven CslF family members; HvCslF3,

HvCslF4, HvCslF8, and HvCslF10 are clustered on chromo-

some 2H, HvCslF9 is located on 1H, HvCslF7 is located on
5H, and HvCslF6 is located on 7H (Burton et al., 2008). By

similar transgenic approaches, it was shown that the single

CslH gene of barley can mediate (1,3;1,4)-b-D-glucan

synthesis in Arabidopsis (Doblin et al., 2009). A recent

study employing a (1,3;1,4)-b-D-glucanless (beta-glucanless

hereafter abbreviated as bgl) mutant in barley indicated that

HvCslF6 could be a key determinant controlling (1,3;1,4)-

b-D-glucan synthesis as the bgl locus mapped close to the
HvCslF6 gene and this gene had a single nucleotide change

in the coding region (Tonooka et al., 2009). This finding

was supported by the observation of reduced (1,3;1,4)-b-D-

glucan of wholemeal flours from RNAi inhibition of CslF6

in wheat grain (Nemeth et al., 2010).

In this study, molecular and biochemical approaches were

applied to prove that bgl mutants are mutations within the

coding regions of the HvCslF6 gene that are essential for its
enzymatic activity. The loss of function of this gene results

in the complete absence of (1,3;1,4)-b-D-glucan both in

vegetative and reproductive organs in barley suggesting

a unique role for the HvCslF6 gene in the control of

(1,3;1,4)-b-D-glucan biosynthesis.

Materials and methods

Plant materials

The barley (1,3;1,4)-b-D-glucanless mutant OUM125 was induced
in the genetic background of ‘Akashinriki’ and carries the bgl gene
(Tonooka et al., 2009). Backcross derivatives of OUM125 carrying
bgl in the genetic background of other varieties were also used. For
screening of new (1,3;1,4)-b-D-glucanless mutants, a sodium azide
mutagenized population consisting of about 2000 M4 lines of cv.
‘Sachiho Golden’ were used. For allelism tests, putative (1,3;1,4)-
b-D-glucanless mutants were test-crossed with the near isogenic
line of ‘Nishinohoshi’ (Ni) with the introduced bgl gene after four
backcrosses (abbreviated as bgl-Ni, Tonooka et al., 2009). At least
three F1 grains from test cross were individually measured for
(1,3;1,4)-b-D-glucan content as described below.

To test the dosage effect of the bgl gene, Ni and bgl-Ni were
reciprocally crossed, and 12 grains each of the F1 hybrids and
parental lines were individually measured for (1,3;1,4)-b-D-glucan
content as described below. These materials are from harvests in
the same growing season grown under the same greenhouse
environment. Ni and bgl-Ni were also compared for expression of
the HvCslF6 gene through qRT-PCR analyses.

For the assay of (1,3;1,4)-b-D-glucan synthase activity, two sets
of field-grown materials were used; one is Shikoku Hadaka 84
(SH84) and its isogenic line with the introduced bgl gene of
OUM125 by recurrent backcrosses (abbreviated as bgl-SH84), and
the other is the (1,3;1,4)-b-D-glucanless mutant KM27 and its
parental cv. ‘Sachiho Golden’.

For quantification of the (1,3;1,4)-b-D-glucan content in field-
grown leaves, three sets of isogenic lines were used, i.e. ‘Akashinriki’
and OUM125, Ni and bgl-Ni, and SH84 and bgl-SH84.

Genetic mapping of bgl and HvCslF6

For mapping, 104 F2 plants derived from a cross between
‘Bowman’ (two-rowed, covered caryopsis) and (1,3;1,4)-b-D-
glucanless mutant OUM125 (six-rowed, naked caryopsis) was
used. Parental accessions with contrasting morphology were
selected for the cross to maximize genetic polymorphisms. In-
dividual F2 grains were cut in half, and half grains minus the
embryo were used for (1,3;1,4)-b-D-glucan quantification as de-
scribed below, and the remaining embryo-containing half grains
were germinated for DNA extraction from leaves. DNA was
isolated by the modified methods of Edwards et al. (1991) with an
additional extraction step with phenol–chloroform–isoamyl alco-
hol (25:24:1 by vol.) after initial extraction with the buffer. The
following DNA markers were used for mapping: the CDO673
primer is from Heun et al. (1991) and detected according to
Kikuchi et al. (2003), nud for naked caryopsis is detected according
to Taketa et al. (2008), the MWG511 primer is from Künzel et al.
(2000), and the SSR markers are from publicly available sources
(Ramsay et al., 2000; Varshney et al., 2007). Molecular markers
for waxy and beta-glucanase II (Waxy and HvGlb2, respectively)
were originally developed in this study, as shown in Supplementary
Table S1 at JXB online. Molecular markers were assigned to specific
chromosome arms by using wheat–barley disomic and ditelosomic
chromosome addition lines (Islam et al., 1981; Islam 1983).

Analysis of (1,3;1,4)-b-D-glucan content in barley sample

For grain samples, half grains minus the embryo were individually
squashed with pliers and then ground into a fine powder with
a mortar and pestle in the presence of liquid nitrogen. During
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grinding, efforts were made to remove hulls as much as possible.
The flours were weighed and about 18 mg of flours per grain were
subjected to (1,3;1,4)-b-D-glucan quantification by an enzymatic
method (McCleary and Codd, 1991) using a Mixed linkage beta-
Glucan Assay Kit (Megazyme International Ireland, Wicklow,
Ireland). The percentages of (1,3;1,4)-b-D-glucan are shown on
a dry-weight basis.

For (1,3;1,4)-b-D-glucan quantification in leaves, the three sets
of materials described above were planted in late October 2008 in
a field of the National Agriculture Research Center in Tsukuba,
Japan. Leaf blades and leaf sheaths were collected from three plants
of each line in early March and immediately frozen in liquid nitrogen.
The samples were finely milled by a hi-speed vibration sample mill
(TI-100, CMT Corp., Iwaki) after being freeze-dried. Following
a treatment with 80% ethanol, (1,3;1,4)-b-D-glucan content were
measured using a Mixed linkage beta-Glucan Assay Kit.

