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Abstract
Multigenerational pedigrees provide an opportunity for assessing the effects of unobserved
environmental and genetic effects on longevity (i.e., frailty). This article applies Cox proportional
hazards models to data from three-generation pedigrees in the Utah Population Database using two
different frailty specification schemes that account for common environments (shared frailty) and
genetic effects (correlated frailty). In a model that includes measures of familial history of
longevity and both frailty effects, we find that the variance component due to genetic factors is
comparable to the one attributable to shared environments: Standard deviations of the correlated
and the shared frailty distributions are 0.143 and 0.186, respectively. Through simulations, we also
show a greater reduction in the bias of parameter estimates for fixed covariates through the use of
the correlated frailty model.

ASSESSING the sources of variation in human life span is a fundamental objective in
biodemography and gerontology. The familial component of longevity has been a topic of
considerable interest over the past century (1–19). Family-based studies have, in general,
provided support for a modest genetic influence on life span. There is a small, simple
correlation between the age at death of parents and offspring and stronger correlations
between the ages at death of siblings (1,5,11–13). Several investigators found that a
heritable component is present mainly in later-life survival and that life span does not seem
to be heritable if parents live shorter lives (6,20). Gender differences in the inheritance of
longevity have also been reported (6,20,21). Heritability estimates for age at death vary from
nearly 0 (13) to 0.33 (22). In an attempt to separate the impact of genetic factors and the
effect of family environment, several investigators have generated heritability estimates
based on twin data. Studies comparing monozygotic and dizygotic twins have supported the
prediction that life span is more correlated in monozygotic than dizygotic twins (9,22–24).
Sorensen and colleagues’ (14,15) studies of longevity in adopted children showed that
premature death in adults has a strong genetic component.

It is clear that genetic factors affect adult survival probabilities, although the relative
importance of environment and genes is still not fully determined. The opportunities for
researchers to conduct studies that address this question have grown due to the increasing
availability of survival data for families and multigenerational pedigrees. Data from large
pedigrees contain valuable information with which to assess the role of genetics and
environment in understanding variability in longevity. Accessible and flexible statistical
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tools needed to analyze these complex pedigrees still need to be fully developed and
evaluated.

Historically, longevity data have been studied by calculating correlations and analysis of
variance between uncensored life spans of siblings as well as between parents and offspring.
When the data contain censored observations, the analysis of variance approach is not
appropriate and instead survival methods need to be considered, such as the widely used
Cox proportional hazards model. One of the basic assumptions in the Cox model is
independence of survival times of individuals given the observed values of covariates.
However, in studies involving multiple individuals from the same family, the independence
assumption is not plausible unless all important familial factors were measured and
controlled for in the model. It is now standard practice to adjust for these family-based
sources of statistical dependencies in survival models through the introduction of a frailty
component. In this usage, frailty refers to a susceptibility to death that is not captured by
observed covariates. Typically, frailty includes factors that affect an individual's survival
chances such as genes and unmeasured attributes of the environment, all of which may or
may not be shared to some degree with others in a family or pedigree. The most common
frailty specification is the “shared frailty” extension of the proportional hazards regression
model. The way in which shared frailty has been used in these models has largely been to
collapse all factors that are not measurable into a single random effect that is shared by
individuals within the group (e.g., family). Guo (25) and Guo and Rodriguez (26) used
survival techniques that incorporate a shared frailty component to study genetic and
environmental influences on longevity among sets of siblings across numerous families.
They interpreted the frailty component as the sum of unobserved shared factors that were
likely to affect longevity, including genetic effects shared among siblings, shared gene–gene
interactions, common influence of parental competence, and other shared household effects
that were not captured by observed covariates in their study. Hougaard and colleagues (27)
used several versions of the frailty model for bivariate survival to fit data for Danish
monozygotic and dizygotic twins. In a shared frailty model, the frailties are unobserved
random variables assumed to be independent and to follow a probability distribution, the
shape of which is described by a few parameters. These models provide insight into the
effects of familial risk on mortality, but have not been designed to incorporate complex
genetic relationships found in family data of varying size and structure. In other words, the
shared frailty model pools all effects, shared genetic and shared environmental, into a single
random effect without being informed by the genetic relationships that link any two
relatives.

In order to describe more complicated dependencies, Yashin and Iachine (28) and Yashin
and colleagues (29) introduced a model of bivariate survival that allows for the
incorporation of correlations between individual frailties. These models are known as
“correlated frailty” models, which have been used with twin data to assess genetic and
environmental factors influencing mortality. Ripatti and Palmgren (30) and Therneau and
colleagues (31) extended correlated frailty models to survival data on n individuals, rather
than on two individuals (as is the case in twin studies). Unlike the shared frailty model, in
which frailties are assumed to be independent, in the correlated frailty model proposed by
Ripatti and Palmgren (30) and Therneau and colleagues (31), one individual's frailty is
associated (but not necessarily perfectly) with the frailty of another individual who is from
the same family of origin (related genetically) or family of procreation (related by marriage).
In this case, frailties are assumed to be random variables drawn from a multivariate normal
distribution with an arbitrary covariance structure.

Pankratz and colleagues (32) recently applied the correlated frailty model to investigate the
aggregation of breast cancer within families. They considered a correlated frailty model with
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one random effect per individual, with the random effects correlated to reflect the degree of
genetic relationship between individuals. They interpreted the variance of this model as a
polygenic (involving two or more genes) variance component and concluded that there is
significant heritability of age-at-onset of breast cancer. This model assumed that family risk
depends only on genetic relationships. Pankratz and colleagues (32) also explored the
possibility of a shared family environment role in breast cancer by fitting a model with both
polygenic and shared family random effects. They provided evidence for polygenic variance
components and suggestive evidence for shared family environmental variance components.

