Published online 13 September 2011

Nucleic Acids Research, 2012, Vol. 40, No. 1 381-390
doi:10.1093/nar/gkr756

Substrate mimicry: HIV-1 reverse transcriptase
recognizes 6-modified-3'-azido-2',3'-
dideoxyguanosine-5'-triphosphates as

adenosine analogs

Brian D. Herman', Raymond F. Schinazi?, Hong-wang Zhang? James H. Nettles?,
Richard Stanton?, Mervi Detorio?, Aleksandr Obikhod?, Ugo Pradére?, Steven J. Coats®,

John W. Mellors' and Nicolas Sluis-Cremer'*

"Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA 15261,
2Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, and Veterans
Affairs Medical Center, Decatur, GA 30033 and ®RFS Pharma, LLC, Tucker, GA 30084, USA

Received March 11, 2011; Revised August 24, 2011; Accepted August 26, 2011

ABSTRACT

p-D-3'-Azido-2',3'-dideoxyguanosine (3'-azido-ddG)
is a potent inhibitor of HIV-1 replication with a
superior resistance profile to zidovudine. Recently,
we identified five novel 6-modified-3'-azido-ddG
analogs that exhibit similar or superior anti-HIV-1
activity compared to 3'-azido-ddG in primary cells.
To gain insight into their structure-activity-resist-
ance relationships, we synthesized their triphos-
phate (TP) forms and assessed their ability to
inhibit HIV-1 reverse transcriptase (RT). Steady-
state and pre-steady-state kinetic experiments
show that the 6-modified-3'-azido-ddGTP analogs
act as adenosine rather than guanosine mimetics
in DNA synthesis reactions. The order of potency
of the TP analogs against wild-type RT was:
3'-azido-2,6-diaminopurine >3 -azido-6-chloropurine;
3'-azido-6-N-allylaminopurine > 2-amino-6-N,N-

dimethylaminopurine; 2-amino-6-methoxypurine.
Molecular modeling studies reveal unique
hydrogen-bonding interactions between the nucleo-
tide analogs and the template thymine base in the
active site of RT. Surprisingly, the structure-activity
relationship of the analogs differed in HIV-1 RT
ATP-mediated excision assays of their monophos-
phate forms, suggesting that it may be possible to
rationally design a modified base analog that is
efficiently incorporated by RT but serves as a poor

substrate for ATP-mediated excision reactions.
Overall, these studies identify a promising strategy
to design novel nucleoside analogs that exert pro-
found antiviral activity against both WT and drug-
resistant HIV-1.

INTRODUCTION

Most combination therapies used to treat antiretroviral-
naive and -experienced HIV-1 infected patients include at
least two nucleoside reverse transcriptase (RT) inhibitors
(NRTIs). NRTIs are analogs of 2'-deoxyribonucleosides
that lack a 3’-OH group on the ribose sugar/pseudosugar.
Once metabolized by host cell kinases to their active tri-
phosphate (TP) forms, they inhibit viral reverse transcrip-
tion by acting as chain terminators of HIV-1 RT DNA
synthesis (1). Although combination therapies that contain
two or more NRTIs have substantially reduced mortality
from HIV-1 associated disease, the approved NRTIs have
significant limitations that include acute and chronic tox-
icity, and the selection of drug-resistant variants of HIV-1
that exhibit cross-resistance to other NRTIs. Accordingly,
there is a need to develop potent and safe NRTIs that
demonstrate activity against a broad-range of drug-
resistant HIV-1.

To date, most NRTIs were discovered by an empirical
approach in which novel sugar modified nucleoside ana-
logs were synthesized without a priori knowledge of their
activity against wild-type (WT) or drug-resistant HIV-1.
To specifically identify NRTIs that retain activity
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against a broad spectrum of drug-resistant HIV-1, our
group adopted a rational discovery approach that util-
ized structure—activity—resistance relationships to identify
NRTI base and sugar moieties that retain potent ac-
tivity against drug-resistant HIV-1 (2,3). Importantly,
this approach identified 3'-azido-2’,3’-dideoxyguanosine
(3’-azido-ddG) as a lead compound (4) that exhibits
potent activity against HIV-1 variants that contain the
discrimination mutations K65R, L74V or M184V and
against HIV-1 that contains multiple thymidine analog
mutations (TAMs) that enhance nucleotide excision.
Furthermore, 3'-azido-ddG does not exhibit cytotoxicity
in primary lymphocytes or epithelial and T-cell lines, and
does not decrease the mitochondrial DNA content of
HepG?2 cells (4).