Expression analysis of HvCslF6 by quantitative RT-PCR (qRT-PCR)

qRT-PCR was conducted according to the procedures described in
Yuo et al. (2009). Briefly, total RNAs were extracted from various
tissues of plants at the vegetative stage (10 d after germination) and
the reproductive stages [5 d and 10 d after flowering (DAF)] using an
Isogen kit (Nippon Gene, Tokyo, Japan). RNA samples were treated
with DNaseI (Promega, Madison, WI). For qRT-PCR, a first strand
cDNA was synthesized with PrimeScript RT reagent Kit (TaKaRa,
Otsu, Japan). Quantitative analyses were carried out on Thermal
cycle dice TP800 (TaKaRa) using SYBR Premix Ex Taq and SYBR
green detection kit (TaKaRa) according to the manufacturer’s
instructions. Normalization was carried out using the GAPDH gene.
Primers used for expression analyses of HvCslF6 and GAPDH are
the same as those described in Burton et al. (2008).

Assay of activity of (1,3;1,4)-b-D-glucan synthase

Seeds of the two lines (SH84 and bgl-SH84) were taken at different
developmental stages from 7 to 35 DAF. Seeds of KM 27 and its
parental cv. ‘Sachiho Golden’, were also harvested at 19 DAF. The
seeds were stored at –80 �C until use. The microsomal fraction of
the endosperms was prepared as described previously (Tsuchiya
et al., 2005). The microsomal fraction was used for the enzyme
assays immediately after preparation.

Enzyme activity of (1,3;1,4)-b-D-glucan synthase was determined
according to our previous procedures (Tsuchiya et al., 2005) with
a slight modification. A reaction mixture (60 ll) consisted of 2 mM
UDP-Glc including 2.96 kBq UDP-[14C]Glc (Perkin Elmer Life
Sciences, Boston, MA), 20 mM MgCl2, 200 mM sucrose, 50 mM
TRIS-HCl buffer (pH 9.0), and the microsomal fraction (protein,
200–400 lg) at 25 �C for 30 min. Protein was determined by the
method of Bradford (1976) using BSA as the standard. The reaction
was terminated by dipping in a boiling water bath for 5 min, and
the products containing radiolabelled (1,3;1,4)-b-D-glucans were
precipitated by methanol (final 55% concentration). The products
were digested with lichenase (1 unit; Megazyme), and the hydroly-
sate was analysed by paper chromatography. Radioactive spots on
paper chromatograms were detected by a fluoroimage analyser
FLA-7000 (Fujifilm), while spots of reducing sugars were visualized
with alkaline AgNO3 (Trevelyan et al., 1950). The radioactive spots
corresponding to trisaccharide (G4G3G) and tetrasaccharide
(G4G4G3G) were cut off, and radioactivity (dpm) was counted with
a liquid scintillation counter (Ishikawa et al., 2000) to estimate
enzyme activity.

Analyses of carbohydrates in developing endosperm cell walls

The sugar constituents in cell walls of developing endosperms of
barley were analysed essentially according to previous method
(Urahara et al., 2004) and described briefly as follows. Barley
endosperm specimens (about 10 mg) were separated from the seed
coats and embryos by hand. The samples were homogenized to

powder in liquid nitrogen, dissolved in 1 ml of 17.5% NaOH
containing 0.04% NaBH4 by mixing in a boiling water bath. The
mixtures were neutralized with acetic acid, dialysed against 5 mM
MOPS-KOH buffer (pH 7.0), and then incubated at 37 �C with
a-amylase (80 units, type I-A; Sigma-Aldrich, Tokyo, Japan) to
remove starch. The resulting cell wall polysaccharides were hydro-
lysed by the 72%–8% sulphuric acid method of Bouveng et al. (1965).
Separation of monosaccharide constituents was carried out by high-
performance anion-exchange chromatography (HPAEC) using a Dio-
nex DX-500 liquid chromatograph (Dionex Japan, Osaka, Japan)
fitted with the CarboPac PA-1 column and a pulsed amperometric
detector as described previously (Ishikawa et al., 2000).

Functional characterization of HvCslF6 genes in Nicotiana

benthamiana

Full-length HvCslF6 cDNAs from wild-type ‘Akashinriki’ and
mutant lines (OUM125 and KM27) were amplified from leaf
cDNA using primers shown in Supplementary Table S1 at JXB
online, and cloned into pCR Blunt (Invitrogen, Carlsbad, CA).
For unknown reasons it has not been possible to clone the full-
length cDNA from the KM30 mutant. The full-length cDNAs
were excised as EcoRI fragments and cloned in the sense
orientation into the same site of a modified pORE02 (Coutu et al.,
2007) Agrobacterium binary vector containing a cauliflower mosaic
virus 35S promoter was inserted at the SfoI site (Wood et al.,
2009). The expression constructs were transformed into Agro-
bacterium tumefaciens strain AGL1 and transient expression of
Agrobacterium-infilitrated Nicotiana benthamiana leaves was per-
formed as described in Wood et al. (2009) except that the
Agrobacterium density had an OD600 of 0.4. Leaves were harvested
5 d after infiltration and freeze-dried. The (1,3;1,4)-b-D-glucan
content of the leaves was assayed as follows. Firstly, a crude cell
wall preparation was made from 20 mg of ground leaf material by
heating for 30 min at 80 �C in 1.8 ml of 80% ethanol in a 2 ml
Eppendorf tube with mixing. The supernatant was removed after
centrifugation at 10 000 rpm for 5 min and the residue was re-
extracted in the same volume of 80% ethanol at 80 �C for 10 min.
After centrifugation, the pellet was washed at room temperature
for 10 min in 50% ethanol with a final wash in 20 mM sodium
phosphate buffer pH 6.5. The pellet was resuspended in 0.5 ml of
the same buffer and the material was solubilized by heating at
90 �C for 30 min. The sample was cooled to 50 �C and incubated
for 2 h with 20 ll (1 U) lichenase (Megazyme) to digest the (1,3;1,4)-
b-D-glucan. Following centrifugation, 100 ll of sample was dried
in a Speedvac and the oligosaccharides were fluorescently labelled
by reductive amination with 8-amino-1,3,6-pyrenetrisulphonic acid
(APTS) and separation by fluorophore-assisted-capillary electro-
phoresis (FACE) with laser-induced fluorescence detection as
described (O’Shea et al., 1998). Similarly, FACE analysis was also
applied to lichenase digests of cell wall extracts from various
barley seedling tissues of ‘Akashinriki’ and OUM125.

Molecular characterization and diversity analysis of the HvCslF6

gene

On the basis of reported cDNA sequence of HvCslF6 (Burton
et al., 2008), sequencing primers for genomic DNA and cDNA
were designed (see Supplementary Table S1 at JXB online). About
a 5.2 kb genomic fragment was PCR-amplified and sequenced
using internal primers.