The purpose of this article is to report how the correlated frailty model constitutes a valuable
data analysis tool to incorporate both unobserved genetic and environmental influences in
human longevity that allows for the inclusion of observable covariates. The utility of a
correlated frailty model that incorporates both genetic and environmental sources of frailty
is described here and applied to data from an ongoing family-based study of longevity called
the Fertility, Longevity, and Aging (FLAG) study. We also examine, via simulations, how
ignoring the dependencies among observations affects the estimation of the regression
parameters and their standard errors. The problem of model misspecification related to
ignoring the true dependencies in the data has been studied by Wei and colleagues (33) in
the context of recurrent event data, and by Guo (25) in the case of shared frailty models. Our
results point to the importance of using correlated frailty models to analyze complex
pedigree data that allow for both genetic and environmental contributions to frailty.

Methods
Shared Frailty Model

The shared frailty model extends the proportional hazards model by introducing an
unobserved frailty term. Suppose that there are n individuals, i = 1, . . ., n, who are each
members of one of q families, j = 1, . . ., q. The conditional hazards function for individual i
is:

(1)

where λ0 is an unspecified baseline hazard function, b = (b1, . . ., bq) is a vector of random
effects that represent family-specific frailties, assumed independent, Xi is a vector of
measured covariates, β is a vector of unknown regression coefficients, and Zi is a vector
with Zij = 1 if individual i is a member of group j, and 0 otherwise. The distribution of bj is
specified a priori. Distributions of bj commonly considered are the log gamma and the
normal distribution for their computational advantages.

The shared frailty model is attractive because it explicitly acknowledges the potential role of
unobserved factors affecting an individual's risk of mortality. It does, however, assume that
unobservable characteristics are perfectly shared with others in the family and that
unobserved factors that are not shared are not considered.

Correlated Frailty Model
The correlated frailty model differs from the shared frailty model in that it allows for
individual-level frailties that can be correlated across individuals within the family. We
describe the correlated frailty model that incorporates unmeasured random effects into the
analysis of censored survival data applied to a family-based sample of size n. Let Xi and Zi
be vectors of known covariates, and b = (b1, . . ., bq) a vector of frailties. Given b, the event
times are assumed independent with the conditional hazard function for individual i
following the proportional hazards specification
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(2)

where λ0 is an unspecified baseline hazard function and β is a vector of unknown regression
coefficients. It is assumed that the distribution of the vector of frailties belongs to a known
family of distributions with mean 0 and covariance matrix D(σ), with σ denoting a vector of
unknown parameters.

We assume that b follows a multivariate normal distribution with mean 0 and covariance
matrix D(σ). This assumption makes it computationally convenient to impose the desired
covariance structure for the frailty distribution. Ripatti and Palmgren (30) give an
approximate likelihood for this model and propose a computational approach for calculating
the approximate maximum likelihood estimates of β and σ. Therneau and colleagues (31)
implemented the approximate maximum likelihood estimation approach as R software, in
the Kinship package (this software can be downloaded from http://cran.r-project.org/). This
model includes as a special case the shared frailty model with normal and log normal
distributions.

An important property of the correlated frailty model is that it allows for the simultaneous
incorporation of unobserved genetic and environmental frailty parameters in the analysis of
life-span data. As a result, genetic and environmental components of frailty can be jointly
estimated from the data.

We assume that the conditional hazard of death for individuals i, λi(t ! b), follows the model
given in Equation 2. To evaluate the separate influences of unobserved genetic and
environmental contributions to life span, we decompose the covariance matrix D(σ) into two
components:

(3)

where σf
2 and σp

2 represent the shared environmental influences and the shared polygenic
effect, respectively, and σ = (σf, σp). The matrix Σf is a fixed matrix that incorporates the
degree of shared environment among individuals, whereas Σp captures the shared polygenic
factors between genetically related family members.

In our analyses, the elements of Σp represent the degree of genetic resemblance that two
individuals would be expected to have by chance. The Σp matrix is a function of K = (Kij), a
matrix of kinship coefficients. The kinship matrix has elements Kij, the kinship coefficients,
that measure the probability that a gene selected randomly from individual i and another
selected from individual j will be identical by descent (ibd) at a given locus. Thus, if we
assume no consanguinity in previous generations, the kinship coefficient is 0.25 for first-
degree relatives (parent/child and sibling pairs), 0.125 for second-degree relatives (aunts/
uncles paired with nieces/nephews), and 0.0625 for third-degree relatives (first cousins), etc.
Kinship coefficients represent half the expected proportion of the genome that is shared by
pairs of relatives. To generate Σp, the kinship coefficient for the diagonal element is first set
to 0.5 and Σp = 2K. Hence, Σp has values of 1 on the diagonal, 0.5 for parent/child and
sibling pairs, 0.25 for grandparent/grandchild, uncle/niece, and so forth.

The matrix Σf = (aij) with aij = 1 if individuals i and j belong to the same family and 0
otherwise. By “family,” we mean the group of all individuals that are related genetically or
by marriage. Clearly, the definition of family in this respect can be made more flexible for a
given application. Note that, in the case where two individuals are from different families,
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the elements of their Σp (shared polygenic effects) and Σf (shared environmental effects)
matrices will both be 0. Our choice of Σf in this analysis restricts all individuals in the family
to have the same family-specific effect. Other correlation structures that incorporate
alternative environmental relationships between individuals in the data set could be
accommodated with this model.

