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Abstract
Background—Accelerometery and other sensing technologies are important tools for physical
activity measurement. Engineering advances have allowed developers to transform clunky,
uncomfortable, and conspicuous monitors into relatively small, ergonomic, and convenient
research tools. New devices can be used to collect data on overall physical activity and in some
cases posture, physiological state, and location, for many days or weeks from subjects during their
everyday lives. In this review article, we identify emerging trends in several types of monitoring
technologies and gaps in the current state of knowledge.

Best practices—The only certainty about the future of activity sensing technologies is that
researchers must anticipate and plan for change. We propose a set of best practices that may
accelerate adoption of new devices and increase the likelihood that data being collected and used
today will be compatible with new datasets and methods likely to appear on the horizon.

Future directions—We describe several technology-driven trends, ranging from continued
miniaturization of devices that provide gross summary information about activity levels and
energy expenditure, to new devices that provide highly detailed information about the specific
type, amount, and location of physical activity. Some devices will take advantage of consumer
technologies, such as mobile phones, to detect and respond to physical activity in real time,
creating new opportunities in measurement, remote compliance monitoring, data-driven discovery,
and intervention.
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INTRODUCTION
The ability to relate physical activity to health depends on its accurate measurement.
Research to refine and improve techniques and instruments for measuring physical activity
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has been ongoing for years. Although substantial progress has been realized, none of the
available methods is fully satisfactory because of problems related to cost, convenience, and
measurement error. Technologies that can support collection of objective physical activity
measures on a potentially massive scale, improve the accuracy and utility of the data, and
allow unprecedented data sharing are here or on the near horizon. This paper describes
emerging technologies, methods, and opportunities for advancing the field of objective
physical activity measurement. Best practices are outlined to accelerate development of
next-generation sensor technologies and maximize the value of ongoing research when those
new technologies become available. We also identify gaps in knowledge where the field
would benefit from additional device development. Finally, we make recommendations for
three target audiences: engineers/device developers, measurement scientists/statisticians, and
investigators who use these devices and methods in health and behavioral research.

This paper is intended to be a general introduction to emerging physical activity
measurement technologies and to stimulate discussion about best practices and future
directions. Though this overview cannot thoroughly discuss new methods, cite all relevant
literature, or fully explain the rationale and implications of our recommendations, we hope it
helps prepare the research community to make good use of future technologies.

CURRENT METHODS OF PHYSICAL ACTIVITY MEASUREMENT
The activity measurement community has expressed an interest in measuring nine concepts
in physical activity measurement. We discuss current methods used to measure these
concepts and the unique challenges that each present.

Energy Expenditure
The end goal of many studies is to estimate energy expenditure (EE), especially for obesity
research. The limitations of using doubly-labeled water and indirect calorimetry for direct
measurement, discussed by Freedson et al. in this supplement, have led to the development
of methods that estimate energy expenditure from wearable physiological sensors that
measure body/limb motion, heart rate, or other physiological variables.

Body and Limb Motion
Body motion can be used to estimate aspects of physical activity and sedentary behaviors,
and devices and algorithms that attempt to do this by measuring hip or limb acceleration
have proliferated (6). The size, convenience, and affordability of these devices will continue
to improve as developers take advantage of low-cost, low-power, and extremely small 3-axis
micro electro mechanical systems accelerometers, along with expanded memory and more
capable microprocessors. Current devices can operate for months by saving summary
measures, such as counts and vector magnitudes, but newer devices also will be capable of
saving the raw, unfiltered acceleration pattern for extended periods of time. As devices add
new capabilities, such as posture and specific behavior type detection, ensuring
comparability between data collected from different devices is increasingly a concern.

Heart Rate
Heart rate monitors are used to measure exertion or improve motion-based estimation of
energy expenditure, but they are limited as “stand alone” physical activity measures. Newer
devices are embedded in fabric chest straps, but all existing and foreseeable devices are
burdensome to wear for more than a few days. Devices for non-chest locations (e.g., ear,
wrist, and finger) involve somewhat awkward positioning, and differentiating the heart rate
signal from “noise” on a moving body is difficult to overcome (1).
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Other Physiological and Chemical Indicators of Exertion
Physiological signals such as skin temperature, galvanic skin response, respiration rate, and
foot pressure might be useful for improving physical activity or energy expenditure
estimation when used with accelerometery or heart rate monitoring, and for monitoring wear
time. Respiration is of interest to those studying exposure to environmental allergens and
toxins, and some work is being done on chemical sensing, such as non-invasive glucose
measurement. Each of these physiologic sensors, however, presents new challenges in terms
of ergonomics, size, cost, battery life, and usability.