A set of 29 barley accessions with diverse origins were sequenced
for the HvCslF6 gene. These accessions included five H. vulgare
ssp. spontaneum, and 15 two-rowed and seven six-rowed domesti-
cated barley accessions. Barley accessions used for QTL analysis of
(1,3;1,4)-b-D-glucan content in the previous studies (Han et al.,
1995; Meyer et al., 2000; Li et al., 2008; Molina-Cano et al., 2007)
were included. The 29 HvCslF6 sequences reported in this article
have been deposited in the EMBL/GenBank/DDBJ databases
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under accession numbers AB621305–AB621333. Multiple align-
ments of genomic sequences were performed using ClustalW with
default options (Thompson et al., 1994). Phylogenetic analyses
were conducted in MEGA v4.0 (Tamura et al., 2007) based on the
bootstrap Neighbor–Joining (NJ) method (Saitou and Nei, 1987).
Multiple alignments of amino acid sequences of seven HvCslF
family genes of barley and CslF6 orthologues from five Poaceae
species (wheat, rice, Brachypodium distachyon, sorghum, and oats)
were also prepared.

Results

Genetic mapping of bgl

A previous study showed that bgl co-segregated with the

HvCslF6 gene in the centromeric region of 7H using 227 F2

plants from the Ni3bgl-Ni cross (Tonooka et al., 2009). In

this study, bgl was more precisely mapped using a more

polymorphic mapping population of 104 F2 plants from the
‘Bowman’3OUM125 cross (see Supplementary Fig. S1 at

JXB online). The Megazyme kit assay of half grains clearly

distinguished bgl homozygous plants. The bgl gene perfectly

co-segregated with HvCslF6, and HvCslF6 was assigned to

the 7HL arm using wheat–barley chromosome addition

lines. bgl–HvCslF6 was flanked by MWG511, 2.9 cM distal

on the 7HS arm and Bmac0162, 1 cM distal on the 7HL

arm. The centromere of chromosome 7H lies between
MWG511 and HvCslF6. As Burton et al. (2008) reported,

HvCslF6 showed a close linkage with CDO673 with

a distance of 4.9 cM. The present mapping results again

strongly indicate that bgl represents a mutation of HvCslF6.

Dosage effects of bgl

A frequency distribution of (1,3;1,4)-b-D-glucan content of

the grain in the F2 mapping population is shown in Fig. 1.

F2 plants were assigned to three classes according to their
genotypes of HvCslF6, either mutant homozygous, hetero-

zygous, or wild-type homozygous. The results show that

heterozygous plants had intermediate levels of (1,3;1,4)-b-D-

glucan content, being distributed between mutant homozy-

gote class and wild-type homozygote class. Moreover,

about half of the heterozygotes overlapped with the range

of the wild-type homozygote (‘Bowman’) with a broad

distribution. The wider distribution of the heterozygotes
probably reflects a dosage effect from the triploid nature of

the endosperm. For heterozygotes, two genotypes are

expected; namely Bglbglbgl and BglBglbgl, probably the

former showing a slightly lower (1,3;1,4)-b-D-glucan content

and the latter showing a slightly higher level.

To confirm a dosage effects of the bgl gene, (1,3;1,4)-b-D-

glucan content in grain obtained from reciprocal crosses

was analysed. The results showed that two types of
heterozygotes were intermediate between wild-type homo-

zygotes (BglBglBgl) and mutant homozygotes (bglbglbgl)

and that BglBglbgl is higher than Bglbglbgl (Fig. 2).

Significant differences among four genotypic classes in

(1,3;1,4)-b-D-glucan content were detected by t test.

qRT-PCR analysis

Expression of the HvCslF6 gene was compared between Ni

and bgl-Ni. Expression of the HvCslF6 gene was detected in

all tissues studied, but the expression was highest in 10-d-

old caryopsis and lowest in the 10-d-old leaf blade. There

were no apparent differences between Ni and bgl-Ni (see

Supplementary Fig. S2 at JXB online). Expression patterns
generally confirmed the report by Burton et al. (2008).

Mutant screening and analysis

For screening of new (1,3;1,4)-b-D-glucanless mutants from

sodium azide mutagenized M4 lines of cv. ‘Sachiho Golden’,

chilling injury was used as a selection criterion. This is based

on the observation that OUM125 and its derivatives with the

bgl gene show chilling injury when sown in autumn and

exposed to a cold climate in Tochigi, Japan (Fig. 3). It is

likely that (1,3;1,4)-b-D-glucanless mutants are more chilling
sensitive probably because thinner cell walls would provide

Fig. 1. Frequency distribution of (1,3;1,4)-b-D-glucan content in

104 F2 plants from the cross between ‘Bowman’ and OUM125.

F2 plants were classified into three classes (mutant homozygous,

heterozygous, and wild-type homozygous) according to the

genotypes of the HvCslF6 gene.

Fig. 2. (1,3;1,4)-b-D-Glucan content in the grains of wild-type

‘Nishinohoshi’ (Ni) and mutant bgl-Ni and their reciprocal F1

hybrids. Bars indicate standard deviations.
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weaker protection. Out of 11 chilling-susceptible lines, two

were confirmed to be (1,3;1,4)-b-D-glucanless mutants by the

Megazyme grain assay. The two new betaglucanless mutants

(KM27 and KM30) were confirmed to be allelic to bgl of

OUM125 by test-crossing as F1 hybrid grains showed

a (1,3;1,4)-b-D-glucanless phenotype by the Megazyme assay

method. Thus, allele names are assigned as follows: bgl.a for

OUM125, bgl.b for KM27, and bgl.c for KM30. Analysis of
the genomic sequences of the HvCslF6 gene determined that

each of them carried a SNP within the coding sequence

(CDS) region. Figure 4 summarizes the mutation points and

alteration in predicted amino acid sequences. OUM125 had

a G to A change at the 4275th position (1979th in CDS),

which is predicted to cause an amino acid change at the

660th position from glycine (G) to aspartic acid (D). KM27

had a G to A change at the 2385th position (758th in CDS),
which is predicted to cause an amino acid change at the

253th position from cysteine (C) to tyrosine (Y). KM30 had

a G to A change at 4209th position (1913th in CDS), which

is predicted to cause an amino acid change at the 638th

position from G to D. Multiple alignments showed that the

single amino acid substitutions in all three bgl mutants

affected amino acids that are highly conserved among the

seven HvCslF family proteins of barley (see Supplementary
Fig. S3 at JXB online) and orthologous CslF6 proteins from

five other Poaceae species (data not shown). A CAPS marker

that distinguishes the mutation site of OUM125 was reported

(Tonooka et al., 2009). Similarly, this study developed CAPS

markers that specifically detect mutation sites of KM27 and

KM30 (see Supplementary Table S1 at JXB online).

