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Abstract
In eukaryotes, mitochondria carry out numerous functions central to cellular and organismal
health. How mitochondrial activities are regulated in response to differing environmental
conditions, such as variations in diet, remains an important unsolved question in biology. Here we
review emerging evidence suggesting that reversible acetylation of mitochondrial proteins on
lysine residues represents a key mechanism by which mitochondrial functions are adjusted to meet
environmental demands. In mammals, three members of the sirtuin class of NAD+-dependent
deacetylases – SIRT3, SIRT4, and SIRT5 – localize to mitochondria and regulate targets involved
in a diverse array of biochemical pathways. The importance of this activity is highlighted by
recent studies of SIRT3 indicating that this protein suppresses the emergence of diverse age-
related pathologies: hearing loss, cardiac fibrosis, and malignancy. Together, these findings argue
that mitochondrial protein acetylation represents a central means by which mammals regulate
mitochondrial functions to maintain cellular and organismal homeostasis.
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1. Introduction: mitochondrial regulation in health and disease
Mitochondria are cytoplasmic organelles that carry out numerous functions critical to
cellular and organismal homeostasis (Wallace 2005). They generate the majority of cellular
ATP via the Krebs cycle, oxidation of fatty acids, and oxidative phosphorylation. These
activities make them the principal source of reactive oxygen species (ROS) within the cell.
They also carry out amino acid degradation along with a portion of the urea cycle, and are
the site of ketone body formation and heme biosynthesis. They represent a major storage site
for cellular Ca2+. In brown adipocytes, they function in heat generation. Finally, they are
key mediators of apoptosis. Structurally, mitochondria consist of a matrix space enclosed by
an impermeable inner mitochondrial membrane (IMM), in turn surrounded by a permeable
outer mitochondrial membrane (OMM). Embedded in the IMM are electron transport chain
complexes I–IV that extrude protons from the matrix, generating an electrochemical
gradient across the IMM. At complex V (ATP synthase), protons flow back into the matrix
with this gradient, coupled to ATP synthesis. Mitochondria possess circular genomes
encoding 13 electron transport chain subunits plus some tRNA and rRNA genes. Thus, the
great majority of proteins required for respiratory function and other mitochondrial activities
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(~1500) are encoded in the nucleus. Inherited mutations in the mitochondrial genome cause
a variety of syndromes of varied severity and age of onset, whereas acquired mitochondrial
dysfunction may contribute to the degenerative manifestations of aging, as well as age-
associated diseases such as type 2 diabetes, neurodegeneration, and malignancy (Wallace
2005).

1.1 The challenge of mitochondrial regulation
Coordination of mitochondrial processes with those occurring in other parts of the cell
represents a formidable regulatory challenge. This chapter focuses on emerging roles for
acetylation of mitochondrial proteins in regulating functions of this organelle, and the
involvement of sirtuin-family deacetylases in this process. However, it is important to point
out that many other pathways play roles in regulating mitochondrial number and function, a
broader topic that is the subject of a number of excellent recent reviews (Finley and Haigis
2009; Ryan and Hoogenraad 2007; Scarpulla 2008). Briefly, factors that induce
mitochondrial biogenesis – exercise, electrical stimulation, cold challenge, nitric oxide,
thyroid hormone, and glucocorticoids – induce a coordinated transcriptional response from
the mitochondrial and nuclear genomes (Butow and Avadhani 2004). Nuclear proteins
involved in regulating expression of nuclear-encoded mitochondrial genes include
transcription factors (NRF-1 and -2, PPARα and γ, ERRα, and Sp1, among others) and
members of the PGC-1 coactivator family (PGC-1α and -1β, and PRC) (Butow and
Avadhani 2004; Scarpulla 2008). Other proteins with crucial roles in regulating
mitochondrial functions include the deacetylase SIRT1 via its role in activating PGC-1α
(Gerhart-Hines et al. 2007; Rodgers et al. 2008), as well as the AMP-activated protein
kinase (AMPK) and the mammalian target of rapamycin (mTOR) kinase (Finley and Haigis
2009; Schieke et al. 2006). Mitochondrial dysfunction is signaled to the nucleus by a variety
of mechanisms, in yeast collectively termed the retrograde response, that remain poorly
understood in mammals. A specialized system involving the nuclear transcription factors
CHOP and C/EBPβ exists to indicate the presence of unfolded proteins in mitochondria
(Ryan and Hoogenraad 2007).

1.2 Calorie restriction-induced alterations in mitochondrial functions
Variations in diet represent a challenge to mitochondrial function. Mitochondrial adaptation
to altered diet is thought to be particularly significant in the context of calorie restriction
(CR) – i.e. reduced caloric intake without malnutrition – an intervention that robustly
extends lifespan in organisms ranging from budding yeast to rodents, and potentially
primates as well (Fontana 2009). In rodent models, CR extends lifespan and delays the onset
of a host of age-associated pathologies, including type 2 diabetes, cardiovascular disease,
renal failure, cancer, and neurodegeneration (Fontana 2009). Many CR-associated health
benefits have been observed in studies of non-human primates, notably dramatic reductions
in cancer, cardiovascular disease, brain atrophy, sarcopenia, and type 2 diabetes (Colman et
al. 2009; Colman et al. 2008). In humans, CR is associated with greatly improved metabolic
and cardiovascular function (Fontana 2009). Thus, pharmacologic mimics of CR would
likely have far-reaching health benefits in humans.