Pose or Limb Position
Pose, or the relative position of multiple limbs in three dimensions, might be valuable for
detecting activities such as sitting, yoga, physical therapy exercises, and weight lifting. New
accelerometers can measure static gravitational force and thus determine orientation. This
information may be insufficient, however, to identify slow movements or specific poses,
especially if sensors become displaced when worn. Gyroscopes in combination with
accelerometers can be useful for assessing three-dimensional movements (19),
notwithstanding battery life and calibration challenges. Room-based optical tagging and
computer vision systems that detect limb position (23) might be useful in research using
room calorimeters, but applications in field settings are limited.

Muscle Activation
Detecting muscle activation may prove especially valuable for understanding the impact of
resistance activities on health. Although it may be possible to use accelerometers to detect
posture and motion during strength training activities, reliably measuring body mass moved
is likely to require new types of sensing. Machine learning and signal processing can be
applied to analysis of electromyographic signals (14), but current methods require electrodes
stuck to or even in the skin, which is not practical for extended field deployment.

Location and Proximity
Most efforts to understand the relationship between a person’s environment and physical
activity level have used global positioning system (GPS) devices for acquiring location.
Although GPS devices are being miniaturized and have improved battery life, they still do
not always provide an identifiable location. They can take 15 minutes to lock onto satellite
signals when someone exits a building, which could lead to loss of position data for short
trips, and they typically do not work indoors. One challenge is that longitude and latitude
coordinates are only an intermediate step in determining how people interact with, or are
influenced by, their surroundings. Better-quality geographic information systems (GIS)
databases linking location coordinates to the properties of those places are required.

Energy Consumption
Studying energy balance requires data not only on physical activity but also energy
consumption. Use of mobile phones and their audiovisual processing capabilities can help
people keep food diaries, respond to food frequency questionnaires, and achieve weight
management goals. Active areas of research include use of automatically or semi-
automatically processed images to infer information about food type and quantity (17). Even
with these new tools, measuring eating patterns typically requires substantially more
burdensome self-report than measurement of physical activity.

Other Self-report Information
For some interventions, self-reported activity or context about factors, such as perceived
exertion, may be as critical as understanding the person’s actual movement. Devices that use
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electronic ecological momentary assessment and context-sensitive ecological momentary
assessment (i.e., the device reacts based on a person’s location and actions) may reduce
subject burden by focusing question-asking at the most meaningful times (13). However,
any self-report assessment has some inherent limitations.

Limitations of Current Measures and Methods
Strengths and weaknesses of monitors used to measure various aspects of physical activity
have directly influenced which activities are most actively studied in laboratory and field
settings.

Laboratory Testing—Lab tests permit the use of sensors under highly-controlled
conditions. The most accurate yet burdensome sensors, such as indirect calorimeters or
wired electrocardiogram monitors, can be worn only for a few hours at a time. Researchers
with room calorimeters often run studies lasting a day or more, but limitations of current
technologies have largely dictated shorter lab studies in which participants undergo scripted
activities under artificial conditions. Some types of activities, such as structured exercises,
are easily reproduced in the lab. Sedentary behavior as it occurs in free-living settings,
however, is largely absent from these studies. Also underrepresented in these settings are
resistance exercises, activities where the motion may be influenced by the environment (e.g.,
street cycling vs. riding a stationary cycle ergometer), and “multi-tasking” activities where
people may switch between activities without reaching a physiological steady state. In many
studies, participants wear a variety of devices so that performance of the various devices can
be directly compared.