(1,3;1,4)-b-D-glucan synthase activity during
development of endosperms

Enzyme activity and sugar composition of cell walls were

measured for endosperms harvested at various developmen-

tal stages of SH84 and bgl-SH84 from 7–35 DAF, in order

to examine the physiological role of the HvCslF6 gene in the

synthesis of (1,3;1,4)-b-D-glucan in vivo. It appeared that
enzyme activity (expressed based on a fresh weight of

endosperms) of SH84 was low at 7 DAF. The activity then

rapidly increased during the initial developmental stages,

reached its maximal level around 19 DAF, and then fell

with the maturation of the seeds (Fig. 5A, B). The activity

at the maximal level was 110 pmol Glc transferred min�1

g�1 fresh weight. Similar activity profiles were observed

when activities were expressed based on protein content of
microsomal fractions (specific activity), although the maxi-

mal level shifted to from 19 DAF to 21 DAF: 230 and 260

pmol min�1 mg�1 protein at 19 DAF and 21 DAF,

respectively. The major sugars detected in the endosperm

cell walls were Glc, Xyl, and L-Ara together with a small

amount of Gal throughout the development of endosperms

(Fig. 5B). The content of Glc increased continuously during

the development of the endosperms, and the initial de-
position of (1,3;1,4)-b-D-glucan was accompanied by an

increase in (1,3;1,4)-b-D-glucan synthase activity. The pres-

ence of (1,3;1,4)-b-D-glucan in SH84 endosperms was

confirmed by incubation of the a-amylase-treated cell wall

polysaccharides with lichenase, which resulted in a 94%

reduction of the Glc content.

By contrast, bgl-SH84 showed extremely low levels of

enzyme activity throughout the development of endo-
sperms (Fig. 5C, D). Concurrently, the content of Glc in

the endosperm cell walls of bgl-SH84 was much lower in

comparison with SH84, indicating that no or little

synthesis of (1,3;1,4)-b-D-glucan occurred (Fig. 5D). The

amounts of Xyl and L-Ara increased to 1.7–2.0-fold at the

late developmental stages when compared with those of

SH84, suggesting that the deposition of arabinoxylan

partly compensates for the lack of (1,3;1,4)-b-D-glucan in
endosperm cell walls of bgl-SH84. However, the profiles of

Fig. 4. Structure of the HvCslF6 gene, which is predicted to encode 947 amino acid (aa) residues. Mutation points of three mutants

(bgl.a, bgl.b, and bgl.c) are indicated. The positions of introns are indicated by the triangles and the lengths of the introns (in base pairs)

are indicated within each triangle. The blue boxes show the positions of eight times of trans-membrane helices. The red bars indicate the

positions of the D, D, D, QxxRW motifs.

Fig. 3. Plant phenotype after exposure to winter chilling in the

field. Left is ‘Nishinohoshi’ (Ni), and right is bgl-Ni.
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increases in the amounts of Xyl and L-Ara during de-
velopment of endosperms were somewhat different from

those of SH84. The reason for the temporal decreases of

Xyl and L-Ara contents around 21 DAF is unclear. These

results indicate that the HvCslF6 gene regulates the

synthesis of (1,3;1,4)-b-D-glucans during the development

of barely endosperms, and that the bgl.a mutation causes

a loss of gene function. This conclusion was supported by

another observation using endosperms prepared from
KM27 (bgl.b) and ‘Sachiho Golden’ at 19 DAF. ‘Sachiho

Golden’ showed high (1,3;1,4)-b-D-glucan synthase activity

(126 pmol min�1 g�1 fresh weight), while that of KM27

was almost entirely depleted (1.5 pmol min�1 g�1 fresh

weight).

Functional characterization of HvCslF6 genes in
Nicotiana benthamiana

To determine if the changes in the amino acid sequence
of the HvCslF6 protein of bgl mutants result in a loss of

function, the ability of the genes to direct synthesis of

(1,3;1,4)-b-D-glucan was tested in a N. benthamiana transient

leaf expression system. Agrobacterium tumefaciens cultures

containing binary vector plasmids driving expression of the

wild-type HvCslF6, or mutant (OUM125 and KM27)
HvCslF6 genes with the strong CaMV 35S promoter were

infiltrated into N. benthamiana leaves. After 5 d, the presence

of (1,3;1,4)-b-D-glucan was assayed by lichenase digestion of

a crude cell wall preparation and detection of the released

oligosaccharides by FACE (O’Shea et al., 1998). Lichenase

specifically cleaves only (1,3;1,4)-b-D-glucan at a (1,4)-b-D-

glucosidic linkage following a (1,3)-b-D-glucosidic linkage

releasing oligosaccharides with a degree of polymerizsation
(DP) of mainly DP3 and DP4 (G4G3G and G4G4G3G),

respectively (Lazaridou and Biliaderis, 2007). The wild-type

HvCslF6 gene directed the synthesis of appreciable quantities

of (1,3;1,4)-b-D-glucan in the leaves as indicated by the large

DP3 and DP4 peaks with lesser amounts of DP5 (Fig. 6A).

The DP3/DP4 ratio was 1.35 compared with 2.6 from barley

grain (Megazyme standard, data not shown). Very similar

results have been obtained in more than four separate
experiments and quantification using the Megayzme assay

kit, routinely gave levels of (1,3;1,4)-b-D-glucan between

1.0% and 3.5% of the dry weight of the leaves. Both mutant

HvCslF6 synthases, however, showed no evidence of synthe-

sis of (1,3;1,4)-b-D-glucan in any of the experiments as

indicated by the absence of the DP3 and DP4 peaks

(Fig. 6B, C).