Mechanisms of longevity extension by CR remain incompletely understood; however
metabolic alterations occurring in the adaptation to CR are likely in part responsible for the
beneficial effects of this intervention. These changes implicate alterations in mitochondrial
functions as an integral component of the CR response (Anderson et al. 2008b). In budding
yeast, increased mitochondrial respiration is required for longevity extension by some (Lin
et al. 2002) but not all (Kaeberlein et al. 2005) CR regimens. In C. elegans, CR or genetic
and pharmacologic CR mimetics also induce increased mitochondrial respiration, which is
required for CR-induced longevity (Bishop and Guarente 2007; Houthoofd et al. 2002a, b;
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Schulz et al. 2007). In mammals, CR induces mitochondrial biogenesis in a tissue-specific
manner, at least in part through increased expression and activity of endothelial nitric oxide
synthase and PGC-1α (Anderson et al. 2008a; Civitarese et al. 2007; Lambert et al. 2004;
Lopez-Lluch et al. 2006; Nisoli et al. 2005). Conflicting data have been published regarding
effects of CR on mitochondrial respiration in mammals (Hunt et al. 2006; Lambert et al.
2004; Nisoli et al. 2005; Weindruch et al. 1980). Numerous reports indicate that CR reduces
mitochondrial ROS generation, a source of chronic cellular injury, and concomitantly
reduces accumulation of macromolecular oxidative damage (Gredilla and Barja 2005).
Several mechanisms may account for this decline in ROS during CR. The recruitment of a
larger complement of mitochondria to generate ATP during CR could in and of itself reduce
ROS generation (Guarente 2008); as could increased mitochondrial turnover occurring
during CR, via removal of damaged mitochondria that would otherwise produce excessive
ROS (Miwa et al. 2008). Increased mitochondrial uncoupling observed under CR conditions
could also attenuate ROS generation (Brand 2000). As described below, new data suggests
that the SIRT3 deacetylase plays a key role in bolstering mitochondrial anti-oxidant
defenses during CR (Qiu et al. 2010; Someya et al. 2010). Overall, CR leads to increased
mitochondrial biogenesis and decreased ROS generation in mammals.

In addition to these impacts, CR entails a shift from glucose utilization to the use of
alternative sources of energy such as amino acids, ketones, and fatty acids (Spindler and
Dhahbi 2007). This transition necessitates adaptation of numerous mitochondrial metabolic
pathways. Indeed, within mitochondria, activities of a wide variety of enzymes have been
shown to be altered in response to CR; much of this work has focused on the liver (Dhahbi
et al. 2001; Hagopian et al. 2005; Hagopian et al. 2003, 2004; Tillman et al. 1996).
Transcriptional changes occurring during CR have been extensively characterized
(Anderson and Weindruch 2007). However, modulation of gene expression does not account
for all of these activity changes (Spindler and Dhahbi 2007). This implies that non-
transcriptional mechanisms to regulate mitochondrial functions during CR must exist.

2. Protein acetylation is a conserved mechanism of metabolic regulation
Reversible acetylation on the ε-amino group of internal lysine residues (hereinafter referred
to as acetylation) has emerged as a post-translational modification with a crucial role in
regulating target protein function, akin to phosphorylation. This modification is distinct,
chemically and functionally, from acetylation of the α-amino groups of N-terminal residues;
the latter occurs during translation and is irreversible (Polevoda and Sherman 2002).
Although lysine acetylation was originally discovered on histones in the context of
chromatin regulation, it is now clear that acetylation plays a crucial role in regulating a
plethora of non-histone proteins, including transcription factors and metabolic enzymes
(Spange et al. 2009). As discussed in depth below, regulated acetylation/deacetylation of
proteins within mitochondria, regulated by sirtuin deacetylases, likely represents one
mechanism by which mitochondrial functions are tailored to meet the demands of dietary
challenges such as CR and other metabolic perturbations.

2.1 Mass spectrometry surveys reveal that acetylation of mitochondrial proteins is
widespread

One of the first clues as to the wide-ranging impact of acetylation on diverse cellular
functions came from a large-scale proteomic survey to identify acetylated proteins (Kim et
al. 2006). Using acetyl-lysine affinity purification coupled with mass spectrometry, this
study identified acetylation sites on 195 proteins, including numerous non-histone proteins.
Strikingly, 133 acetylated proteins were identified within the mitochondrion, an organelle
where acetylation of only a single protein had previously been documented (Hallows et al.
2006; Schwer et al. 2006). Moreover, this report showed that acetylation in liver
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mitochondria changed in response to fasting, suggesting that this modification might play a
role in mitochondrial response to food deprivation. The widespread nature of mitochondrial
protein acetylation was confirmed in several subsequent independent mass spectrometry
surveys (Choudhary et al. 2009; Kendrick et al. 2010; Schwer et al. 2009; Zhao et al. 2010).
Work by many laboratories suggests a central role for acetylation of mitochondrial proteins
in the regulation of individual enzyme activities and overall metabolism (Zhao et al. 2010).
Acetylation of proteins involved in virtually every mitochondrial function has been reported.
Much of the work examining the role of acetylation in regulating mitochondrial protein
activities has been performed in the context of studies of sirtuin deacetylases and is
discussed below. This role for acetylation in regulating metabolic functions is ancient and
conserved, and exists even in bacteria, where it is controlled by the opposing activities the
Pat acetyltransferase and the sirtuin CobB (Starai et al. 2002; Wang et al. 2010; Zhang et al.
2009).

2.2 Mitochondrial protein acetylation is altered in response to calorie restriction and other
dietary interventions

Work from our group has implicated alterations in mitochondrial protein acetylation
specifically in the response to CR (Schwer et al. 2009). Global mitochondrial acetylation is
altered in a tissue-specific manner during CR; these changes are particularly striking in liver
and in brown adipose tissue, where global mitochondrial acetylation rises and falls,
respectively, in response to this diet. Mass spectrometry analysis revealed that acetylation of
at least 72 hepatic mitochondrial proteins increases during CR, involving essentially all
mitochondrial metabolic pathways. The functional impact of these acetylation changes at the
level of individual enzyme activities has been elucidated for only a very few targets (Ahn et
al. 2008; Cimen et al. 2010; Nakagawa et al. 2009). One target of CR-associated acetylation
changes identified in this study, the E1α subunit of the pyruvate dehydrogenase complex
(PDC) (Schwer et al. 2009), is of particular interest, in that this enzyme performs the rate-
limiting, final step in glycolysis: conversion of pyruvate to acetyl-CoA for use in the Krebs
cycle or biosynthetic processes. Potential alterations in PDC activity mediated by acetylation
could have far-reaching metabolic consequences in the cell. In this regard, in budding yeast
PDC is required for CR-induced lifespan extension, and overexpression of a PDC subunit
extends replicative lifespan in this organism (Easlon et al. 2007), suggesting that regulation
of PDC function may represent a conserved component of the response of mitochondria to
CR. The actual impact of altered acetylation on PDC remains to be elucidated.