Data: Exceptional Longevity in Families in the FLAG Study
Cox proportional hazards models with correlated frailty are applied to data that were
generated as part of the ongoing FLAG project. The larger study selects individuals from
long-lived (LL) pedigrees who have survived to extreme ages to identify genetic and
environmental factors that have allowed them to experience exceptional survival and to
determine whether they have fewer disabilities and lower rates of age-related diseases over
the course of their lives. The overall objective of the FLAG study is to measure aging-
related demographic, epidemiologic, social, cognitive, physiological, and molecular traits in
these exceptional individuals to identify a “delayed aging phenotype” and to isolate genetic
markers associated with slower rates of aging.

The Utah Population Database (UPDB) is used to identify the families that participate in the
study. The UPDB contains over 8 million records, including the genealogies of the founders
of Utah and their descendants. In the 1970s, approximately 170,000 Utah nuclear families
were identified on “Family Group Sheets” from the archives at the Utah Family History
Library, each with at least one member having had a vital event (birth, marriage, death) on
the Mormon Pioneer Trail or in Utah. These families have been linked across generations; in
some instances, the records span seven generations. The UPDB is an active genealogy; new
families and their members are continually being added as the UPDB is linked to other
sources of data, including birth and death certificates. Additional information on these
individuals comes from sources such as driver's license and the Utah Cancer Registry. The
UPDB now holds data from migrants to Utah and their descendants that include more than
1.8 million individuals born from the early 1800s to the mid-1900s and that are linked into
multigeneration pedigrees.

We used familial excess longevity (FEL) as a genealogically based method for identifying
LL pedigrees. FEL is a summary measure of excess longevity (EL) among all blood
relations for a given individual (34). Calculating FEL first requires an estimate of the
difference between an individual's attained age and the age to which that individual was
expected to live according to an accelerated failure time model. This model uses three
covariates that are available in the UPDB and that are associated with longevity: gender,
birth year, and affiliation with the Church of Jesus Christ of Latter-day Saints (or LDS
Church or Mormons). The variable describing whether a person in the UPDB is a member of
the LDS Church is included because it is known that active members of the LDS Church
have significantly longer lives (35).

The expected age at death is:

(4)

with βm regression coefficients, m = 0, . . ., 3. The values of the birth year variable are
limited to the birth years represented in the sample analyzed. Its inclusion reflects an effort
to control for secular increases in age at death. EL is l = y – ŷ, where y is the observed age at
death or the age at the time last confirmed alive, in years. The FEL for an individual is
calculated as the weighted average of individual EL of all blood relatives aged 65 years old
or older. For a given individual, “blood relatives” refers to all persons aged 65 years old or
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older in the database with whom the individual has a genetic relationship, regardless of their
birth year and degree of genetic relationship. The number of relatives used to generate any
one individual's FEL ranged from 62 to 105,893 with a median of 1987. The weights are the
kinship coefficients. The FEL for individual i is

(5)

where J is the set of all blood relatives of individual i.

In this study, we tested whether there is evidence that genetic and environmental factors are
important determinants of age at death based on 146 kindreds of founders in the UPDB with
very high FEL (the LL families) and 179 matched control kindreds. Based on the entire
UPDB, LL families were identified as the top families (identified by their founder) (listed in
terms of increasing p value) with a statistically significant (p < .01) excess of descendants
surviving past the 97th percentile of EL or were members of the top founders most often
selected by a Monte Carlo selection procedure. For the Monte Carlo procedure, variation
was introduced by sampling from sibships in the data with replacement. During each
iteration of the Monte Carlo procedure, the most likely LL founders were selected based on
the EL of the sampled sibships. A key feature of this procedure was that each sibship was
allowed to contribute to at most one of the selected founders in each iteration. Both methods
were used in an effort to identify LL families that did not rely on a single selection method.
The matched kindreds had founders with normative FEL values with comparable numbers
of descendants as those among the exceptional FEL founders. Analyses were conducted
excluding the founders themselves to eliminate the bias associated by including the
exceptional founders (as they are, by definition, LL). Although all founders examined here
generally have many descendants spanning up to 10 subsequent generations in the UPDB,
only their children and grandchildren were used in the analysis. This was done to allow for a
wider range of relationships than is done with twin studies (siblings, parents and offspring,
uncle/aunt and niece/nephews, and first cousins) but also to restrict our assessment of
environmental effects to circumstances where relatives are likely to share common
environmental exposures. This restriction also allowed for less right-censoring because these
children and grandchildren were born earlier in history and hence are more likely to be older
(and, quite often, deceased). Our study focused on survival past age 50; therefore, only
individuals 50 years old or older from the selected families are incorporated in the analysis.
We required that individuals had to have survived to age 50 to focus our analysis on the age
range during which mortality begins to rise but also to maximize our sample size as much as
possible. In all, 7273 individuals 50 years old or older were used as the basis for the
analysis, comprising approximately 23,300 sib pairs, 5600 parent/offspring pairs, 22,900
uncle/aunt–niece/nephew pairs, and 53,000 first-cousin pairs.

Results
Descriptive statistics for individuals in LL and control kindreds are shown in Table 1. There
were 1416 women and 1550 men among the individuals in the LL pedigrees and 2078
women and 2229 men in the control group. Given the range of birth years, there are right
censored observations although most births occur in the 1800s. Accordingly, right censoring
was limited (and similar) across the two groups with 9% for the LL group and 10% for the
control group. The percentage of individuals who are identified as active members of the
LDS Church in the LL group was 62.9% and in the control group 58.6%.
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We fit a series of mixed effects proportional hazards models that allow us to asses the
influence of genetic and environmental factors in longevity. We include four fixed
covariates that influence longevity: birth year, gender, affiliation with the LDS Church, and
FEL. A fifth covariate is also included that takes the value 1 if individuals belong to an LL
kindred and is equal to 0 if they are members of a control kindred. The LL variable was
derived from the survival experience of individuals in the sample and was used as the basis
for sampling individuals from both longevous and normative families. The LL variable is
therefore included as a control for the sample design in which we explicitly oversampled
persons from LL pedigrees. Given this sampling strategy, we would expect the LL variable
to be a significant predictor of longevity. What is not known is the extent to which it is
associated with individual survival and the degree to which the association between LL and
survival is affected by the model specification, especially how frailty is considered. FEL is
included in the same model to assess how a family history of longevity, when measured as a
continuous variable, affects survival after adjusting for the effects of oversampling LL
pedigrees through the inclusion of the LL variable.