Fig. 5. Changes of (1,3;1,4)-b-D-glucan synthase activity and the sugar composition of cell walls during development of endosperms of

SH84 and bgl-SH84. (A, C) Enzyme activity was determined with microsomes prepared from endosperms of SH84 (A) or bgl-SH84 (C) at

different developing stages for 7–35 d after flowering (DAF). The [14C]Glc transfer products were digested with lichenase, separated by

paper chromatography, and analysed with a fluoroimage analyser. Note that the spots detected between tri- (G4G3G) and tetrasaccharides

(G4G4G3G) are a contaminant contained in the commercial UDP-[14C]Glc specimen. (B, D) Enzyme activities are expressed based on the

fresh weight of endosperms. The sugar composition of the cell walls was analysed as described in the Materials and methods. Endosperms

at 7 and 35 DAF were tightly attached to pericarps. Hence, the values shown reflect the involvement of pericarps and are connected to

other data by dotted lines. Data for activity and sugar composition are averages of duplicate or triplicate assays.
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Characterization of (1,3;1,4)-b-D-glucan structure in
wild-type and mutant barley leaves

Previously, analysis of the (1,3;1,4)-b-D-glucan composition

of the bgl mutant was confined to grain tissues using the

Megazyme assay kit which can only give information on the

amount of (1,3;1,4)-b-D-glucan. The structure of (1,3;1,4)-

b-D-glucan in leaf tissue was therefore analysed by FACE as
described above. Tissue from the tips of mature leaves was

chosen as the bgl mutant was morphologically different in

this region. Compared with the wild type ‘Akashinriki’, the

bgl.a mutant (OUM125) showed an obvious constriction

below the leaf tip which also appeared distinctly chlorotic

(see Supplementary Fig. S4 at JXB online). Lichenase

digestion released the characteristic DP3 and DP4 as the

major oligosaccharides from wild-type (1,3;1,4)-b-D-glucan in
a ratio of 3.2 (Fig. 6D). A small amount of DP5 was also

detected as was a significant amount of DP2. No oligosac-

charides were detected in the bgl leaves confirming the

complete absence of (1,3;1,4)-b-D-glucan in the mutant.

A similar analysis of 10-d-old seedling tissues also showed

the complete absence of (1,3;1,4)-b-D-glucan in the leaf tip,

the leaf base, the stem (including the coleoptile) as well as in

root tissues (see Supplementary Fig. S5 at JXB online).
In addition, the (1,3;1,4)-b-D-glucan content in leaves was

analysed in three sets of field-grown plants using a Mega-

zyme assay kit. (1,3;1,4)-b-D-Glucan was not detected in the

leaves of OUM125, bgl-Ni or bgl-SH84, whereas those of

‘Akashinriki’, Ni, and SH84 contained 13.5–14.1 mg g�1 of

(1,3;1,4)-b-D-(1,3;1,4)-b-D-glucan (see Supplementary Fig.

S6 at JXB online).

Phylogenetic analysis of natural variation in the HvCslF6
gene

Sequencing of the HvCslF6 gene from 29 (five wild and 24

domesticated) barley accessions identified 30 polymor-

phisms (24 SNPs, five indels, and one SSR; see Supplemen-

tary Table S2 at JXB online). Twenty-seven polymorphisms

were located within introns 1 and 2, and only three

polymorphisms were localized within exons; only SNP23

produces a change in the translated protein [590th alanine
(A) to threonine (T)], but this amino acid residue is not

conserved among members of the HvCslF gene family (see

Supplementary Fig. S3 at JXB online). An unrooted

phylogenetic tree was constructed by using the Neighbor–

Joining method (Fig. 7). Barley accessions were classified

into three major groups (clades I, II, and III). Steptoe,

OUT329, and TR251 were distinctly separated from other

accessions (clade III). Three H. vulgare ssp. spontaneum

accessions (OUH602, OUH725, and OUH737) formed

a subclade sister to other members of the second major

Fig. 6. FACE analysis of oligosaccharides released from lichen-

ase-digested cell walls. Wild-type ‘Akashinriki’ (A), mutant

OUM125 (B), and KM27 (C) HvCSlF6 genes were transiently

expressed in Nicotiana benthamiana leaves and oligosaccharides

released from cell wall preparations after lichenase digestion were

analysed by 8-amino-1,3,6-pyrenetrisulphonic acid (APTS) fluores-

cence labelling and separation by capillary electrophoresis.

Lichenase digests of barley leaf cell walls from the wild type

(‘Akashinriki’, green line) and mutant (OUM125, pink line) are

shown for comparison in (D). The degree of polymerization (DP) of

the oligosaccharides is indicated. The large peak at the beginning

of the trace (4.5 min) and smaller peak at approximately 7.75 min

are unlabelled APTS and a non-specific labelled product as they

appear in minus lichenase controls (data not shown).
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group because of an insertion of a miniature inverted-repeat

transposable (MITE) in intron 2. The present study did not

measure (1,3;1,4)-b-D-glucan content of the accessions used

for phylogenetic analysis. However, limited information

available from the literature suggests that there seems to be

no apparent relationship between HvCslF6 polymorphisms
and (1,3;1,4)-b-D-glucan contents in 29 accessions represent-

ing natural variation, because the two largest clades in-

cluded both high and low (1,3;1,4)-b-D-glucan accessions.

From haplotype analysis of approximately 40 barley

accessions, Burton et al. (2010) identified just four SNPs in

the HvCslF6 gene. This sharply contrasts with the present

results where as many as 30 polymorphisms were detected

in 29 barley accessions analysed. This discrepancy could be
attributable to the wider range of germplasms used for

natural variation analysis in the present study.

Fig. 7. Phylogenetic analysis of the natural variation of the HvCslF6 gene in 29 barley accessions. The tree is generated through genomic

sequences. The materials are grouped into three clades (I, II, and III). Numbers indicate bootstrap values. Accessions with (1,3;1,4)-b-D-

glucan content information from the literature are denoted either by L (low content) or H (high content) after the cultivar name.
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Discussion

A previous report revealed that the bgl.a mutant was

a possible loss-of-function mutation of the HvCslF6 gene

on the basis of cosegregation of the bgl phenotype (i.e. lack

of (1,3;1,4)-b-D-glucan) and the mutant HvCslF6 allele

(Tonooka et al., 2009). The lack of (1,3;1,4)-b-D-glucan was

only assayed by the Megazyme assay kit, therefore, a more

detailed biochemical and functional characterization of the

mutant has now been performed for the unequivocal

verification that a mutation in the HvCslF6 gene causes the

loss of (1,3;1,4)-b-D-glucan from all the tissues tested. In the

present study, two additional allelic mutants at the bgl locus

were isolated (KM27 and KM30), and were confirmed to

harbour a mutation within the coding region of the

HvCslF6 gene, that results in the substitution of highly

conserved amino acid residues. Isolation of three indepen-

dent mutants at the HvCslF6 locus is strong evidence that

bgl represents a loss-of-function mutation of HvCslF6.