Field Testing—Many everyday activities, particularly the transition between activities
within a day, are difficult to reproduce in the laboratory. Despite improvements, the cost of
collecting and analyzing data from monitors is higher than from self-report, leading to
challenges ranging from device cost to the burden of data cleaning and analysis.
Consequently, in field studies participants typically wear sensors for a week or less, usually
only during “waking hours,” raising concerns about reactivity, sample bias, and the impact
of non-wear time on activity levels (27). Most researchers do not simultaneously collect
information about transportation mode, seasonal variability, and the influence of
environmental factors, such as proximity to people or other devices, or special situations
such as traffic. All of these factors can influence physical activity patterns.

EMERGING TECHNOLOGY AND METHODS
We expect to see a gradual improvement in overall device performance rather than the
development of fundamentally new types of sensors in physical activity measurement
devices. Breakthroughs will likely result from using multi-modal sensor fusion—combining
data from several types of sensors, sometimes located on different parts of the body or in the
environment—into a single system that is then used to infer precise, second-by-second detail
about physical activity type, amount, and location. These changes, in turn, will create new
opportunities in methods. New monitors should permit longer-term, lower-cost, higher-
compliance deployments enabling a broader spectrum of physical activity concepts to be
simultaneously measured in real-life settings.

Emerging Trends in Technology
Raw Data Processing—Devices will be capable of storing large amounts of raw data
from each of several sensors for extended time periods. Although new devices may still
output proprietary summary measures, such as counts, access to the raw data will facilitate
use of well-defined, non-proprietary algorithms to summarize the activity observed. This, in
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turn, will facilitate cross-device comparison. In addition, it will be possible to use the data to
not only estimate energy expenditure, but also compute ambulatory state and the specific
type of activity.

Multiple Sensor Data Fusion—Access to raw sensor data from inexpensive sensors
should help facilitate data fusion to improve physical activity measurement. Some devices
will incorporate multiple sensors into their electronics, such as one accelerometer for high-
sensitivity measurement of slow/light/sedentary motion and another for high-sensitivity
measurement of moderate and vigorous motion. Others will permit researchers to gather data
from multiple sensors that are time synchronized. Researchers should expect improved
measurement capabilities from devices using sensor fusion, including more detailed and
accurate information about activity type, device use/compliance, and environmental contexts
such as location. For example, newer systems might combine information from GPS,
motion, heart rate, infrared and ultraviolet light, direction, air pressure, and even ambient
sound sensors to infer whether someone is indoors or outdoors—information any sensor
alone cannot reliably provide. The system might also use multiple sensors to infer location
and mode of transport (16).

Activity/Context Inference Using Statistical Pattern Recognition—New devices
have sufficient computational power and memory to permit use of statistical pattern
recognition algorithms that process raw data, often from multiple sensors, and infer detailed
information about behavior or environmental contexts. For instance, features computed from
raw sensor patterns can be used to infer specific activity type (4,15,22,29). Features also
may encode periodicity of limb motion (computed using Fourier analysis), degree of limb
synchronization (computed using correlation), or other information about sensor movement.
Such features can be used to train pattern classification algorithms. Features computed from
multiple sensors, perhaps located on the waist, upper limb, and lower limb, can be combined
to improve behavior and context recognition (20). This is how emerging location systems
combine multiple radio signals with databases of locations of cell towers and WiFi nodes, in
addition to GPS, to infer location (12). This reduces lock times and allows the systems to
work indoors. Similarly, knowing location information may help a device more accurately
infer activity type. For example, incorporating the statistical knowledge that a “bench press”
or “arm stretches” may be more likely to occur at a gym or home than at the supermarket, a
device may improve its ability to detect those particular physical activity types by using
location information. Sensor fusion from wearable devices can even be used for automatic
detection of behaviors related to energy consumption, such as eating and chewing (2). When
devices store raw, time-synchronized data, activity inference can be done after data
collection or in real-time by devices that have sufficiently powerful processors such as found
in most mobile phones.