To further improve the antiviral activity of 3’-azido-
ddG, we recently synthesized and characterized a series
of mnovel base modified 3'-azido-2',3’-dideoxypurine
analogs (5). Of the 26 analogs studied, five [namely,
3’-azido-2’,3'-dideoxy-2,6-diaminopurine (3’-azido-2,
6-DA-P), 3'-azido-2',3'-dideoxy-2-amino-6-chloropurine
(3’-azido-6-CI-P), 3’-azido-2',3'-dideoxy -2-amino-6- N,
N-dimethylaminopurine (3’-azido-6-DM-P), 3'-azido-2’,
3’-dideoxy-2-amino-6-methoxypurine (3’-azido-6-MX-P)
and 3'-azido-2’,3’-dideoxy-2-amino-6-N-allylaminopurine
(3’-azido-6-AA-P)] exhibited superior or equivalent activ-
ity to 3’-azido-ddG in primary lymphocytes (Figure 1). To
gain additional insight into the structure—activity—resist-
ance relationships of these compounds, we have now
synthesized their TP forms and have assessed their
ability to inhibit DNA synthesis by recombinant purified
HIV-1 RT. Importantly, we show for the first time that
HIV-1 RT recognizes and incorporates these 6-modified-
3’-azido-ddGTP nucleotides as adenosine analogs. These
findings reveal new avenues for developing novel ambigu-
ous nucleoside analogs that could be used to treat HIV-1
infection.
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Figure 1. Structures of zidovudine (ZDV),
3'-azido-2',3'-dideoxy-2,6-diaminopurine  (3’-azido-2,6-DA-P),
,3’-dideoxy-2-amino-6-N,N-dimethylaminopurine  (3'-azido-6-DM-P),

3'-azido-2',3'-dideoxyadenosine
3'-azido-2’,3’-dideoxy-2-amino-6-chloropurine
3’-azido-2',3'-dideoxy-2-amino-6-methoxypurine

MATERIALS AND METHODS
Reagents

The WT, K65R, L74V, MI184V, A62V/V751/F77L/
F116Y/Q151M, MA41L/L210W/T215Y (TAM41) and
D67N/K70R/T215F/K219Q (TAM67) HIV-1 RTs were
purified as described previously (6,7). The protein concen-
tration of the purified enzymes was determined spectro-
photometrically at 280 nm using an extinction coefficient
(€250) 0of 260450 M~'cm ™!, and by Bradford protein assays
(Sigma-Aldrich, St. Louis, MO, USA). The RNA- and
DNA-dependent DNA polymerase activities of the puri-
fied WT and mutant enzymes were similar (data not
shown). The triphosphate (TP) forms of each of the
6-modified-3’-azido-ddG analogs were synthesized and
purified using the methods of Ludwig and Eckstein (8).
3'-Azido-ddGTP, 3'-azido-ddATP, 3’-azido-ddCTP and
zidovudine-TP (ZDV-TP) were purchased from TriLink
Biotechnologies, Inc. (San Diego, CA, USA). [y-*P]JATP
was obtained from PerkinElmer Life Sciences (Boston,
MA, USA). All DNA oligonucleotides were synthesized
by Integrated DNA Technologies (Coralville, IA, USA).

Inhibition of HIV-1 RT DNA synthesis under steady-state
conditions by the 6-modified-3'-azido-ddGTP analogs

The ability of the 6-modified-3’-azido-ddGTP analogs to
inhibit HIV-1 RT DNA- or RNA-dependent DNA syn-
thesis was determined using two different template/primer
(T/P) substrates, as described below:

(1) RT DNA synthesis was evaluated using a 214-nt
RNA or DNA template that corresponds to the
HIV-1 sequence used for (—) strong stop DNA syn-
thesis (Figure 2). The RNA and DNA templates were
prepared as described previously (3). Both the RNA-
and DNA-dependent DNA synthesis reactions were
primed with the same 5-end-"’P-labeled 18-nt DNA
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(3’-azido-ddA), 3'-azido-2',3’-dideoxyguanosine (3’-azido-ddG),
(3’-azido-6-CI-P),  3’-azido-2-