Here, more critical biochemical evidence for the absence of

functionality of the mutant genes was provided on the basis

of measurement of isolated (1,3;1,4)-b-D-glucan synthase

enzyme activity and heterologous expression of the mutant

and wild-type HvCslF6 alleles in N. benthamiana.

The bgl mutants lack the activity of (1,3;1,4)-b-D-glucan
synthase and contain extremely low levels of (1,3;1,4)-b-D-

glucan throughout endosperm development. The amount of

(1,3;1,4)-b-D-glucan in developing endosperms of SH84

increased essentially linearly from 14 DAF to the late

stages, as did the amount of arabinoxylan, consistent with

the initial increase in the activity of (1,3;1,4)-b-D-glucan

synthase. However, the deposition of (1,3;1,4)-b-D-glucan

continued with the maturation of the seeds, even after the

enzyme activity gradually decreased. This is also the case of

our previous observation for Shikoku Hadaka 97 (Tsuchiya

et al., 2005), and the reason is not yet clearly explained. It

was also observed that the amount of arabinoxylan in-

creased to about 2-fold in developing endosperms of bgl-

SH84 when compared with its isogenic line, SH84, as

observed similarly for the bgl-Ni and Ni pair (Tonooka

et al., 2009). Based on the metabolic pathway of nucleotide

sugars in plants (Bar-Peled and O’Neill, 2011), it is probable

that the bgl mutation decreases the consumption of UDP-

Glc, leading to alteration of the carbon flow to other

pathways such as the UDP-Xyl and -L-Ara formation. This

would increase the substrates available for the synthesis of

arabinoxylan, resulting in the increased deposition of the

polysaccharide in endosperm cell walls.

Previous heterologous expression studies characterizing

the function of CslF and CslH genes from barley and rice

have used stable transformation of Arabidopsis plants and

have resulted in only very low levels of (1,3;1,4)-b-D-glucan

(Burton et al., 2006; Doblin et al., 2009). By contrast, the

N. benthamiana transient expression system used here

results in significant levels of (1,3;1,4)-b-D-glucan synthesis,

in the order of 1–3% dry wt of leaf tissue. One reason for

this could be that the N. benthamiana transient expression

system is well known to give high levels of expression of

heterologous genes through the use of the viral suppressor

protein P19 which shuts down the RNAi-mediated host

response allowing high expression over prolonged periods

compared with transgenic plants (Wood et al., 2009).

Another possibility is that the HvCslF6 gene encodes

a protein that is much more active than the other HvCslF

and HvCslH genes that have been expressed so far. In fact,

the HvCslF6 gene appears to encode the major (1,3;1,4)-
b-D-glucan synthase as it is constitutively expressed at much

higher levels than all the other HvCslF and HvCslH genes

which generally show low expression only in specific tissues

(Burton et al., 2008).

The hypothesis that the CslF6 protein is the core subunit

of the (1,3;1,4)-b-D-glucan synthase in the structure model

proposed by Buckeridge et al. (2004), is supported by the

demonstration that loss-of-function mutations of the
HvCslF6 gene cause the complete absence of (1,3;1,4)-b-D-

glucan not only in grains but also in vegetative tissues. The

structure of the (1,3;1,4)-b-D-glucan produced in the to-

bacco leaves by expression of the HvCslF6 gene is also

different from that found in the barley grain as it has

a much lower DP3/DP4 ratio (1.35 compared to 2.6 in

barley grain and 3.6 in barley leaves) (Doblin et al., 2009).

This agrees with the findings of Burton et al. (2011) where
over-expression of the HvCslF6 gene in barley grain reduced

the DP3/DP4 ratio and this also altered the solubility of the

(1,3;1,4)-b-D-glucan. Heterologous expression of the

HvCslH gene in Arabidopsis leaves produced a (1,3;1,4)-

b-D-glucan with a DP3/DP4 ratio of 3.6 (Doblin et al.,

2009) similar to that found in barley leaves (3.2, Fig. 6D). It

is possible is that the HvCslF6 gene encodes the core

synthase and the other HvCslF and HvCslH genes act like
modifier genes to produce enzymes that produce (1,3;1,4)-

b-D-glucan of different structures in different tissues

depending on the properties of the cell walls needed in

those tissues. These results suggest that the HvCslF6 gene

encodes an enzyme that has unique properties that are not

complemented by other HvCslF or HvCslH genes. In this

respect, it is interesting to note that the HvCslF6 protein

differs from all other HvCslF and HvCslH proteins in
having an extended loop at about amino acid 535 (Burton

et al., 2008) and that this may be the reason for the unique

properties of the (1,3;1,4)-b-D-glucan synthase encoded by

the HvCslF6 gene.

(1,3;1,4)-b-d-Glucan synthase activity is reported to re-

side in the Golgi membrane (Gibeaut and Carpita, 1993;

Carpita and McCann, 2010), however, little is known about

the structure of the (1,3;1,4)-b-D-glucan synthase other than
that the CslF and CslH proteins are predicted to be integral

membrane proteins and that there is a large central catalytic

domain probably facing the cytoplasm. In the three bgl

mutants identified here, the affected amino acid residues are

located close to one of the D, D, D, QxxRW motifs within

the central catalytic domain (Fig. 4). These motifs are

believed to be involved in nucleotide sugar binding and

catalytic activity of the enzyme (Charnock et al., 2001). Of
these, two are substitutions of G to D (KM30 and

OUM125) near the C-terminus of the central domain,
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whereas the other mutant (KM27) is a C to Y change near

the N-terminal conserved D residue. Sequencing of the

HvCslF6 gene from 29 barley accessions did not identify

any changes in conserved amino acids indicating that the

identified amino acid changes in the mutants are significant.

Using the N. bethamiana expression system described here it

should be relatively easily to use mutagenesis to determine

other amino acids necessary for activity or even make
changes that would alter the structure of the (1,3;1,4)-b-D-

glucan.

Successful identification of two new (1,3;1,4)-b-D-glucanless

mutants using chilling injury as a selection criterion indicates

that bgl mutants generally show a cold-sensitive phenotype.