A challenge will be establishing the validity of such techniques in field deployments,
because most algorithms proposed so far have only been tested under controlled conditions.
Although work is ongoing to develop person-independent algorithms for activity type
detection and energy expenditure estimation, small amounts of training data from specific
individuals will improve such models. The new multimedia capabilities of devices such as
mobile phones will be used to simplify the process of collecting the required examples,
making a task that may currently seem time-consuming and impractical, practical. Another
consideration is that the inference algorithms do fail, although with sufficient training, data
failure rates can be reduced. Statistical techniques that use the inferred activities as outcome
variables may need to be adapted to account for the noise in the activity and context
inference.
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Wireless Data Exchange—Facilitating multiple data sensor fusion will be the
emergence of devices with low-power wireless chips that enable precise time
synchronization of multiple devices and transmission of real-time raw or summary data to a
data collection device located on the body or elsewhere. For example, the use of
synchronized, multiple limb information may permit more extensive activity inference than
data from a single body position (3,29). Low-power wireless protocols may also provide
new sensing capabilities. For instance, by detecting proximity to mobile phones with
Bluetooth®, emerging devices may even be able to detect whether someone is likely to be
near another person, such as a family member, providing new contextual information (25).

Personal Health Monitoring Devices—The emergence of personal health monitoring
devices sold by consumer electronic companies, such as pedometers, accelerometers and
heart rate monitors, which interface with phones, computers, and music players, will enable
researchers to deploy sophisticated measurement devices at substantially lower costs than
most of today’s popular research monitors. Some of these companies will provide
programmer interfaces to their devices, which will allow engineers to repurpose them for
research needs. It is anticipated that some devices will be designed with open specifications
so that, unlike existing commercial options, they can be modified and replicated
inexpensively by researchers. These trends will be accelerated if the research community
adopts standards for conducting cross-monitor validation tests, such as those proposed
elsewhere in this supplement (7).

Compliance and Compliance Monitoring—Many measurement devices do not
provide unambiguous data on subject device-use compliance. For instance, monitors may
return zero values that appear to be due to lack of compliance even when people are actually
wearing them properly but are completely sedentary, and GPS records do not differentiate
when the device is not working versus when it could not find a signal. New devices will
address these limitations, in part, by providing better compliance information using sensor
fusion. For example, a skin temperature sensor in a device worn touching the skin, as in the
SenseWear armband (Bodymedia Inc., Pittsburgh, PA) (26), might be used to detect device
malfunction or that the device was removed.

In addition to providing better compliance data, new devices may help improve it. Some
devices will be sufficiently small and waterproof so they can be worn 24 hours per day,
reducing the need to remember to put them back on. Moreover, new algorithms may permit
sensors to be worn on body locations other than the hip and, in some cases, under the
clothing, increasing wear time and social acceptability. Some devices will continuously
detect if they are being worn and used properly and provide real-time feedback to the subject
about how to do so, which in turn should improve compliance.

Ubiquity of Mobile Phones—A major opportunity in physical activity measurement is
being created not by a new class of sensor, but by the ubiquity of mobile phones with
multiple sensors and capabilities already built in, including large memory storage, micro
electro mechanical systems motion sensors, location sensing, low-power wireless networks,
and fast processors. Most importantly, potential subjects will already own these
sophisticated, sensor-enabled computers, and will be accustomed to carrying them nearly
everywhere and keeping them charged, unlike devices handed out in research studies. The
phone’s built-in Internet access will permit remote data collection and study compliance
monitoring. By leveraging this consumer investment in technology, and the massive
engineering effort being devoted by the telecom industry to improve services such as
location finding, researchers will have access to a “free” device that can be used for data
storage, real-time activity detection, real-time compliance monitoring and encouragement,
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and novel forms of feedback for health interventions. As phones improve, physical activity
measurement tools can be improved as well.

Some challenges to using mobile phones must be overcome. One is that the multiple uses of
the phone will reduce researcher control over the device. Another is that the mobile phone
market is fragmented, requiring systems to be developed on multiple operating systems.
Finally, running CPU and sensor-intensive applications continuously could affect phone
usability. Each of these challenges appears manageable, however.

Context-Sensitive Ecological Momentary Assessment for Self Report—Devices
such as mobile phones that have an input/output mechanism and that can detect activity or
context in real time permit context-sensitive ecological momentary assessment. That is,
questions can be triggered in response to likely physical activity (or lack thereof) or
proximity to a location or object of interest. Context-sensitive ecological momentary
assessment may reduce the burden of self-report, especially because software applications
can be designed in a fun and lighthearted way that encourages additional reporting and
offsets the annoyance of interruption. Mobile phones using speech recognition for audio
keyword spotting (11) might further simplify data input.