The first model is a proportional hazards model that ignores the potential statistical
dependencies between individuals in the same family (relations attributable to common
genes or environment) and corresponds to the standard proportional hazards model. This
means that we treat all individuals as being statistically independent after controlling for the
covariates. The second model assumes that all members of a family share the same
unmeasured risk and represents the shared frailty model. We interpret frailty as the
combined shared environmental and genetic influences that are not measured by FEL and
the LL dummy variable. The third model, representing the correlated frailty model, also
allows for familial risk, but this risk depends only on genetic relationships and does not
explicitly consider any shared environmental effects. In the decomposition of the covariance

matrix given in Equation 3, this model corresponds to . The final and most general
model incorporates both shared and correlated frailties. This model provides separate
estimates for the role that genetic and shared environments play in the mortality hazard rate.

In Table 2, we present the hazard rate ratios (exp(β)) and their 95% confidence intervals
(CI). The four models use the same data and have the same covariates; the difference
between them is the manner in which frailty is modeled. All the parameter estimates except

 and  represent relative risks. With respect to the observed covariates, all show, in a
qualitative sense, the same effects although some differences exist. These models show that
male mortality hazard rates are 23%–27% higher than those of females and that as birth year
increases by 1 year individuals enjoy a reduction in their hazard rate by 1%. Individuals
affiliated with the LDS Church have hazard rates that are not significantly different than
those of persons not affiliated with the LDS Church. The null effect of LDS affiliation is
unexpected but is partially explained by the fact that FEL is included in the model and it
controls, indirectly, for the effects of LDS status. For this cohort, men benefit much more
from their affiliation with the LDS Church than do women. The results shown here pool
men and women in the same sample leading to a weaker association with mortality. An
interaction of gender and LDS affiliation was not estimated for reasons of parsimony. As
expected, both FEL and the indicator variable for being in an LL kindred indicate that
individuals with a family history of exceptional longevity have significantly lower rates of
mortality. Individuals sampled from LL kindreds have a mortality risk that is 14%–19%
lower than that found in control kindreds; for each year of increase in FEL there is a 5%–6%
decrease in the mortality hazard rate.

The standard deviation (SD) of the frailty random effect (σf) from the shared frailty model is
0.189 (95% CI, 0.150–0.229). This estimate indicates that typical values of the family-
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specific risk of mortality are approximately 21% larger or smaller [exp(0.189) = 1.208] than
the overall mortality risk, ceteris paribus, suggesting an important shared familial influence
in life span that is unaccounted for by the included covariates. This model assigns the same
familial relative risk to all members of a family without taking explicit account of shared
genetic effects between individuals in the same kindred. However, it is not possible in this
model to rule out some common shared alleles among family members.

The correlated frailty (polygenic) model incorporates an individual-specific random effect
that is allowed to be correlated with the frailties of other relatives, as indicated by the
kinship matrix K. The SD of the frailty distribution for the polygenic frailty model (σp) is
0.338 (95% CI, 0.258–0.418). This result indicates that the individual relative risk of
mortality is likely to be as much as (exp(0.338)) 40% larger or smaller than the average risk.
This provisional result is consistent with the idea that life span has a sizable heritable
component.

The shared frailty model conflates genetic with shared environmental factors, and the
correlated frailty model assumes that familial risk depends only on genetic variants that are
shared to varying degrees among blood relatives. The model with both shared family and
correlated random effects represents a more general approach that incorporates genetic and
nongenetic traits separately. The SD of the correlated frailty distribution (σp) in this model is
0.143 (95% CI, 0.000–0.282), and the SD of the shared frailty distribution (σf) is 0.186 (95%
CI, 0.147–0.230). Given the model and this sample of kindreds, both shared familial and
polygenic factors are found to play a role in explaining the variation in longevity although
the size of σf is larger. As two of the fixed covariates, FEL and LL, are likely correlated with
unobserved genetic factors and environmental factors, it is difficult to interpret the
difference in the magnitude of the estimates of σf and σp. In an attempt to determine whether
the difference in the size of the estimates of σf and σp is an indication that shared
environmental factors play a larger role than genetic traits on the mortality hazard rate, we
refit the model with the same decomposition of the covariance matrix but with only birth
year, gender, and affiliation with the LDS Church as fixed covariates. In this model, the
estimated SD of the correlated frailty is 0.265, whereas the SD for shared frailty is now
0.294. In comparing the two sets of results, we make two observations. First, the small
difference in the size of the two new SD values suggests that shared environmental factors
play a similar albeit slightly larger role than genetic variants shared among sets of relatives.
Here, the small difference between the two SD values (i.e., a relatively large SD for the
polygenic correlated frailty effect in relation to what the literature suggests) may reflect the
stronger role played by alleles associated with longevity arising from our selection of
families characterized by EL. The second observation is that the exclusion of both the LL
and FEL variables resulted in similar increases in the SD for both the shared and correlated
frailty distributions. This finding supports the idea that the LL and FEL variables capture
factors that have both environmental and genetic origins.

Effect of Ignoring Frailties on the Estimates of a Cox Proportional Hazards Model
Analysts frequently possess data based on individuals clustered into families and kindreds,
and yet the analysis is conducted under the assumption of independence of survival times
given the observed values of covariates. Using simulated data from correlated frailty
models, we examined whether ignoring the associations in the data biases the relative risk
estimates and, if so, to what degree. Additionally, we investigated whether the standard
errors of the parameter estimates are inefficient under the assumption of independence.