Besides, all the three bgl mutants identified in this study

showed a reduction in plant height, plant vigour and yield

(approximately 70% of the control, data not shown). In-
terestingly the present study noted that bgl mutants show

some morphological changes and chlorosis of the leaf tip

which is a region where a high level of expression of HvCslH

has been reported (Doblin et al., 2009) possibly indicating that

a (1,3;1,4)-b-D-glucan of different structure was synthesized in

the absence of HvCslF6. However, no trace of (1,3;1,4)-b-D-

glucan was detected in this region of the leaf or in any other

tissues of the bgl mutant tested. It may be possible that
(1,3;1,4)-b-D-glucan is present in extremely small amounts in

this or other tissues but is not extractable under the conditions

used; further immunolabelling microscopic studies may re-

solve this issue. As the agronomic characteristics are reduced,

the utility of the bgl mutants in malting may not be good even

though they have favourable characteristics such as softer

grains in addition to a (1,3;1,4)-b-D-glucanless phenotype,

however, the present mutants are useful materials for basic
research such as the enzymatic investigation of the bio-

synthesis of (1,3;1,4)-b-D-glucans.

Supplementary data

Supplementary data are available at JXB online.

Supplementary Table S1. Primer sequences used in this

study.

Supplementary Table S2. Allelic variation in the genomic

sequences of the HvCslF6 gene.

Supplementary Fig. S1. Molecular mapping of the bgl and

HvCslF6 genes on chromosome 7H using 104 F2 plants
from a cross between ‘Bowman’ and OUM125.

Supplementary Fig. S2. Quantitative RT-PCR analysis of

expression of the HvCslF6 gene in various tissues and

developmental stages.

Supplementary Fig. S3. Alignments of seven barley

HvCslF proteins and rice OsCslF6 protein.

Supplementary Fig. S4. Difference in appearance of leaf

tip between wild-type barley (‘Akashinriki’) and HvCslF6

mutant OUM125.

Supplementary Fig. S5. FACE analysis of lichenase

digests of cell wall extracts from various barley seedling

tissues of ‘Akashinriki’ (shown in blue line) and OUM125

(shown in red line) demonstrating the absence DP3 and

DP4 peaks characteristic of (1,3;1,4)-b-D-glucan in all

tissues of the mutant.

Supplementary Fig. S6. Content of (1,3;1,4)-b-D-glucan in

leaves of three sets of isogenic lines.

Acknowledgements

The authors are grateful to Dr WTB Thomas, Dr BG

Rossnagel, Dr WG Legge, Dr JL Molina-Cano, and Dr

T Yanagisawa for supplying seed samples of the barley

breeding lines. Barley landraces and wild accessions were
supplied by Dr K Sato under the support of National

Bioresource Project–Barley, Japan. Ms Y Ito, Ms

Y Yamashita, Mr Y Tsujino, Ms N Shigematsu, and Ms

Robin Chapple are acknowledged for technical assistance.

The authors also thank Dr K Yoshida and Dr S Kidou for

their useful suggestions. The research was partly supported

by a grant in aid (no. 21580007) from the Ministry of

Education, Culture, Sports, Science, and Technology, and
grants from the Ministry of Agriculture, Forestry, and

Fisheries of Japan (Genomics for Agricultural Innovation

Grant TRC1007, Development of crop production technol-

ogy for all-year-round multi-utilization of paddy fields), and

funding from the CSIRO Food Futures Flagship.

References

Bar-Peled M, O’Neill MA. 2011. Plant nucleotide sugar formation,

interconversion, and salvage by sugar recycling. Annual Review of

Plant Biology 62, 127–155.

Bouveng HS, Lindberg B. 1965. Hydrolysis of methylated

polysaccharides. Methods in Carbohydrate Chemistry 5, 269–276.

Bradford MM. 1976. A rapid and sensitive method for the

quantitation of microgram quantities of protein utilizing the principle of

protein–dye binding. Analytical Biochemistry 72, 248–254.

Brennan CS, Cleary LJ. 2005. The potential use of (1/3,1/4)-b-D-

glucans as functional food ingredients. Journal of Cereal Science 42,

1–13.

Buckeridge MS, Rayon C, Urbanowicz B, Tine MAS, Carpita NC.

2004. Mixed linkage (1/3),(1/4)-b-D-glucans of grasses. Cereal

Chemistry 81, 115–127.

Burton RA, Collins HM, Kibble NAJ, et al. 2011. Over-expression

of specific HvCslF cellulose synthase-like genes in transgenic barley

increases the levels of cell wall (1,3;1,4)-b-D-glucans and alters their

fine structure. Plant Biotechnology Journal 9, 117–135.

Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE,

Bacic A, Fincher GB. 2008. The genetics and transcriptional profiles

of the cellulose synthase-like HvCslF gene family in barley. Plant

Physiology 146, 1821–1833.

Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ,

Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB. 2006.

Cellulose synthase-like CslF genes mediate the synthsis of cell wall

(1,3;1,4)-b-D-glucans. Science 311, 1940–1942.

Burton RA, Ma G, Baumann U, et al. 2010. A customized gene

expression microarray reveals that the brittle stem phenotype fs2 of

390 | Taketa et al.

http://jxb.oxfordjournals.org/cgi/content/full/err285/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err285/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err285/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err285/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err285/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err285/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err285/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err285/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err285/DC1


barley is attributable to a retroelement in the HvCesA4 cellulose

synthase gene. Plant Physiology 153, 1716–1728.

Carpita NC, McCann MC. 2010. The maize mixed-linkage

(1/3),(1/4)-b-D-glucan polysaccharide is synthesized at the Golgi

membrane. Plant Physiology 153, 1362–1371.

Charnock SJ, Henrissat B, Davies GJ. 2001. Three-dimensional

structures of UDP-sugar glycosyltransferases illuminate the

biosynthesis of plant polysaccharides. Plant Physiology 125, 527–531.

Coutu C, Brandle JE, Brown DCW, Brown K, Simmonds JA,

Miki BLA, Hegedus DD. 2007. pORE: a modular binary vector series

suited for both monocot and dicot plant transformation. Transgenic

Research 16, 771–781.

Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA,

Fincher GB, Newbigin Ed, Bacic A. 2009. A barley cellulose

synthase-like CSLH gene mediates (1,3;1,4)-b-D-glucan synthesis in

transgenic Arabidopsis. Proceedings of the National Academy of

Sciences, USA, 106 .5996–6001.

Edwards K, Jhonstone C, Thompson C. 1991. A simple and rapid

method for the preparation of plant genomic DNA for PCR analysis.