Aside from CR, acetylation of many mitochondrial and non-mitochondrial proteins in liver
also rises in response to high-fat diet (HFD) and chronic ethanol ingestion, conditions
associated with diminished mitochondrial respiratory function (Kendrick et al. 2010; Picklo
2008; Shepard et al. 2010; Shulga and Pastorino 2010). Whether or not these acetylation
changes occurring during CR and other dietary stresses represent regulated events, and
whether overlapping or distinct sets of protein substrates and individual lysine residues are
targeted under these different conditions, remain unsolved but important questions. Overall,
acetylation of mitochondrial proteins has emerged as a widespread modification that plays a
crucial role in regulating mitochondrial functions. The critical question is how this
modification is regulated at the level of individual substrates in response to varied
environmental conditions.

3. Mitochondrial sirtuins in metabolic regulation
Conserved from bacteria to mammals, the sirtuins are a protein family involved in regulating
many biological processes, including stress responses, metabolism, development, and
longevity (Haigis and Sinclair 2010). Sirtuins modify target proteins by means of their
lysine deacetylase and ADP-ribosyltransferase activities; both require NAD+ as an obligate
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cofactor. Since NAD+ levels rise in response to reduced energy status and/or altered redox,
sirtuins provide a means by which cells sense and respond to their environment (Guan and
Xiong 2010). Sirtuin activity can be repressed by NADH and by a product of the sirtuin
deacetylase reaction, nicotinamide (NAM) (Bitterman et al. 2002; Lin et al. 2004).
Mammals possess seven sirtuins, SIRT1-SIRT7; these are a diverse protein family, with
varied tissue expression, subcellular localization patterns, activity profiles, and targets (see
chapter by S. Imai and colleagues, this volume, for a general overview of sirtuin biology).
Three mammalian sirtuins (SIRT3, SIRT4, and SIRT5) are mitochondrial. These sirtuins are
thus ideally positioned to regulate mitochondrial functions via modification of proteins
within this organelle. Characterization of mitochondrial sirtuin functions has been aided
immensely by the availability of mouse strains with targeted mutations in these genes
(Haigis et al. 2006; Lombard et al. 2007). SIRT3 is a potent deacetylase with many
mitochondrial targets, whereas SIRT5 is a more selective deacetylase; in contrast the only
function characterized for SIRT4 to date is as is an ADP-ribosyltransferase (Ahuja et al.
2007; Haigis et al. 2006; Lombard et al. 2007; Nakagawa et al. 2009; North et al. 2003).
Although HDAC7, a non-sirtuin deacetylase, has been reported to localize to mitochondria
(Bakin and Jung 2004), no mitochondrial substrates have been reported for this enzyme. By
contrast, a large amount of data exists supporting a crucial role for mitochondrial sirtuins in
the regulation of mitochondrial functions.

4. SIRT3 is a master regulator of mitochondrial functions and suppresses
age-associated phenotypes

Among the mitochondrial sirtuins, SIRT3 functions have been characterized in the greatest
detail. Initial studies of SIRT3-deficient mice indicated that loss of SIRT3, but not SIRT4 or
SIRT5, led to dramatic protein hyperacetylation within mitochondria, suggesting that SIRT3
deacetylates numerous targets in this organelle and is the major mitochondrial deacetylase
activity (Lombard et al. 2007). The mitochondrial localization of SIRT3 has been
extensively demonstrated by multiple independent laboratories (Cooper et al. 2009;
Lombard et al. 2007; Onyango et al. 2002; Schwer et al. 2002). In humans, full length
SIRT3 is a 44 kilodalton (kD) protein with an N-terminal mitochondrial targeting sequence
that is an enzymatically inactive in vitro. It is proteolytically processed in mitochondria to a
mature 28 kD catalytically active deacetylase (Onyango et al. 2002; Schwer et al. 2002). The
first mouse SIRT3 cDNA sequence identified encoded a 28 kD protein lacking the N-
terminal mitochondrial targeting sequence (Yang et al. 2000). However, several recent
studies have identified a longer isoform of murine SIRT3 encoding a 37 kD protein that can
be imported into mitochondria and processed into the mature 28 kD protein (Bao et al.
2010a; Cooper et al. 2009; Jin et al. 2009; Yang et al. 2010b).

Whether or not an active fraction of SIRT3 exists outside mitochondria and modifies extra-
mitochondrial proteins is a controversial topic. There is one report that human SIRT3
localizes to nuclei, where it deacetylates histones, and is imported into mitochondria upon
cellular stress such as genotoxic insult (Scher et al. 2007). Co-overexpression of SIRT5
along with SIRT3 is reported to drive SIRT3 to the nucleus (Nakamura et al. 2008). Rat
SIRT3 was detected not only in mitochondria but also in the nucleus and cytoplasm of
cardiomyocytes (Sundaresan et al. 2008). Unfortunately, current data supporting the
presence of active extra-mitochondrial SIRT3 is based on overexpression and/or knockdown
approaches rather than analysis of cells and tissues derived from SIRT3-null mutants. While
it is clear that SIRT3 deficiency impacts cellular physiology outside mitochondria, this could
occur due to retrograde signaling occurring in the context of mitochondrial dysfunction
induced by lack of SIRT3. Conversely, it remains a possibility that an active fraction of
SIRT3 might exist outside mitochondria in specific tissues and cell types (e.g.
cardiomyocytes) (Sundaresan et al. 2008). The role of SIRT3 in regulating extra-
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mitochondrial signaling is reviewed below; we now turn to a discussion of mitochondrial
processes targeted by SIRT3.