Advances in Web-Based GIS Mapping Systems—The longitude/latitude
information provided by GPS is inadequate for understanding the relationship between
physical activity and the environment. What is really needed is context information about
the location, such as landmarks, roads, open spaces, or type of businesses that exist around a
particular place. Researchers can expect to see an increasing number of mapping and GIS-
related programmer interfaces that allow for mobile devices with wireless data network
access to make real-time queries about what is at a particular location. These databases—
particularly those that allow for community contributions and edits, such as walkability
audits (5) conducted by community members using a data collection application on mobile
phones or data contributed by “citizens as sensors” (10)—may create opportunities for
researchers to more effectively use GIS information. They also may permit location-based
context-sensitive ecological momentary assessment (e.g., ask a particular question only
when a person is known to be in a park). Creating these databases may be more of a social
and administrative challenge than a technical one, as GIS researchers report that both public
and proprietary GIS databases are difficult to assemble, access, update, evaluate, and fix,
and researchers may be skeptical of open GIS data sources (18).

Battery Life—Battery life of devices will improve to some extent. However, by leveraging
devices that subjects may already charge regularly, such as mobile phones, researchers may
be able to overcome battery limitations. For instance, suppose a sensor is embedded in a
phone that gathers accelerometer and location data. If the phone is kept charged by the
subject because that person requires or enjoys the capabilities the phone affords, the battery
life of physical activity/location sensing will be adequate as long as it does not disrupt
normal phone usage.

Environmental Sensors—Applying sensors to measure a person’s environment is
becoming increasingly practical. For instance, radio-frequency identification stickers that
cost less than $1 can be placed on objects in a home and used to detect location and type of a
person’s everyday activities (21). Such technology could be deployed in settings where
physical activity is common (e.g., gyms), or could be placed in the homes of participants to
measure interaction with objects, such as exercise equipment, as well as other objects that
may influence physical activity or energy balance, such as televisions and computers. Used
in combination with motion data, such sensing may further improve activity inference
algorithms.
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Emerging Trends in Methods
Emerging trends in sensing devices and techniques will create new opportunities in methods
for improving compliance and interventions.

Interactive Compliance Aids—The ability for devices, particularly mobile phones, to
detect wear time and respond instantly with feedback to study participants could
dramatically increase compliance, thereby protecting statistical power by maintaining the
majority of recruited participants. However, concerns about measurement reactivity, or the
effect of the measurement on the participant’s behavior, must be explored.

Remote Compliance Monitoring and Data Collection—The ability of devices to
send data to research servers using cellular data networks permits daily remote monitoring
of study participants by simply logging onto a secure website. Only participants who are
clearly out of compliance need to be contacted, saving staff time. This methodology also
allows technology that is broken to be quickly identified and replaced. Once data are
transmitted to the research team, they can be removed from the device, possibly extending
deployment time. Finally, data can be cleaned incrementally, reducing time from data
collection to data analysis.

Long-term Studies with Objective Measures—Mobile phone-based methods will
allow study participants to download study software. Data can then be sent to the research
server and compliance can be monitored remotely. The researchers running the study do not
need to recover the phone, and there is no reason that data collection must be limited to a
week, several weeks, or even several months. In some cases, it may be possible to run
studies for years with little administrative overhead, where tools automatically process
incoming data, and researchers can subsample from within long timeframes of data
collection.

Studies with Large Sample Sizes—Methodological innovations, such as remote data
collection and compliance monitoring using mobile phones that people already own, may
make studies with thousands or tens of thousands of participants affordable. This makes
data-driven discovery feasible, where algorithms mine massive datasets for unexpected
trends (8). Data-driven discovery may complement the hypothesis-driven style of research
most commonly used today.

BEST PRACTICES
Recommended Best Practices for Engineers and Device Developers

We encourage engineers and device developers to use the validation protocols defined in
this supplement when introducing a new device, to establish consistency and uniformity
with previous devices. Additional steps will maximize the research impact of new devices.

• Engage health researchers in building the technology, starting at the earliest stages
of the design process. Ideally, grant makers would fund collaborations that permit
iterative development and testing of measurement and intervention technologies to
support this goal.