We performed 1000 computer simulations of 100 families that represent the composition
and structure of families in UPDB. The data comprise two generations within a family with
four basic types of relationships: parents and offspring, siblings, aunts/uncles with nieces/
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nephews, and first cousin dyads. Ages at death were simulated using a proportional hazards
model. The baseline survival function was assumed to follow a Gompertz distribution, that
is,

(6)

with λ = 0.1 and α = 0.007. The value of α represents the proportion of individuals in our
sample that survived to age 50 years and died before reaching age 51 years (36,37). The
value λ = 0.1 is consistent with an adult force of mortality that doubles every 7 years exp(0.1
× 7) = 2. The mortality hazard rate increased by a factor of exp(β) for a unit increase in a
covariate X. The variable X followed a normal distribution with mean 2.0 and SD 1.9. Three
different values for the regression parameter β were considered, β = 2.0, β = 0.7, and β = 0.1.
These values represent hazard ratios of 7.4, 2, and 1.1, respectively. We also assumed that
the risk of dying is influenced by an additive polygenic effect. Hence, the hazard rate is
specified as:

(7)

where b = (b1, . . ., bn) is a normally distributed random vector with mean 0 and covariance
Σ = σp

22K, with K the kinship matrix. This corresponds to σf
2 = 0 in Equation 3. We further

assumed that the fixed covariates Xi, i = 1, . . ., n, are independent given b.

Two common but different situations are evaluated: first, the covariates Xi, i = 1, . . ., n, are
generated to be in dependent of the polygenic frailty b; second, Xi are specified so that they
are correlated with the polygenic frailty b, with covariance between Xi, and bj equal to 0.2
for i = j, and 0 otherwise. The value 0.2 was chosen arbitrarily to represent a moderate
degree of association between the known covariate and the unknown factor.

The effect on the parameter estimates of ignoring the genetic relationship in the data was
assessed using two different models: a proportional hazards model and a shared frailty
model with variance component σf

2. The correlated frailty model is also estimated. In what

follows, , , and , will refer to the maximum likelihood estimators of β, σf
2, and σp

2,

and  is the estimator of the standard deviation of .

Table 3 shows results for the situation in which the simulated data sets were generated
according to a model with Xi independent of the frailty b. Table 3 gives the empirical

expected value of , , , and ; that is, the average of the maximum likelihood
estimates from each of the 1000 simulated data sets. Within Table 3, the empirical SD values
are given in parentheses.

Based on these simulations, we note a bias in the estimation in β. The estimate of β is
seriously underestimated when fitting the proportional hazards model; this bias is reduced
somewhat with the shared frailty model. Even when fitting the correlated frailty model, this
bias persists, although we were able to recover an estimate of b that is much closer to the
true value. Ripatti and Palmgren (30) also noticed this phenomenon and attributed it to the
approximation of the likelihood used in the estimation. In addition, they observed an
underestimation in the variance component of the correlated frailty model, a result that
occurs in our simulations as well. The results show that, on average, the estimated SD of 
is smaller in the proportional hazards and the shared frailty models than in the correlated
frailty model. This result is consistent with the fact that related observations contribute less
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information in relation to a model that assumes independence; hence the standard errors of
the fixed parameters are underestimated. Moreover, Ripatti and Palmgren (30) observed that
the estimated SD for , in the correlated frailty model, is underestimated because the
variation in the estimation of the variance component is ignored (i.e., the estimator of the SD
of  is calculated as if σ were known).

The correlated frailty model assumes that the fixed covariates are independent of the frailty
distribution; however, in many applied settings this will not be true. Table 4 includes the
results of simulations in which the fixed covariate is correlated with frailty. The results are
similar to those obtained when the fixed covariate and frailty are assumed to be independent.
The new result is that, in some cases, the parameter β has a positive bias.

These results point to the importance of using correlated frailty models for the analysis of
family-based data. To emphasize even more the undesirable consequences of ignoring the
relationship among individuals and assuming independence, in our simulations we observed
that none of the 95% CI values for β, obtained from the proportional hazards fit, contains the
true value of β. This finding is due to the large bias and also possibly to the underestimation
of the SD of .

Discussion
A greater understanding of factors affecting human longevity requires analytic tools that
permit the joint assessment of observable environmental and genetic covariates and an
accounting of the role played by unobservable factors. The recent availability of genetic
markers along with measures of social and environmental risk factors on large population-
based cohort samples makes it possible to assess their distinct influence on mortality risks
using standard survival analysis techniques. The simultaneous development of complex
longitudinal databases of extended kindreds, such as the UPDB, means that we now have
informative data on variables affecting longevity on extended families and large kindreds.
The challenge is to identify methods that are optimally suited for the analysis of these data.
This study has shown how the standard Cox proportional hazards model can be extended to
incorporate unobservable factors through the introduction of random effects or frailty
components by using different assumptions regarding the role of shared family and
correlated genetic influences using family-based data. The performance of these models was
assessed through data on persons from LL families and controls, identified from the UPDB,
as well as through simulations.

The present study supports the long-established observation that longevity is subject to
substantial familial aggregation. It also demonstrates that the family-specific risk of
mortality, controlling for observed covariates, is typically 21% larger or smaller than the
overall mortality risk. This level of variability can be attributed to environmental factors,
and would likely decline as additional significant covariates were added to the model. We
also show that the relative risk of mortality at the individual level that is attributable to
polygenic factors is likely to be as much as 40% larger or smaller than the average risk.
When we fit a model that allows for both the contributions of polygenic and shared familial
traits simultaneously, we find that the variance component due to genetic factors is
comparable to the one due to shared environment.