4.1 SIRT3 regulates numerous metabolic pathways within mitochondria
Expression studies of SIRT3 have shown that SIRT3 levels rise in adipose tissue, skeletal
muscle, and liver during CR or fasting (Hirschey et al. 2010; Palacios et al. 2009; Schwer et
al. 2009; Shi et al. 2005), and conversely decline in insulin-resistant states (Yechoor et al.
2004) or in response to high-fat feeding (Bao et al. 2010b; Kendrick et al. 2010; Palacios et
al. 2009). These expression data suggest that SIRT3 might play a role in the response to
caloric deprivation. The first mitochondrial SIRT3 substrate identified was Acetyl-CoA
Synthetase 2 (AceCS2) (Hallows et al. 2006; Schwer et al. 2006; Shimazu et al. 2010b).
AceCS2 converts free acetate, produced from endogenous catabolic reactions or absorbed
from the gut, into the active metabolite acetyl-CoA for energy production in the Krebs cycle.
In mammals, two independent studies showed that SIRT3 interacts with and deacetylates
AceCS2 at the active site lysine to promote AceCS2 activity (Hallows et al. 2006; Schwer et
al. 2006). Interestingly, in Salmonella the homolog of AceCS2 is also activated by the
sirtuin CobB (Starai et al. 2002; Starai and Escalante-Semerena 2004), an activity that is
crucial for bacterial growth on acetate. In mammals under fed conditions, the majority of
acetyl-CoA is generated through metabolism of pyruvate by PDC and by fatty acid β–
oxidation, largely bypassing the need for AceCS2. In this regard, studies of AceCS2-
deficient mice revealed that AceCS2 is specifically required for metabolic homeostasis in
the context of a low carbohydrate/high fat diet (LC/HFD); AceCS2-deficient animals are
essentially normal on a chow diet but show poor weight gain, hypothermia, hypoglycemia,
and impaired survival on a LC/HFD (Sakakibara et al. 2009). It will be of interest to assess
the impact of a LC/HFD on SIRT3-deficient animals to determine whether they show
similar defects in vivo. Presumably the role of SIRT3 in regulating AceCS2 could also be
important during fasting, when acetate can be used as a source of energy in extrahepatic
tissues (Hirschey et al. 2010). In this context, SIRT3 has recently been shown to deacetylate
and activate 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a mitochondrial
enzyme that converts acetyl-CoA into ketone bodies (acetoacetate, β-hydroxybutyrate, and
acetone) in the liver under fasting conditions, which can in turn be used as a source of
energy in certain tissues such as the brain (Shimazu et al. 2010a). SIRT3-deficient mice are
unable to produce normal levels of ketone bodies upon fasting. Thus SIRT3 promotes
multiple aspects of the response to fasting, and, as we shall see, CR.

Emerging data from several laboratories has shown that one major function of SIRT3 is
regulation of mitochondrial electron transport chain activity to maintain energy homeostasis.
Initial analysis of SIRT3-deficient animals demonstrated that these mice were metabolically
unremarkable with respect to overall respiration, fuel utilization, activity, and cold tolerance
(Lombard et al. 2007). However, subsequent detailed studies revealed that SIRT3-deficient
liver, heart, kidney, and fibroblasts all show reduced basal ATP levels (Ahn et al. 2008).
Moreover, SIRT3 interacts with the mitochondrial complex I component NDUFA9, and
SIRT3 deficiency is associated with increased complex I acetylation and inhibition of its
activity (Ahn et al. 2008; Bao et al. 2010b; Kim et al. 2010). Besides complex I, SIRT3 also
regulates other electron transfer chain components, including complex II (Cimen et al.
2010), III (Kendrick et al. 2010; Kim et al. 2010), IV (Kendrick et al. 2010), and V (Bao et
al. 2010b). In all of these cases, increased complex acetylation occurring in the context of
SIRT3 deficiency or knockdown correlates with decreased complex activity. These findings
suggest that SIRT3 regulates many aspects of mitochondrial oxidative phosphorylation. In
future studies, it will be of interest to define at a mechanistic level how acetylation on
electron transport chain subunits affects ATP generation. For example, acetylation could in
principle affect electron transport chain subunit activity, turnover, and/or complex assembly/
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stability, among other parameters. It is also important to elucidate why it might be desirable
under some physiologic conditions to downregulate electron transport chain activity via
increased acetylation. As an added wrinkle, SIRT3 negatively regulates translation within
mitochondria by deacetylating the ribosomal protein MRPL10, a function proposed to
reduce respiration (Yang et al. 2010a).

Another recently identified role for SIRT3 involves its regulation of mitochondrial β–
oxidation of fatty acids, the major pathway of fatty acid breakdown in mammals (Hirschey
et al. 2010). SIRT3-deficient animals show elevated levels of long-chain fatty acids upon
fasting, along with impaired β–oxidation. The authors of this study found that SIRT3
deacetylates and activates the β–oxidation enzyme long-chain specific acyl-CoA
dehydrogenase (LCAD). Although young adult (12 week-old) fed SIRT3-deficient animals
show no cold sensitivity (Lombard et al. 2007), very young (4-week old) fasted SIRT3-
deficient mice are cold-intolerant, much like mice lacking LCAD (Guerra et al. 1998) and
other models of defective β–oxidation. As mass spectrometry surveys have revealed
acetylation of additional β–oxidation enzymes besides LCAD (Schwer et al. 2009), it
remains to be seen whether SIRT3 regulates β–oxidation by deacetylation of additional
targets. Independently, it was found that SIRT3-deficient hepatocytes are more susceptible
to fatty-acid induced cell death, a phenotype suppressed by anti-oxidants and which the
authors attributed to electron transport chain dysfunction leading to elevated ROS
production (Bao et al. 2010b). SIRT3 also increases β–oxidation in muscle cells in culture,
and reduces lipid accumulation in HepG2 cells, effects ascribed to the role of SIRT3 in
promoting AMPK activity (Palacios et al. 2009; Shi et al. 2010). Overall, SIRT3 allows the
efficient use of fatty acids as fuel with minimal cellular toxic effects through deacetylation
of multiple mitochondrial targets.