(3'-azido-6-MX-P) and

3'-azido-2',3'-dideoxy-2-amino-6- N-allylaminopurine (3’-azido-6-AA-P). The ECs, values, adapted from Zhang et al. (5), are for WT HIV-1 and

were determined in peripheral blood mononuclear (PBM) cells.
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Figure 2. 6-Modified-3"-azido-ddGTPs are recognized and incorporated by WT HIV-1 as adenosine analogs. (A) Representative denaturing poly-
acrylamide gel showing chain-termination of HIV-1 RT DNA synthesis by each of the 3’-azido-ddGTPs on a heteropolymeric DNA/DNA T/P under
steady-state assay conditions. (B) Representative denaturing polyacrylamide gel showing chain termination of WT HIV-1 RT DNA synthesis by each
of the 3’-azido-ddGTPs on a heteropolymeric RNA/DNA T/P under steady-state assay conditions. Reaction conditions are described in the
‘Materials and Methods’ section.

primer (5-GTCCCTGTTCGGGCGCCA-3') that cor-
responds to the HIV-1 primer binding site. DNA syn-
thesis reactions (20 pl) were carried out in a 50-mM
Tris-HCI (pH 7.5) buffer that contained 50 mM KCl,
10mM MgCl,, 20nM T/P, 0.5 uM of each dNTP and
varying concentrations of the 6-modified-3'-azido-
ddGTP analogs. Reactions were initiated by the
addition of 200nM WT HIV-1 RT, incubated at
37°C for 30 min (DNA-dependent DNA synthesis) or
60min (RNA-dependent DNA synthesis) and then
quenched by addition of 20l of gel loading buffer
(98% deionized formamide containing 1 mg/ml each

(ii)

of bromophenol blue and xylene cyanol). Samples
were then denatured at 95°C for 10 min and polymer-
ization products were separated from substrates by
denaturing gel electrophoresis using 14% acryl-
amide gels containing 7 M urea. DNA synthesis was
analyzed by phosphorimaging using a GS-525
Molecular Imager and Quantity One Software
(Bio-Rad Laboratories, Inc., Hercules, CA, USA).
Inhibition of HIV-1 RT DNA synthesis was also
evaluated to determine ICsy, values using a
5'-end-**P-labeled 19-nt DNA primer (5-TTGTAG
CACCATCCAAAGG-3’) that was annecaled to one
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of three 36-nt DNA templates that contained five
consecutive thymine, cytosine or adenosine bases.
In this regard, inhibition of HIV-1 RT DNA syn-
thesis by analogs with adenine, guanine or thymine
bases were evaluated using the templates (T1, 5-CA
GACTTTTTCAGACCTTTGGATGGTGCTACA

AGCT-3"), (T2, 5-CAGAGCCCCCGAGACCTTT
GGATGGTGCTACAAGCT-3'), or (T3, 5-CTGC
TAAAAACTGCCCTTTGGATGGTGCTACAAG
CT-3'), respectively. The T1 template was used for
inhibition of WT and mutant HIV-1 RT DNA syn-
thesis by each of the 6-modified-3'-azido-ddGTP
analogs. Reaction conditions and gel electrophoresis
were identical to those described above except
100nM of WT or mutant HIV-1 RT was used to
initiate the reaction. Reactions were quenched fol-
lowing incubation at 37°C for 10 min. The amount
of final product on the denaturing polyacrylamide
gel electrophoresis (PAGE) gels was quantified by
densiometric analysis using Quantity One Software.
The concentration of each 6-modified-3'-azido-
ddGTP analog required to inhibit the formation of
final product by 50% was calculated using non-
linear regression analyses (SigmaPlot Software
Version 11, Systat Software, Inc., San Jose, CA,
USA) from at least three independent experiments.
Two-tailed homoscedastic 7-tests were used to calcu-
late the reported P-values.