The application of the shared frailty and the correlated polygenic frailty models reported
here relied on assumptions about the manner in which the environment and genetic factors
are shared among relatives. Specifically, we assumed that all individuals in a family share
the same environment throughout their lives and that those environmental factors that are
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not shared or that change with time are nonexistent. This is a strong assumption, but
alternative correlation structures that allow for more complex environmental conditions are
possible with the methods described here. The method permits the analyst to modify the aij
values to reflect assumed or measured levels of exposure-sharing between, for example,
coresident relatives as opposed to kin who live in disparate geographic areas.

Our simulation analyses illustrate the consequences of assuming independence of survival
times between individuals when family-based data are analyzed. Models that ignore the
environmental or genetic association among related individuals result in downwardly biased
relative risk estimates, a pattern that has been reported by others (38,39). We show that, in
the presence of correlated frailty based on a general polygenic model, the correlated frailty
specification nearly eliminates the bias in regression parameters. These simulations also
indicate that the standard errors for the regression parameter estimates are also
underestimated when the dependence among individuals is ignored. Our simulations show,
for example, that none of the 95% CI values for the estimated regression parameters
included the true value. Overall, downwardly biased regression coefficients coupled with
narrow (and incorrect) CI values will lead to poor inferences about the significance of the
covariates.

For analysts with survival data comprising statistically independent individuals, estimating
the effects of the covariates on the hazard rate does not require any modifications to the
methodology. If, however, the sample is based on a set of relatives (i.e., all individuals are
connected to other individuals because they share a common ancestor), then it is important
to consider modeling unobserved environmental and genetic factors within a general
analytic approach.

Acknowledgments
This study was supported by National Institutes of Health Grant AG022095 (The Utah Study of Fertility,
Longevity, and Aging).

We thank the Pedigree and Population Resource (funded by the Huntsman Cancer Foundation) for providing the
data and valuable computing support. We also thank Dr. Terry Therneau at the Mayo Clinic College of Medicine
for sharing his ideas and software used in this analysis. In addition, we acknowledge the contributions of Alison
Fraser and Diana Lane Reed in providing database management and research assistance for this study.

REFERENCES
1. Abbott MH, Abbey H, Bolling DR, Murphy EA. The familial component in longevity–a study of

offspring of nonagenarians: III. Intrafamilial studies. Am J Med Genet. 1978; 2:105–120. [PubMed:
263431]

2. Beeton M, Pearson K. Data for the problem of evolution in man. II. A first study on the inheritance
of longevity and the selective death rate in man. Proc R Soc Lond. 1899; 65:290–305.

3. Beeton M, Pearson K. On the inheritance of the duration of life, and on the intensity of natural
selection in man. Biometrika. 1901; 1:50–89.

4. Carmelli D, Andersen S. A longevity study of twins in the Mormon genealogy. Prog Clin Biol Res.
1981; 69(pt C):187–200. [PubMed: 7198241]

5. Cohen BH. Family patterns of Mortality and Life Span. Q Rev Biol. 1964; 39:130–181. [PubMed:
14175085]

6. Gavrilov LA, Gavrilova NS, Olshansky SJ, Carnes BA. Genealogical data and the biodemography
of human longevity. Soc Biol. 2002; 49:160–173. [PubMed: 14652915]

7. Gudmundsson H, Gudbjartsson DF, Frigge M, Gulcher JR, Stefansson K. Inheritance of human
longevity in Iceland. Eur J Hum Genet. 2000; 8:743–749. [PubMed: 11039573]

8. Houde, L.; Tremblay, M.; Vézina, H. Intergenerational and genealogical approaches for the study of
longevity in the Saguenay – Lac-St-Jean population.. Inherited characteristics in populations of the

Garibotti et al. Page 11

J Gerontol A Biol Sci Med Sci. Author manuscript; available in PMC 2011 December 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



past: Exploring intergenerational dimensions of human behaviour; Menorca, Spain. May 19–21,
2005;

9. Iachine IA, Holm NV, Harris JR, et al. How heritable is individual susceptibility to death? The
results of an analysis of survival data on Danish, Swedish and Finnish twins. Twin Res. 1998;
1:196–205. [PubMed: 10100811]

10. Matthijs K, Van de Putte B, Vlietinck R. The inheritance of longevity in a Flemish village (18th–
20th century). Eur J Popul. 2002; 18:59–81.

11. Mitchell BD, Hsueh WC, King TM, et al. Heritability of life span in the Old Order Amish. Am J
Med Genet. 2001; 102:346–352. [PubMed: 11503162]

12. Pearl R. Studies on human longevity IV. The inheritance of longevity: preliminary report. Hum
Biol. 1931; 3:245–269.

13. Philippe P. Familial correlations of longevity: an isolate-based study. Am J Med Genet. 1978;
2:121–129. [PubMed: 263432]

14. Sorensen TI. Genetic epidemiology utilizing the adoption method: studies of obesity and of
premature death in adults. Scand J Soc Med. 1991; 19:14–19. [PubMed: 1925421]

15. Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on
premature death in adult adoptees. N Engl J Med. 1988; 318:727–732. [PubMed: 3347221]

16. Swedlund AC, Meindl RS, Nydon J, Gradie M. Family patterns in longevity and longevity patterns
of the family. Hum Biol. 1983; 55:115–129. [PubMed: 6601609]

17. Vaupel JW. Inherited frailty and longevity. Demography. 1988; 25:277–287. [PubMed: 3396752]
18. Williams GC. Pleiotropy, natural selection and the evolution of senescence. Evolution. 1957;

11:398–411.
19. Wyshak G. Fertility and longevity in twins, sibs, and parents of twins. Soc Biol. 1978; 25:315–330.