4.2 SIRT3 impacts extra-mitochondrial signaling
One important issue that remains to be resolved is how SIRT3 impacts extra-mitochondrial
processes. As mentioned above, PGC-1α is a co-activator protein that plays a critical role in
promoting mitochondrial biogenesis, adaptive thermogenesis, fatty acid oxidation, and ROS
detoxification, among other metabolic processes (Jeninga et al. 2010). PGC-1α stimulates
SIRT3 expression by binding to the SIRT3 promoter together with estrogen-related receptor
α (ERRα) (Kong et al. 2010). Strikingly, the reciprocal relationship holds as well; SIRT3 is
required for normal PGC-1α expression in brown adipocytes and in skeletal muscle
(Palacios et al. 2009; Shi et al. 2005). SIRT3 promotes PGC-1α expression by stimulating
phosphorylation and activity of factors known to regulate PGC-1α expression, CREB and
AMPK (Palacios et al. 2009; Pillai et al. 2010; Shi et al. 2005). SIRT3 is also required for
PGC-1α to induce mitochondrial biogenesis and expression of its target genes, particularly
genes involved in ROS detoxification, and for PGC-1α to suppress ROS levels (Kong et al.
2010). How SIRT3 impacts PGC-1α is not completely clear, although one study attributes
this effect to a role for (presumably extra-mitochondrial) SIRT3 in deacetylating and
activating LKB1, a kinase upstream of AMPK (Pillai et al. 2010). Since SIRT3 promotes
increased ATP production in many tissues (Ahn et al. 2008), and AMPK is phosphorylated
and activated in response to an increased AMP:ATP ratio, SIRT3 might be predicted to
suppress rather than stimulate AMPK phosphorylation and activity. These effects may
represent functions of extra-mitochondrial SIRT3, or the indirect effects of a retrograde
response. In any case, the fact that SIRT3 impacts activities of master metabolic regulators
such as PGC-1α and AMPK complicates the interpretation of data generated using SIRT3-
deficient mice and cells, since it may be unclear whether a given phenotype results from loss
of SIRT3 itself and its role in deacetylating a particular mitochondrial target, or secondary
effects on overall cellular physiology associated with loss of SIRT3.
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4.3 SIRT3 and cell death
Because mitochondria are central to the intrinsic pathway of cell death, several groups have
assessed roles for SIRT3 in modulating cell survival, and have obtained conflicting results.
Given that SIRT3 has numerous substrates exerting diverse biological effects (Lombard et
al. 2007), it is perhaps not surprising that discrepant results have been obtained in this
regard. Experimental differences in the cell type analyzed, the nature of cellular injury, etc.
likely explain these disparities. SIRT3 overexpression sensitizes lymphoma cells to
kaempferol, a flavonoid that induces ROS and cell death (Marfe et al. 2009). SIRT3-
deficient mouse embryonic fibroblasts (MEFs) are resistant to cell death induced by DNA
damage (Kim et al. 2010). Similarly, in a variety of tumor cell lines SIRT3 knockdown
confers resistance to cell death induced by depletion of Bcl-2 (Allison and Milner 2007).
Conversely, SIRT3 protects cardiomyocytes against genotoxin-induced killing, an effect
attributed to a role for extra-mitochondrial SIRT3 in deacetylating the Ku70 protein to
promote its interaction with the pro-apoptotic protein Bax (Sundaresan et al. 2008). SIRT3 is
also required for cell survival in response to the genotoxin methyl methanesulfonate (Yang
et al. 2007). Similarly, SIRT3 promotes viability of hepatocytes in response to TNFα
exposure via deacetylation and inactivation of cyclophilin D (see below)(Shulga and
Pastorino 2010). In bladder cancer cells, SIRT3 also allows continued proliferation
following induction of the p53 tumor suppressor, which ordinarily induces senescence
(permanent growth arrest) (Li et al. 2010). This function of SIRT3 has been ascribed to the
ability of SIRT3 to deacetylate p53 within mitochondria. In vivo, SIRT3 plays an important
role in promoting long-term survival of cells in the inner ear to preserve hearing during CR
(see below)(Someya et al. 2010), suggesting that in this specific context, the pro-survival
function of SIRT3 is dominant.

SIRT3 likely modulates cell death through multiple different mechanisms and targets.
Several groups have reported that SIRT3 plays a major role in suppression of intracellular
ROS levels (Bao et al. 2010b; Kim et al. 2010; Kong et al. 2010; Qiu et al. 2010; Someya et
al. 2010). Since ROS are a potent inducer of apoptosis, this activity of SIRT3 provides a
potential means by which SIRT3 could promote cellular survival. Recent studies have
revealed that another key mechanism by which SIRT3 suppresses cell death is through
deacetylation of cyclophilin D (cypD). CypD is a peptidyl-prolyl isomerase that potentiates
activity of the mitochondrial permeability transition pore (MPTP), a non-selective high
conductance channel promoting cell death, particularly in the contexts of cardiac and
neuronal ischemia (Giorgio et al. 2010). SIRT3 was shown to deacetylate and inactivate
cypD to promote mitochondrial respiration in the presence of a non-fermentable carbon
source (Shulga et al. 2010). Subsequent elegant studies have revealed that this role of SIRT3
is also important in antagonizing cell death (Shulga and Pastorino 2010). Ethanol treatment
of cells suppresses SIRT3 function via decreasing the NAD+:NADH ratio. This in turn
promotes hyperacetylation and increased activity of cypD and the MPTP. This effect of
ethanol can be prevented by treatment of cells with either the AMPK activator AICAR or
acetoacetate, both of which elevate the NAD+:NADH ratio and restore SIRT3 activity. As
an important control, introduction of a cypD acetylation site mutant that mimics
deacetylation prevents ethanol-induced sensitization to TNFα and bypasses the requirement
for SIRT3. Interestingly, although cypD promotes cell death in the context of TNFα
treatment, it actually suppresses apoptosis in response to other stimuli (Li et al. 2004;
Schubert and Grimm 2004). Thus this single SIRT3 substrate may represent a key target in
the context of both pro- and anti-survival roles for SIRT3 described above. Future studies
are needed to assess the roles of SIRT3 in regulating cypD in the context of cell death in
vivo, particularly in response to medically relevant stressors such as ischemic injury.
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4.4 SIRT3 in the regulation of lifespan and age-associated phenotypes
In addition to elucidating its roles in regulating specific biochemical pathways in
mitochondria, there is great current interest in testing whether SIRT3 might modulate age-
associated phenotypes, or indeed lifespan itself. In this regard, some studies have linked
polymorphisms in the SIRT3 genomic locus to human longevity, though others have failed
to demonstrate this association (Bellizzi et al. 2007; Bellizzi et al. 2005; Lescai et al. 2009;
Rose et al. 2003). A polymorphism associated with decreased SIRT3 mRNA expression was
present in cohorts of young but not old men, suggesting that reduced SIRT3 expression may
be detrimental to survival in old age (Bellizzi et al. 2009; Bellizzi et al. 2005). In sedentary
individuals, SIRT3 protein expression declined with age in skeletal muscle mitochondria,
concomitant with a reduction in respiratory function (Lanza et al. 2008).