Pre-steady-state incorporation of
6-modified-3'-azido-ddGTP analogs

A rapid quench instrument (Kintek RQF-3 instrument,
Kintek Corporation, Clarence, PA, USA) was used for
pre-steady-state experiments. The typical experiment was
performed at 37°C in 50 mM Tris—HCI (pH 7.5) contain-
ing S0mM KCI, 10mM MgCl, and varying concentra-
tions of nucleotide. All concentrations reported refer to
the final concentrations after mixing. HIV-1 RT
(200nM) was pre-incubated with 20nM T/P substrate,
prior to rapid mixing with nucleotide and divalent metal
ions to initiate the reaction that was quenched with 50 mM
EDTA. The sequences of the template and 5'-radiolabeled
primer are shown in Table 1. The quenched samples were
then mixed with an equal volume of gel loading buffer and
products were separated from substrates as described
above. The disappearance of substrate (20mer) and the
formation of product (21-mer) were quantified using a
Bio-Rad GS525 Molecular Imager (Bio-Rad Laboratories,
Inc., Hercules, CA, USA). Data were fitted by nonlinear
regression with Sigma Plot software (Systat Software,
Inc., San Jose, CA, USA) using the appropriate equa-
tions (9). The apparent burst rate constant (k,ps) for
each particular concentration of dNTP was determined
by fitting the time courses for the formation of prod-
uct (21mer) using the following equation: [21mer] =
Al —exp(—konst)], where A represents the burst ampli-
tude. The turnover number (k,,) and apparent dissoci-
ation constant for dNTP (K4) were then obtained by
plotting the apparent catalytic rates (kops) against ANTP

Table 1. Pre-steady-state kinetic values for incorporation of
6-modified-3'-azido-ddGTP analogs by WT HIV-1 RT

Incorporation as an ‘A’ analog®

Nucleotide analog Kpol Y Ky (uM) Kpol/ Kg Selectivityb
M~ 's™h versus
dATP

dATP 17.0£2.1° 0.33£0.05 52 -
3'-azido-ddATP 14.0+5.6 032+£0.13 44 1.2
3-azido-2,6-DA-P-TP 14.0+4.9 0.294+0.05 48 1.1

3'-azido-6-CI-P-TP 27405 1.8+1.0 1.5 35
3'-azido-6-AA-P-TP 2.1£02 48+23 044 118
3'-azido-6-MX-P-TP 28£0.2 12.0+12 0.23 226

Incorporation as a ‘G’ analog®

Nucleotide analog Kpol (s K4 (uM) kpol/Kq Selectivity
M~ 's™!y versus
dGTP
dGTP 173£1.4 0.17£0.05 102 -
3'-azido-2,6-DA-P-TP 0.16+£0.02 34414  0.005 20400
3'-azido-6-CI-P-TP 0.374+0.04 0.92+0.02 0.402 254
3’-azido-6-AA-P-TP  n.m.° >50 n.m. n.m.
3-azido-6-MX-P-TP  0.22+0.09 16.3+4.3 0.013 7846

#3-ACAGGGACAAGCCCGCGGTGACGATCTCTTAAAGGTAA-
GACTGATTTTCCCAGACTC-5'; 5-TCGGGCGCCACTGCTAGAG
A: Sequence of the T/P substrate used to assess the 6-modified-
3'-azido-ddGTP nucleotides as ‘A’ analogs.

b Selectivity is (kpol/Kd)dNTP/(kpol/Kd)3 -azido-ddNTP

“Values represent the mean + standard deviation of three to four inde-
pendent experiments
93.ACAGGGACAAGCCCGCGGTGACGATCTCTCAAAGGTAA-
GACTGATTTTCCCAGACTC-5; 5-TCGGGCGCCACTGCTAGA
GA: Sequence of the T/P substrate used to assess the 6-modified-
3’-azido-ddGTP nucleotides as ‘G’ analogs

‘n.m. Not measurable.

The rate of incorporation was so inefficient that accurate kinetic par-
ameters could not be determined.

concentrations and fitting the data with the following
hyperbolic equation: kops = (kpoi[dNTP])/([dANTP] + Ky).
Catalytic efficiency was calculated as the ratio of turnover
number over dissociation constant ([kpo/Kq]). Selectivity
for natural dNTP versus 6-modified-3'-azido-ddGTP
analog was calculated as the ratio of catalytic efficiency
of dANTP over that of the 6-modified-3'-azido-ddGTP
analog ([(kpo/Ka)™"F/(kpor/Ka) "),

Excision of the 6-modified-3'-azido-ddG monophosphate
analogs by WT or TAM-containing HIV-1 RTs