[PubMed: 574990]
20. Cournil A, Legay JM, Schachter F. Evidence of sex-linked effects on the inheritance of human

longevity: a population-based study in the Valserine valley (French Jura), 18–20th centuries. Proc
Biol Sci. 2000; 267:1021–1025. [PubMed: 10874752]

21. Gavrilov, LA.; Gavrilova, NS. Human longevity and paternal age at conception.. In: Robine, JM.;
Kirkwood, TBL.; Allard, M., editors. Sex and Longevity: Sexuality, Gender, Reproduction,
Parenthood. Springer-Verlag; Berlin: 2000. p. 7-31.

22. McGue M, Vaupel JW, Holm N, Harvald B. Longevity is moderately heritable in a sample of
Danish twins born 1870–1880. J Gerontol. 1993; 48:B237–B244. [PubMed: 8227991]

23. Herskind AM, McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW. The heritability of
human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum
Genet. 1996; 97:319–323. [PubMed: 8786073]

24. Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL. The effect of genetic factors for
longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry. J Gerontol
Med Sci. 1998; 53A:M441–M446.

25. Guo G. Use of sibling data to estimate family mortality effects in Guatemala. Demography. 1993;
30:15–32. [PubMed: 8440396]

26. Guo G, Rodriguez G. Estimating a multivariate proportional hazard model for clustered data using
the EM algorithm, with and application to child survival in Guatemala. J Am Stat Assoc. 1992;
87:969–976.

27. Hougaard P, Harvald B, Holm NV. Measuring the similarities between the lifetimes of adult
Danish twins born between 1881–1930. J Am Stat Assoc. 1992; 87:17–24.

28. Yashin AI, Iachine IA. Genetic analysis of durations: correlated frailty model applied to survival of
Danish twins. Genet Epidemiol. 1995; 12:529–538. [PubMed: 8557185]

29. Yashin AI, Vaupel JW, Iachine IA. Correlated individual frailty: an advantageous approach to
survival analysis of bivariate data. Math Popul Stud. 1995; 5:145–159, 183. [PubMed: 12290053]

30. Ripatti S, Palmgren J. Estimation of multivariate frailty models using penalized partial likelihood.
Biometrics. 2000; 56:1016–1022. [PubMed: 11129456]

31. Therneau TM, Grambsch PM, Pankratz VS. Penalized survival models and frailty. J Comput
Graph Stat. 2003; 12:156–175.

Garibotti et al. Page 12

J Gerontol A Biol Sci Med Sci. Author manuscript; available in PMC 2011 December 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



32. Pankratz VS, de Andrade M, Therneau TM. Random-effects Cox proportional hazards model:
general variance components methods for time-to-event data. Genet Epidemiol. 2005; 28:97–109.
[PubMed: 15532036]

33. Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete failure time data by
modeling marginal distributions. J Am Stat Assoc. 1989; 84:1065–1073.

34. Kerber RA, O'Brien E, Smith KR, Cawthon RM. Familial excess longevity in Utah genealogies. J
Gerontol Biol Sci. 2001; 56A:B130–B139.

35. Mineau GP, Smith KR, Bean LL. Adult mortality risks and religious affiliation: the role of social
milieu in biodemographic studies. Annales de Demographie Historique. 2004; 2:85–104.

36. Gavrilov, LA.; Gavrilova, NS. The Biology of Life Span: A Quantitative Approach. Harwood;
New York: 1991.

37. Juckett DA, Rosenberg B. Comparison of the Gompertz and Weibull functions as descriptors for
human mortality distributions and their intersections. Mech Ageing Dev. 1993; 69:1–31. [PubMed:
8377524]

38. Heckman, J.; Singer, B. Social science duration analysis.. In: Heckman, J.; Singer, B., editors.
Longitudinal Analysis of Labor Market Data. Cambridge University Press; Cambridge, U. K.:
1985. p. 39-110.

39. Horowitz JL. Semiparametric estimation of a proportional hazard model with unobserved
heterogeneity. Econometrica. 1999; 67:1001–1028.

Garibotti et al. Page 13

J Gerontol A Biol Sci Med Sci. Author manuscript; available in PMC 2011 December 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garibotti et al. Page 14

Ta
bl

e 
1

D
es

cr
ip

tiv
e 

St
at

is
tic

s M
em

be
rs

 o
f L

L
 K

in
dr

ed
s

M
em

be
rs

 o
f C

on
tr

ol
 K

in
dr

ed
s

V
ar

ia
bl

e
M

ea
n

SD
M

in
im

um
M

ax
im

um
M

ea
n

SD
M

in
im

um
M

ax
im

um

B
irt

h 
ye

ar
18

79
24

.9
2

17
48

19
53

18
76

27
.0

9
17

63
19

53

A
ge

 a
t d

ea
th

79
.0

0
12

.3
8

50
10

7
74

.7
6

11
.0

8
50

10
5

FE
L

5.
35

1.
83

–2
.2

7
14

.5
5

2.
77

1.
84

–3
.8

2
18

.0
3

N
ot

e:
 L

L 
= 

Lo
ng

-li
ve

d;
 F

EL
 =

 F
am

ili
al

 E
xc

es
s L

on
ge

vi
ty

; S
D

 =
 st

an
da

rd
 d

ev
ia

tio
n.