4.4.1 SIRT3 and cardiac hypertrophy/fibrosis—Emerging data from mouse models
suggests that SIRT3 may indeed play an important role in delaying the onset of age-
associated disorders (Fig. 1). Cardiac hypertrophy is a common age-associated pathology in
western societies, where it is most frequently caused by hypertension. While initially an
adaptive response, cardiac hypertrophy can lead to various downstream sequelae such as
arrhythmias and ischemia. New data suggest a role for SIRT3 in antagonizing the onset of
this disease. SIRT3-deficient mice show mild cardiac hypertrophy and fibrosis at baseline,
and greatly exaggerated hypertrophy response to pharmacologic stimuli; conversely a SIRT3
overexpressor is protected (Sundaresan et al. 2009). The authors find that SIRT3 negatively
modulates intracellular signaling pathways known to promote hypertrophy. The authors
attribute this effect to an extra-mitochondrial role for SIRT3 in suppressing ROS levels via
deacetylation of the FoxO3A forkhead transcription factor, inducing FoxO3A nuclear
localization and increased expression of expression of the oxidative defense proteins
catalase and superoxide dismutase 2 (SOD2). FoxO3A activity is required for SIRT3 to
induce its anti-hypertrophic effects in a tissue culture model system. The same group has
found that exogenous NAD+ can block cardiomyocyte hypertrophy in vivo and in tissue
culture in a SIRT3-dependent manner. The authors attribute this role of SIRT3 both to its
aforementioned role in suppressing ROS levels, as well as to a role for SIRT3 in
deacetylating and inactivating the LKB1 kinase (Pillai et al. 2010). This work reveals
important roles for SIRT3 in preventing age-associated cardiac pathology; given the many
mitochondrial substrates for SIRT3, it is difficult to know whether extra-mitochondrial
FoxO3A and/or LKB1 represent the relevant substrates for SIRT3 in this process in vivo. In
particular, some human patients with mitochondrial genome mutations develop cardiac
hypertrophy, suggesting that impaired respiratory function occurring in SIRT3 deficiency
per se could conceivably contribute to this phenotype (Vydt et al. 2007). Significantly, mice
deficient in LCAD, a known SIRT3 substrate, also develop cardiac hypertrophy (Cox et al.
2009; Kurtz et al. 1998); thus SIRT3 could promote cardiac health by multiple mechanisms.

4.4.2 SIRT3 and mammary cancer—In most mammals, an increased incidence of
malignancy is a prominent feature of aging (Lombard et al. 2005). A recent ground-breaking
study has revealed SIRT3 to be a tumor suppressor (Kim et al. 2010). SIRT3-deficient
MEFs show higher levels of ROS in response to various forms of stress, aberrations in
nuclear chromosome number, and decreased mitochondrial genome integrity, which is also
observed in the livers of SIRT3-deficient animals with age. Moreover, SIRT3-deficient
MEFs are more easily transformed, and resist apoptosis in response to DNA damage. Many
of these cellular phenotypes associated with SIRT3 deficiency can be rescued by expression
of exogenous SOD2, suggesting that mitochondrial superoxide plays a causative role in
these defects. Most strikingly, a significant fraction of SIRT3-deficient mice develop
mammary carcinoma after one year of age. Expression of SIRT3 is decreased in human
breast cancer, suggesting that SIRT3 may play a similar tumor suppressor role in humans.
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This work reveals a critical novel aspect of SIRT3 function, and raises important
mechanistic questions regarding how SIRT3 suppresses mammary tumorigenesis. The
authors suggest that SIRT3 might promote SOD2 expression via regulation of FoxO3A
activity. However, while SIRT3-deficient mice develop mammary tumors, mice with
reduced SOD2 levels develop primarily lymphomas (Van Remmen et al. 2003). Such a
discrepancy could in principle result from differences in mouse strain background used in
the two studies; alternatively regulation of SOD2 by SIRT3 could be crucial in mammary
epithelium but less important in the hematopoietic system. The aneuploidy observed in
SIRT3-deficient cells is also notable, in that oxidative stress is most closely associated with
chromatid and chromosome breaks leading to genomic rearrangements, rather than ploidy
alterations. It would be of interest to test whether SIRT3 deficiency leads to these types of
DNA lesions, in addition to altered chromosomal number. In this regard, elevated ROS
levels could promote growth of malignant cells by mechanisms other than increased
genomic instability. In particular, many phosphatases that negatively regulate growth factor
signaling can be inactivated by oxidative modification (Finkel 2003), suggesting that
chronically increased ROS in SIRT3 deficiency might provide a trophic stimulus to
developing tumors. The authors note that SIRT3-deficient cells generate a greater fraction of
their ATP via glycolysis (Kim et al. 2010). This is a phenotype observed in many cancer
cells (aerobic glycolysis; the Warburg effect) that promotes aspects of the malignant
phenotype (Hsu and Sabatini 2008). Thus, lack of SIRT3 might promote oncogenesis
through impaired respiratory function, in turn permitting Warburg-like metabolism.
Similarly, germline mutations in genes encoding enzymes of the Krebs cycle, succinate
dehydrogenase (SDH) and fumarate hydratase (FH), lead to tumor susceptibility in humans
(King et al. 2006). SIRT3 deacetylates SDH to promote its activity in the context of electron
transport; FH is also acetylated, although no role for SIRT3 in regulating FH has been
identified (Cimen et al. 2010; Kim et al. 2006; Schwer et al. 2009; Zhao et al. 2010). Thus
SIRT3 could conceivably suppress tumorigenesis via effects on the Krebs cycle, in addition
to the roles discussed above.

4.4.3 SIRT3 and age-related hearing loss—Age-related hearing loss (ARHL), or
presbycusis, is a common and vexing problem in the elderly, occurring secondary to cell
loss and other degenerative changes in the cochlea (Liu and Yan 2007). A recent elegant
study has firmly established a role for SIRT3 in antagonizing ARHL (Someya et al. 2010).
Previously, it was known that CR or suppression of oxidative damage prevents cochlear cell
loss and ARHL (Someya et al. 2009; Someya et al. 2007). The protective effects of CR on
ARHL are SIRT3-dependent (Someya et al. 2010). One mechanism by which SIRT3
mediates this effect is via deacetylation of isocitrate dehydrogenase 2 (IDH2) (Schlicker et
al. 2008; Someya et al. 2010), which converts isocitrate to alpha-ketoglutarate concomitant
with reduction of NADP+. NADPH in turn allows regeneration of reduced glutathione to
promote mitochondrial oxidative defense. In response to CR, wild-type mice, but not
SIRT3-deficient animals, show increased NADPH levels, increased reduced glutathione in
mitochondria, and decreased DNA damage in the cochlea and in other tissues. In tissue
culture cells, overexpression of SIRT3 or IDH2 is protective against oxidative stress-
induced cell death, and the two proteins together have a synergistic pro-survival effect.
These results do not rule out the possibility that SIRT3 might modify other substrates to
prevent AHRL during CR aside from IDH2. Similarly, Qiu and colleagues reported that
SIRT3-deficient mice fail to suppress ROS levels and macromolecular damage during CR
(Qiu et al. 2010). They find that SIRT3 directly deacetylates SOD2 to increase its activity
during CR, whereas SIRT3-deficient mice do not show SOD2 deacetylation in response to
this diet (Qiu et al. 2010). Overall, these papers point to crucial role for SIRT3 in
suppressing oxidative damage and its negative sequelae during CR. It remains to be seen
how SIRT3, or the other mitochondrial sirtuins, might impact other phenotypes of aging
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and/or effects of CR. In this context, the reduction of serum insulin and triglycerides
normally occurring during CR are not observed in SIRT3-deficient mice (Someya et al.
2010), implying that SIRT3 plays additional, uncharacterized roles in the adaptation to this
dietary regimen.