• Create devices that save raw data using international standards (e.g., standard
gravity) versus proprietary units (e.g., counts) to facilitate cross-device
comparisons. Where necessary to extend limited data storage, create a fully
specified path from raw data to intermediate feature that is reproducible by others.
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• Explore how instrumentation of the environment, in addition to instrumentation of
the body, might be used to gather new types of data on physical activity-related
behaviors and their contexts.

• Develop proof-of-concept sensors that show the viability of using consumer
technologies to collect high-quality physical activity data, and develop prototype
data visualization and analysis tools that demonstrate the potential of data-driven
research methods with large datasets.

Several gaps in physical activity measurement sensing and tools would benefit from
additional effort from engineers and device developers:

• Sensors that improve device compliance. Two areas to explore are sensors that
never need to be removed from the body and sensors that proactively detect non-
compliance and automatically encourage proper use.

• Non-obtrusive measurement of sleep states.

• Web-based, incremental screening of data using visualization tools that help
identify missing data, extreme values, and data that violate common sense.

• Detection of resistance activities and muscle activation. A breakthrough with a
comfortable, practical sensor would provide the physical activity measurement
community with a missing tool.

• Heart rate monitoring, where variability due to physiological versus psychological
responses can be differentiated.

• Development of open GIS databases and support tools so that physical activity
researchers can work with others to improve GIS data sources. Collaborations with
major mapping and GIS database companies such as Google and Tele Atlas may
accelerate these efforts and permit GIS data contributed by the general public (10)
to be used for health research as well.

Recommended Best Practices for Measurement Scientists and Statisticians
Measurement scientists and statisticians can take steps today using existing devices to
accelerate the introduction of new technology in the near future.

• Provide specifications for sensor devices, such as what they should measure and in
what units, where no component of the specification is proprietary.

• Establish a consensus that devices that output proprietary units should also output
raw data.

• Provide a prioritized list of well-specified activities and categories of activities, as
well as other physiological states that need to be measured. Set out specific
measurement challenges for device developers and include clear validation
protocols. These protocols should consist of: (1) bench tests that measure device
response across the full range of expected behaviors and physiological states; (2)
algorithmic tests using bench test data that compare device output against current
and past devices, using archived, raw datasets so that not all devices need to be
physically tested together; (3) lab tests that measure device response to small but
likely variability in body placement during a set of common postures and
ambulatory activities; and (4) field tests that measure device response to important
postures, ambulations, and everyday activities.

• Share raw datasets in common formats in online repositories that facilitate reuse
and cross-study and cross-device comparisons. Such repositories may create
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incentives for algorithm developers to improve and share models and sensors, as
they have done in other fields, such as electrocardiogram analysis (9).

• Look to other fields, such as gait recognition, activity of daily living recognition,
machine learning, and ubiquitous computing, for alternative methods to process
raw signal data. In addition, use sensor fusion to detect not only gross levels of
motion but specific behaviors or contexts.

• Develop resources to facilitate finding, archiving, visualizing, and reusing not only
the datasets, but the algorithms used to process them. These resources should
include tutorials to help investigators apply comparable methods across studies and
easy-to-use versions of promising algorithms that run in freely-available tools such
as Weka (28) and R (24), so researchers can easily adopt new techniques and
compare them. A central list linking to existing databases would facilitate this goal.

• Develop data analysis methods that can use time-series data of activity type,
amount, and location, where the data are assumed to be inferred from multi-sensor
systems that detect activity states with some quantifiable uncertainty.

• Develop research projects or a central research service that evaluates equivalency
between devices using bench, lab, and field tests and creates tools that simplify data
collection, verification, annotation, and sharing.

• Begin testing the impact of real-time compliance feedback on physical activity
reactivity and determine whether this is a serious concern.

• Seek out engineers and device developers to write reviews of technologies for
conferences and journals and collaborate in planning long-term physical activity
measurement device development.

Recommended Best Practices for End Users of Measurement Systems
Researchers using existing devices can take steps to maximize the research value and
comparability of their current datasets when future devices are in common use and current
devices are no longer available.

• Adopt, as soon as possible, devices that do not have proprietary components at any
point of the chain of converting from raw data to final output (e.g., counts, energy
expenditure), reducing reliance on device-specific, proprietary count units.