J Gerontol A Biol Sci Med Sci. Author manuscript; available in PMC 2011 December 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garibotti et al. Page 15

Table 2

Parameter Estimates and 95% Confidence Intervals for Four Frailty Models

Characteristic Proportional Hazard Shared Frailty Correlated Frailty Shared & Correlated Frailty

Birth year 0.989 (0.987, 0.989) 0.988 (0.987, 0.989) 0.987 (0.986, 0.988) 0.988 (0.987, 0.989)

Gender (Male = 1) 1.234 (1.176, 1.296) 1.253 (1.193, 1.317) 1.269 (1.204, 1.337) 1.259 (1.197, 1.323)

LDS (Yes = 1) 1.034 (0.983, 1.088) 1.011 (0.959, 1.066) 1.005 (0.950, 1.063) 1.008 (0.955, 1.064)

LL kindred = 1, Control kindred = 0 0.858 (0.807, 0.912) 0.810 (0.745, 0.880) 0.819 (0.759, 0.884) 0.806 (0.740, 0.877)

Familial Excess Longevity 0.938 (0.926, 0.951) 0.951 (0.936, 0.966) 0.943 (0.928, 0.958) 0.951 (0.936, 0.967)

σ f 2 0.036 (0.023, 0.053) 0.035 (0.022, 0.053)

σ p 2 0.114 (0.067, 0.175) 0.020 (0.000, 0.079)

Note: LDS = Latter-day Saints; LL = long lived.

J Gerontol A Biol Sci Med Sci. Author manuscript; available in PMC 2011 December 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garibotti et al. Page 16

Table 3

Estimates of β, σf
2, and σp

2 When the Fixed Covariates Are Uncorrelated With Frailty

Model

Parameter Proportional Hazards Shared Frailty Correlated Frailty

β = 2.0, σp
2 = 0.5

β 1.600 (0.052) 1.707 (0.053) 1.930 (0.076)

SD(β̂) 0.044 (1.2e-4) 0.048 (1.2e-4) 0.054 (1.9e-4)

σ f 2 – 0.119 (0.034) –

σ p 2 – – 0.412 (0.094)

β = 2.0, σp
2 = 1.0

β 1.378 (0.050) 1.521 (0.051) 1.846 (0.077)

SD(β̂) 0.040 (1.0e-4) 0.044 (1.1e-4) 0.053 (1.9e-4)

σ f 2 – 0.189 (0.046) –

σ p 2 – – 0.712 (0.129)

β = 0.7, σp
2 = 0.5

β 0.556 (0.032) 0.593 (0.034) 0.669 (0.042)

SD(β̂) 0.029 (5.9e-5) 0.031 (6.1e-5) 0.035 (9.5e-5)

σ f 2 – 0.110 (0.036) –

σ p 2 – – 0.390 (0.105)

β = 0.7, σp
2 = 1.0

β 0.477 (0.031) 0.527 (0.033) 0.634 (0.043)

SD(β̂) 0.028 (5.5e-5) 0.030 (5.7e-5) 0.036 (1.0e-4)

σ f 2 – 0.173 (0.047) –

σ p 2 – – 0.652 (0.137)

β = 0.1, σp
2 = 0.5

β 0.079 (0.028) 0.084 (0.030) 0.094 (0.033)

SD(β̂) 0.028 (6.2e-5) 0.029 (6.3e-5) 0.032 (9.6e-5)

σ f 2 – 0.103 (0.039) –

σ f 2 – – 0.363 (0.120)

β = 0.1, σf
2 = 1.0

β 0.068 (0.027) 0.075 (0.029) 0.089 (0.034)

SD(β̂) 0.027 (5.6e-5) 0.028 (5.9e-5) 0.034 (9.8e-5)

σ f 2 – 0.165 (0.050) –

σ p 2 – – 0.604 (0.148)

Note: Empirical expected values and standard deviations (SD) of parameter estimates were based on 1000 simulations.
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Table 4

Estimates of β, σ2
f, and σp

2 When the Fixed Covariates Are Correlated With Frailty

Model

Parameter Proportional Hazards Shared Frailty Correlated Frailty

β = 2.0, σp
2 = 0.5

β 1.699 (0.054) 1.812 (0.056) 2.041 (0.080)

SD(β̂) 0.046 (1.3e-4) 0.050 (1.4e-4) 0.056 (2.2e-4)

σ f 2 – 0.119 (0.035) –

σ p 2 – – 0.403 (0.100)

β = 2.0, σp
2 = 1.0

β 1.463 (0.053) 1.615 (0.055) 1.956 (0.083)

SD (β̂) 0.041 (1.1e-4) 0.046 (1.2e-4) 0.055 (2.2e-4)

σ f 2 – 0.190 (0.048) –

σ p 2 – – 0.707 (0.134)

β = 0.7, σp
2 = 0.5

β 0.646 (0.033) 0.689 (0.034) 0.776 (0.044)

SD (β̂) 0.030 (6.1e-5) 0.032 (6.4e-5) 0.036 (1.1e-4)

σ f 2 – 0.112 (0.037) –

σ p 2 – – 0.391 (0.113)

β = 0.7, σp
2 = 1.0

β 0.554 (0.033) 0.612 (0.035) 0.738 (0.046)

SD (β̂) 0.028 (5.7e-5) 0.031 (6.0e-5) 0.037 (1.1e-4)

σ f 2 – 0.178 (0.049) –

σ p 2 – – 0.666 (0.145)

β = 0.1, σp
2 = 0.5

β 0.163 (0.028) 0.174 (0.030) 0.195 (0.035)

SD (β̂) 0.028 (6.1e-5) 0.029 (6.6e-5) 0.033 (1.1e-4)

σ f 2 – 0.104 (0.040) –

σ p 2 – – 0.370 (0.129)

β = 0.1, σp
2 = 1.0

β 0.141 (0.028) 0.155 (0.030) 0.185 (0.035)

SD (β̂) 0.027 (5.9e-5) 0.029 (6.4e-5) 0.034 (1.1e-4)

σ f 2 – 0.168 (0.051) –

σ p 2 – – 0.615 (0.157)

Note: Empirical expected values and standard deviations (SD) of parameter estimates were based on 1000 simulations.
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