5. SIRT4 regulates the urea cycle, insulin secretion, fatty acid oxidation,
and respiration

In contrast to numerous substrates and pathways regulated by SIRT3, comparatively little is
known regarding the other two mitochondrial sirtuins, SIRT4 and SIRT5 (Fig. 2). SIRT4 is
localized in the mitochondrial matrix in both mouse and human cells (Ahuja et al. 2007;
Haigis et al. 2006; Michishita et al. 2005) and is broadly expressed, with high SIRT4 levels
present in kidney, heart, brain, liver and pancreatic β-cells (Ahuja et al. 2007; Haigis et al.
2006). In liver, SIRT4 expression declines slightly during CR and increases in genetic
models of diabetes (Haigis et al. 2006; Nasrin et al. 2010; Schwer et al. 2009). Thus far, no
deacetylase function of SIRT4 has been detected, although it is possible that SIRT4 may
possess very specific deacetylase activity on as-yet unidentified substrates (Ahuja et al.
2007; Black et al. 2008; Haigis et al. 2006; North et al. 2003). Instead, using SIRT4-
deficient mice, it was shown that SIRT4 ADP-ribosylates and inactivates glutamate
dehydrogenase (GDH) (Haigis et al. 2006). GDH converts glutamate to α-ketoglutarate in
mitochondria, and its inhibition by SIRT4 results in repression of amino acid-stimulated
insulin secretion in pancreatic β-cells (Haigis et al. 2006). Reduced SIRT4 activity allows
coupling of insulin secretion to serum amino acid levels during CR, when amino acids serve
as an important carbon source. It is of interest that SIRT3 deacetylates and activates GDH
(Lombard et al. 2007; Schlicker et al. 2008), implying possible coordinated control of GDH
by SIRT3 and SIRT4. Indeed, since SIRT5 regulates an additional urea cycle enzyme
(CPS1) (Nakagawa et al. 2009), this pathway is the target of regulation by all three
mitochondrial sirtuins. In an independent study, SIRT4 was shown to repress insulin
secretion in response to glucose in insulinoma cells and to interact with insulin degrading
enzyme (IDE) and the ADP/ATP carrier proteins ANT2 and ANT3; the impact of these
interactions is not known (Ahuja et al. 2007).

A recent study investigating additional functions of SIRT4 showed that SIRT4 knockdown
in tissue culture cells or in mouse liver in vivo results in increased expression of
mitochondrial and fatty acid metabolism enzymes (Nasrin et al. 2010), as well as of SIRT1
and SIRT3. SIRT4 knockdown also leads to increased fatty acid oxidation, respiration, and
AMPK phosphorylation (Nasrin et al. 2010). The effects of SIRT4 knockdown on fatty acid
oxidation require SIRT1. Many of these phenotypes are the opposite of those observed in
SIRT3 deficiency, suggesting once again that SIRT3 and SIRT4 activities may antagonize
one another in some contexts. Whether SIRT4 mediates these effects via ADP-ribosylation
or deacetylation of mitochondrial targets, or alternatively whether an extra-mitochondrial
fraction of SIRT4 might play a role in direct regulation of nuclear gene expression, are
important unanswered questions raised by this work.

6. SIRT5 regulates the urea cycle
SIRT5 is localized to the mitochondrial matrix and is broadly expressed, with highest levels
in brain, heart, liver and kidney (Michishita et al. 2005; Nakagawa et al. 2009; Schlicker et
al. 2008). Unlike SIRT3 or SIRT4, hepatic SIRT5 levels are unchanged during CR
(Nakagawa et al. 2009; Schwer et al. 2009). SIRT5-deficient mice do not show any gross
phenotypes and do not display the global increase in hepatic mitochondrial acetylation
observed in SIRT3-deficient animals (Lombard et al. 2007). Also unlike SIRT3, SIRT5 has
minimal deacetylase activity on canonical sirtuin substrates such as histones (Black et al.
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2008; North et al. 2003; Scher et al. 2007; Schlicker et al. 2008). In vitro, SIRT5
deacetylates purified cytochrome c, although the biological significance of this activity has
not yet been determined (Schlicker et al. 2008). More recently, SIRT5 was shown to interact
with and deacetylate carbamoyl phosphate synthetase I (CPS1), which catalyzes the first,
rate-limiting step of the urea cycle for ammonia detoxification and disposal (Nakagawa et al.
2009). Deacetylation of CPS1 by SIRT5 results in increased enzyme activity, and SIRT5-
deficient mice fail to upregulate CPS1 activity and show elevated blood ammonia during a
prolonged fast. In the same study it was shown that CPS1 is deacetylated during CR and that
CPS1 activity increases on this diet, although the impact of CR on SIRT5-deficient mice
was not directly tested (Nakagawa et al. 2009). The ability of SIRT5 to deacetylate and
activate CPS1 was independently verified in transgenic mice overexpressing SIRT5 (Ogura
et al. 2010). However, we identified CPS1 as a hepatic protein increasing in acetylation
during CR (Schwer et al. 2009). The resolution to this discrepancy is not clear, but it may be
that CPS1 acetylation and activity are regulated by proteins other than SIRT5 during CR.
Alternatively, different techniques of assessing CPS1 acetylation might preferentially
uncover different acetylation sites, which could be regulated in opposing ways during CR. In
this regard, CPS1 possesses over 20 acetylation sites, implying that acetylation-mediated
regulation of CPS1 activity may be quite complex (Schwer et al. 2009).