The ability of WT or TAM-containing HIV-1 RT to fa-
cilitate ATP-mediated excision of the 6-modified-3'-azido-
ddG-MP analogs from a DNA/DNA chain-terminated
T/P was assessed as described previously (3). For
excision of 3-azido-ddAMP and each 6-modified-3'-
azido-ddGMP analog the T/P pair was TI1/pr23A
(pr23A:  5Y-TTGTAGCACCATCCAAAGGTCTG-3).
The 23-nt DNA primer was 5-radiolabeled with
[y->*PJATP, annealed to T1, and then chain-terminated
with the appropriate nucleotide analog. Reactions were
carried out in a 50-mM Tris—HCI (pH 7.5) buffer that
contained S0mM KCI, 10mM MgCl,, 3mM ATP and



1uM dATP/10 uM ddGTP. Reactions were initiated by
the addition of 200nM WT or mutant RT. Aliquots
(5ul) were removed at defined times, quenched with gel
loading buffer, denatured at 95°C for 10 min, and product
was then resolved from substrate by denaturing PAGE
and analyzed, as described above.

Molecular modeling

Molecular models of incorporation were constructed using
the X-ray crystallographic coordinates (PDB entry 1
RTD) for the RT-T/P-TTP ternary complex (10). The
3’-OH of the primer strand as well as the 6-modified-
3’-azido-2',3-ddGTP analogs and complementary bases
in the template strand were built into the model to
generate a pre-initiation complex, as described previously
(11). Tautomerization and protonation potential of the
entire system was calculated using the Generalized
Born/Volume Integral (GB/VI) electrostatics method of
Labute (12). Energy gradient minimization was carried
out using MMFF9%4x force field in the Molecular
Operating  Environment (MOE  2008.02;  Chemical
Computing Group, Montreal, Quebec, Canada). Ligand
interactions were quantified and images generated using
the LigX interaction function in MOE. Structural
models comparing incorporation and excision of specific
nucleotide analogs used the PDB co-ordinates 3KLF and
3KLE that contain the excision product AZT adenosine
dinucleoside tetraphosphate (AZTppppA) (13). To elimin-
ate the potential force field bias from alignment of bases,
empirically derived angle relations were used for all analogs
tested. 3KLF and 3KLE were fit to the p66 subunit of
IRTD wusing the Matchmaker function in Chimera
version 1.51 (UCSF  Chimera, Resource for
Biocomputing, Visualization, and Informatics at the
University of California, San Francisco). Aligned structures
were opened in MOE and dihedral angles were measured
from bases relative to the ribose ring O and C1 of both
template and bound nucleotides for each complex.
MOE’s builder function was used to modify each
template/bound nucleotide base pair retaining the experi-
mental dihedrals. Hydrogen-bonding potential between the
aligned base pairs was quantified using the ‘FindHBond’
function in Chimera with default settings. Parts of
modeling workflow was automated using Pipeline Pilot
7.5 (Accelrys Corporation, San Diego, CA, USA)

RESULTS

Steady-state incorporation of 6-modified 3'-azido-ddGTP
nucleotides by HIV-1 RT

To characterize the ability of the WT HIV-1 RT to incorp-
orate the 6-modified-3'-azido-ddGTP analogs we first
conducted steady-state DNA synthesis reactions using
heteropolymeric DNA/DNA and RNA/DNA T/P sub-
strates (Figure 2). The sequences of the RNA and DNA
templates correspond to the HIV-1 sequence used for (—)
strong stop DNA synthesis, and both reactions were
primed with the same 18-nt DNA primer that was com-
plementary to the HIV-1 primer binding site (3). 3’-Azido-
ddGTP, 3'-azido-ddATP, 3’-azido-ddCTP and ZDV-TP
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were included as controls in these experiments.
Unexpectedly, we found that HIV-1 RT recognized all of
the 6-modified-3’-azido-ddGTP nucleotides as adenosine
analogs and incorporated them opposite thymine in DNA
(Figure 2A) or uracil in RNA (Figure 2B). As anticipated,
their incorporation resulted in chain-termination of DNA
synthesis. Under the assay conditions described in
Figure 2, the 6-modified-3’-azido-ddGTP nucleotides were
not incorporated into the nascent DNA opposite cytosine.
However, if the dNTP concentration was lowered to
0.1 uM, chain termination opposite cytosine was observed
(data not shown). We also determined the concentration
of 6-modified-3’-azido-ddGTP analog required to inhibit
DNA synthesis (i.e. ICsy) using a different hetero-
polymeric DNA/DNA T/P substrate, as described in the
‘Materials and Methods’ section (Table 2). Their order of
potency against WT RT was determined to be: 3’-azido-
ddATP, 3-azido-ddGTP  >3'-azido-2,6-DA-P-TP >
3'-azido-6-CI-P-TP, 3-azido-6-AA-P-TP > 3'-azido-6-
DM-P-TP, 3’-azido-6-MX-P-TP.