Nucleic Acids Research 19, 1349.

Emebiri LC. 2009. EST-SSR markers derived from an elite barley

cultivar (Hordeum vulgare L. ‘Morex’): polymorphism and genetic

marker potential. Genome 52, 665–676.

Fincher GB. 2009. Revolutionary times in our understanding of cell wall

biosynthesis and remodeling in the grasses. Plant Physiology 149, 27–37.

Fujita M, Domon E, Doi Y. 1999. Grain and starch characteristics of

the double recessive lines for amylase-free and high amylase gene in

barley. Breeding Science 49, 217–219.

Gibeaut DM, Carpita NC. 1993. Synthesis of (1/3),(1/4)-b-D-

glucan in the Golgi apparatus of maize colepotiles. Proceedings of the

National Academy of Sciences, USA 91, 3850–3854.

Han F, Ullrich SE, Chirat S, et al. 1995. Mapping of ß-glucan

content and ß-glucanase activity loci in barley grain and malt.

Theoretical and Applied Genetics 91, 921–927.

Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME,

Tanksley SD. 1991. Construction of a restriction fragment length

polymorphism map for barley (Hordeum vulgare). Genome 34, 437–447.

Ishikawa M, Kuroyama H, Takeuchi Y, Tsumuraya Y. 2000.

Characterization of pectin methyltransferase from soybean hypocotyls.

Planta 210, 782–791.

Islam AKMR. 1983. Ditelosomic additions of barley chromosomes to

wheat. In: Sakamoto S, ed. Proceedings of the 6th International Wheat

Genetics Symposium. Kyoto: Maruzen, 233–238.

Islam AKMR, Shepherd KW, Sparrow DHB. 1981. Isolation and

characterization of euplasmic wheat–barley chromosome addition

lines. Heredity 46, 161–174.

Kato T, Sasaki A, Takeda G. 1995. Genetic variation of b-glucan

contents and b-glucanase activities in barley, and their relationship to

malting quality. Breeding Science 45, 471–477.

Kikuchi S, Taketa S, Ichii M, Kawasaki S. 2003. Efficient fine mapping

of the naked caryopsis gene (nud) by HEGS (High efficiency genome

scanning)/AFLP in barley. Theoretical and Applied Genetics 108, 73–78.

Künzel G, Korzun L, Meister A. 2000. Cytologically integrated

physical restriction fragment length polymorphism maps for the

barley genome based on translocation breakpoints. Genetics 154,

397–412.

Lazaridou A, Biliaderis CG. 2007. Molecular aspects of cereal beta-

glucan functionality: physical properties, technological applications

and physiological effects. Journal of Cereal Science 46, 101–118.

Li J, Baga M, Rossnagel BG, Legge WG, Chibbar RN. 2008.

Identification of quantitative trait loci for b-glucan concentration in

barley grain. Journal of Cereal Science 48, 647–655.

McCleary BV, Codd R. 1991. Measurement of (1/3),(1/4)-b-D-

glucan in barley and oats: a streamlined enzymatic procedure. Journal

of Science, Food and Agriculture 55, 303–312.

Meyer RC, Swanston JS, Young GR, et al. 2000. Genetic

approaches to improving distilling quality in barley. Barley Genetics 8,

107–114.

Molina-Cano JL, Moralejo M, Elia M, Munoz P, Russell JR,

Perez-Vendrell AM, Ciudad F, Swanston JS. 2007. QTL analysis of

a cross between European and North American malting barleys

reveals a putative candidate gene for b-glucan content on

chromosome 1H. Molecular Breeding 19, 275–284.

Munck L, Møller B, Jacobsen S, Søndergaard. 2004. Near infrared

spectra indicate specific mutant endosperm genes and reveal a new

mechanism for substituting starch with (1/3, 1/4)-b-D-glucan in

barley. Journal of Cereal Science 40, 213–222.

Nemeth C, Freeman J, Jones HD, et al. 2010. Down regulation of

the CSLF6 gene results in decreased (1,3;1,4)-b-D-glucan in

endosperm of wheat. Plant Physiology 152, 1209–1218.

O’Shea MG, Samuel MS, Konik CM, Morell MK. 1998.

Fluorophore-assisted carbohydrate electrophoresis (FACE) of

oligosaccharides: efficiency of labelling and high-resolution separation.

Carbohydrate Research 307, 1–12.

Ramsay L, Macauley M, Ivanissevich DS, et al. 2000. A simple

sequence repeat-based linkage map of barley. Genetics 156,

1997–2005.

Saitou N, Nei M. 1987. The Neighbor–Joining method: a new

method for reconstructing phylogenetic trees. Molecular Biology and

Evolution 4, 406–425.

Taketa S, Amano S, Tsujino Y, et al. 2008. Barley grain with

adhering hulls is controlled by an ERF family transcription factor gene

regulating a lipid biosynthesis pathway. Proceedings of the National

Academy of Sciences, USA 105, 4062–4067.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular

evolutionary genetics analysis (MEGA) software version 4.0. Molecular

Biology and Evolution 24, 1596–1599.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W:

improving the sensitivity of progressive multiple sequence alignment

through sequence weighting, position-specific gap penalties and

weight matrix choice. Nucleic Acids Research 22, 4673–4680.

Tonooka T, Aoki E, Yoshioka T, Taketa S. 2009. A novel mutant

gene for (1,3;1,4)-b-D-glucanless grain on barley (Hordeum vulgare L.)

chromosome 7H. Breeding Science 59, 47–54.

Trevelyan WE, Procter DP, Harrison JS. 1950. Detection of sugars

on paper chromatograms. Nature 166, 444–445.

Functional characterization of the barley CslF6 gene | 391



Tsuchiya K, Urahara T, Konishi T, Kotake T, Tohno-oka T,

Komae K, Kawada N, Tsumuraya Y. 2005. Biosynthesis of

(1/3),(1/4)-b-glucan in developing endosperms of barley (Hordeum

vulgare L. Physiologia Plantarum 125, 181–191.

Urahara T, Tsuchiya K, Kotake T, Tohno-oka T, Komae K,

Kawada N, Tsumuraya Y. 2004. A b-(1/4)-xylosyltransferase

involved in the synthesis of arabinoxylans in developing barley

endosperms. Physiologia Plantarum 122, 169–180.

Varshney RK, Marcel TC, Ramsay L, Russel J, Röder MS,
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