It is likely that other SIRT5 substrates and functions remain to be identified. In this context,
a recent study reported that the presence of a SIRT5 promoter polymorphism correlates with
reduced SIRT5 expression and an “older” pattern of gene expression in the human brain
(Glorioso et al. 2010). Many of the transcripts altered in the presence of this polymorphism
encode mitochondrial proteins, including Parkinson’s disease genes; the authors suggest that
SIRT5 polymorphisms may represent a risk factor for diseases related to mitochondrial
dysfunction. It will be of great interest to test this hypothesis in human cohorts and using
cells and mice with altered levels of SIRT5.

7. Mitochondrial protein acetylation and sirtuins: unresolved questions
Acetylation of mitochondrial proteins plays a major role in regulating functions of this
organelle. Despite the rapid progress in this area, there are still many outstanding questions
that will no doubt provide fruitful avenues for research for years to come. In particular, how
mitochondrial proteins are acetylated in the first place is currently unknown. The identity of
putative mitochondrial acetyltransferases remains elusive; identification of such proteins
would represent a major step forward in this field. Alternatively or in addition to enzymatic
acetylation within mitochondria, mitochondrial proteins could in principle be acetylated
outside this organelle, prior to or concomitant with mitochondrial import; or even be
acetylated non-enzymatically. These latter models would not permit rapid cycles of
acetylation/deacetylation of mitochondrial proteins to regulate target protein function in
response to varied environmental challenges. Instead, following deacetylation, restoration of
acetylation status would require new protein synthesis. Such models could be distinguished
through pulse-chase experiments assessing acetylation of newly synthesized mitochondrial
proteins prior to and following mitochondrial import. The fact that a mitochondrially-
encoded subunit of complex V is acetylated means that some mechanism of acetylating
proteins within this organelle must exist (Huang et al. 2010).

Similarly, how sirtuin activity is regulated in the mitochondria is incompletely understood.
Sirtuin require NAD+, and therefore mitochondrial NAD+ levels play a critically important
role in governing mitochondrial sirtuin function. Increased NADH generation from NAD+ in
the context of HFD leading to reduced sirtuin function may explain the increased global
mitochondrial protein acetylation observed during this diet, as could increased acetyl-CoA
levels, the substrate for acetyltransferases (Kendrick et al. 2010). It has been reported that
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NAD+ levels in mouse liver mitochondria rise during CR, which would be predicted to
increase sirtuin activity (Nakagawa et al. 2009), and moreover SIRT3 protein levels rise in
this tissue in response to this diet (Schwer et al. 2009). However, these observations are at
odds with the observation that global mitochondrial acetylation rises dramatically in liver
during CR (Schwer et al. 2009). This overall increased acetylation may represent the net
effect of increased acetyltransferase activity superimposed upon elevated sirtuin function;
alternatively, some protein species hyperacetylated during CR or other conditions may not
be substrates for mitochondrial sirtuins. The activity of SIRT3 and other mitochondrial
sirtuins might be governed by other influences besides NAD+ levels, such as post-
translational modification or interactions with regulatory proteins. It is now clear that SIRT1
activity is tightly regulated by both mechanisms. Surprisingly, no comprehensive
quantitative assessment of mitochondrial NAD+ and its metabolites has yet been performed
under varied dietary/environmental conditions in different tissues.

While several proteomic studies have provided a detailed snapshot of the suite of acetylated
mitochondrial proteins, how this modification changes at individual lysines on various
targets in response to different environmental conditions is a topic that is only beginning to
be explored. This effort will require the use of mass spectrometry-based approaches that
allow quantitative comparison of acetylation on a given peptide between different samples,
such as label-free quantitation (Schwer et al. 2009), stable labeling by amino acids in culture
(SILAC) (Choudhary et al. 2009), isobaric tagging for relative and absolute quantification
(iTRAQ) (Meany et al. 2007), or stable isotope dimethyl labeling (Boersema et al. 2009). It
is currently unclear whether interventions that impact acetylation of many mitochondrial
proteins – SIRT3 deficiency, CR, HFD, and chronic ethanol ingestion – lead to modification
of common sets of proteins on the same lysine sites, or whether this response is tailored to
different environmental perturbations. Similarly, it remains unclear whether the
mitochondrial sirtuins share targets and/or functions in common. This question could be
addressed in mice or cells with compound mitochondrial sirtuin deficiencies or knockdowns.
As noted above, whereas SIRT3 deacetylates GDH to modestly stimulate its activity
(Lombard et al. 2007; Schlicker et al. 2008), SIRT4 ADP-ribosylates this protein to suppress
function (Haigis et al. 2006). This observation raises the possibility that other proteins might
be common substrates for multiple sirtuins. Given that SIRT3 deacetylates many proteins in
mitochondria as well as suppresses some age-associated phenotypes, it will be of interest to
test whether acetylation of mitochondrial proteins changes with age, either individually or
globally, and whether prevention of this effect might have a beneficial effect on healthspan
or even lifespan.

In addition, whereas the functional impact of acetylation on a few individual protein targets
is clear, a global understanding of how sirtuins impact the activity of metabolic pathways at
the level of mitochondria, cells, tissues, and the organism overall is still lacking. Metabolic
flux analysis, which has already been successfully applied to bacterial cells with altered
protein acetylation, can be used to address this question (Wang et al. 2010). The answers to
these and related questions regarding sirtuins and mitochondrial protein acetylation will no
doubt reveal novel aspects of mitochondrial biology, and perhaps ultimately provide the
basis for novel therapeutic strategies for a variety of disorders.
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Figure 1. SIRT3 suppresses the onset of diverse age-associated pathologies
Mitochondrial and cellular impacts of SIRT3 are underlined, along with proposed
mitochondrial substrates in parentheses. Some postulated substrate-phenotype relationships
represent speculation by the authors; these are designated with question marks. Note that
some roles of SIRT3 (e.g., promoting ketone body synthesis and suppressing mitochondrial
translation) are omitted for clarity’s sake. See text for details.
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Figure 2. Metabolic functions of SIRT4 and SIRT5
Mitochondrial and cellular process are underlined and the relevant substrate is indicated in
parentheses. MT, mitochondrial. See text for details.

Lombard et al. Page 22

Handb Exp Pharmacol. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