• Whenever possible, collect data and save data in raw formats and process afterward
into summary features (e.g., counts) using well-described algorithms.

• Whenever possible, pilot a new device simultaneously with standard devices, so
comparability can be assessed.

• Publicize the practical lessons learned from studies, including the problems that
were encountered, for the benefit of engineers. If such observations will not appear
in outcomes papers, publish them on the Internet. The practical challenges and the
tricks used to overcome them will help engineers design better devices. Highlight
the missing information that would have helped interpret the data, run the study, or
lower the study’s cost.

• Report on the total cost of using a technology, including the staff time required for
training, compliance monitoring, fixing devices, and other issues. This information
will help engineers develop new tools that may reduce overall research costs, as
well as the costs of the devices themselves.
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Recommended Best Practices for All Groups
The following best practices are recommended for all investigators.

• Encourage multi-disciplinary teams to develop tools for managing and checking
data remotely on devices and to run pilot studies on flexible sensor platforms.

• Encourage and organize tutorials and panels at conferences to educate researchers
about the long-term value of using technology that fully specifies how all aggregate
summary measures (e.g., well-defined versions of counts) are computed. The
benefits will be higher-quality and higher-fidelity data obtained at lower costs and
with larger sample sizes.

• Supplement Pubmed literature reviews with searches in databases where
engineering papers are indexed, such as IEEE, ACM, Springer, Elsevier, and
Google Scholar.

FUTURE DIRECTIONS
Below we discuss several trends that could evolve over the next 5 years.

• More devices may emerge that take advantage of motion measurement in three
dimensions, reducing device sensitivity to body orientation and/or allowing an
estimate of work done by particular parts of the body (e.g., arms vs. legs).

• Devices that log data using onboard memory will be capable of storing summary
data for months or raw accelerometer data (60+Hz, 3-axis) for one or more weeks
on a single charge. These devices will be about the same size as, or smaller than,
existing devices.

• Researchers will have the ability to change the focus of their measures from
proprietary counts to summary data computed from raw accelerometer signals,
where the summary feature computations are fully and openly described. This
should facilitate comparison across different devices. Efforts to define standards for
cross-device validation and openness, such as in this supplement, can accelerate
these changes.

• Sensors will be sufficiently small and convenient so that it will be possible to have
participants comfortably wear more than one sensor at different body locations
under clothing. Devices that integrate information from more than one body
location may dramatically improve the fidelity of physical activity data that can be
collected from participants.

• Systems may improve activity type and amount detection performance using
statistical pattern recognition algorithms that not only use motion features from
accelerometers, but also information from other types of sensors (e.g., location).

In the longer term, it is possible that a system could:

• Be downloaded from an “app store,” directly onto a standard mobile phone;

• Use entertaining ways to teach participants to use and wear it, while collecting
training data;

• Detect overall physical activity level if carried in the pocket or on the hip;

• Detect specific types of physical activity such as postures, ambulation, and even
resistance activities if used with one or more additional wireless devices that
communicate with the phone;
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• Provide entertaining audiovisual feedback to prompt participants when it is not
working or being worn properly;

• Provide engaging f b eedback to the participant using the detected physical activity
information, such as applications for health monitoring, time management, or even
games;

• Transmit data about physical activity and compliance to researchers daily;

• Create long-term, second-by-second activity maps for researchers, overlaid on
location where the activity took place; and,

• Provide new opportunities to create interventions that influence in-the-moment
decision making with tailored, just-in-time feedback.

CONCLUSION
Few measurement devices in use today will be on the market 10 years from now in an
identical form. Internal electronic components, firmware, wireless chips protocols, and
housings are all likely to change as old technologies are supplanted by improved or lower-
cost options. Longitudinal studies using current technologies will need lab and field tests
that show equivalence between “old” and emerging devices and the datasets they generate.
Following the recommendations proposed here, such as saving raw data whenever possible,
as well as those presented elsewhere in this special issue, may facilitate such “bridging
studies.” In order to maximize the impact of physical activity measurement research being
conducted today, investigators must expect and plan for change so as to fully exploit the
potential of the new devices on the horizon.
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