Pre-steady-state incorporation of 6-modified 3'-azido-
ddGTP nucleotides by HIV-1 RT

Pre-steady-state kinetic analyses were carried out to eluci-
date, in detail, the interactions between the 6-modified-
3-azido-ddGTP analogs and the polymerase active site
of WT HIV-1 RT (Table 1). Because the 6-modified-3'-
azido-ddGTP analogs behave as adenine nucleotide
analogs, we included 3’-azido-ddATP as a control. The
results (Table 1) show that the catalytic efficiency of in-
corporation (kpei/Kq) of 3'-azido-2,6-DA-P-TP was similar
to that of dATP and 3’-azido-ddATP. Consistent with the
steady-state  kinetic experiments, 3’-azido-6-CI-P-TP,
3'-azido-6-AA-P-TP and 3’-azido-6-MX-P-TP were all
less efficiently incorporated by WT HIV-1 compared to
dATP. The observed decreases in catalytic efficiency for
each of these substrates was driven by both a decrease in
the rate of nucleotide incorporation (i.e. kpo) and a
decrease in the affinity of the nucleotide for the polymer-
ase active site (i.e. Ky). Due to limited quantities of the
3-azido-6-DM-P-TP, we were unable to obtain
pre-steady-state kinetic data for this analog. We also
assessed the ability of the 6-modified-3’-azido-ddGTP
analogs to be incorporated opposite cytosine (Table 1).
The data show that, in comparison to dGTP, the
6-modified-3’-azido-ddGTP analogs were inefficiently
incorporated by HIV-1 RT. The only compound with rea-
sonable activity as a G-analog was 3'-azido-6-CI-P-TP;
however, its selectivity value versus dGTP (254) was
~7-fold less than its selectivity value versus dATP (35).

Activity of the 6-modified-3'-azido-ddGTP analogs against
HIV-1 RT containing NRTI discrimination mutations

The amino acid substitutions K65R, L74V, Q15IM (in
complex with A62V, V751, F77L and F116Y) or M 184V
in HIV-1 RT improve the enzyme’s ability to discriminate
between the natural dANTP substrate and an NRTI-TP.
These substitutions are typically referred to as NRTI dis-
crimination mutations. To determine whether NRTI dis-
crimination mutations impacted RTs’ ability to recognize



Table 2. Inhibition of steady-state WT and mutant HIV-1 RT DNA synthesis by 6-modified-3'-azido-ddGTP analogs
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Nucleotide analog HIV-1 RT
WT K65R L74V M184V Ql51M*

ZDV-TP

ICso (uM)® 0.134+0.04 0.66+0.20 0.18+0.10 0.124+0.03 2.7+1.0

Fold-R¢ - 5.2 1.4 0.9 21.0
3'-azido-ddGTP

ICso (uM) 0.154+0.01 0.36+0.02 0.254+0.10 0.06 +0.02 0.304+0.20

Fold-R - 2.5 1.7 0.4 2.1
3'-azido-ddATP

1Cs5o (uM) 0.164+0.10 0.70+0.10 0.4240.10 0.1940.10 1.4441.00

Fold-R - 4.3 2.5 1.2 8.8
3'-azido-2,6-DA-P-TP

1Cso (uM) 0.804+0.10 25+1.6 1.3+0.4 0.344+0.10 42+3.6

Fold-R - 3.1 1.6 0.4 5.3

P-value® - 0.36 0.08 0.02 0.45
3'-azido-6-CI-P-TP

1Cso (LM) 3.2+0.8 9.1£38 11.8+3.9 2.5+1.0 30.8 6.1

Fold-R - 2.9 3.7 0.8 9.7

P-value - 0.12 0.15 0.22 0.81
3/-azido-6-AA-P-TP

ICso (uM) 4.10+0.8 8.8+0.8 10.3+1.9 4.8+0.6 21.8+12.0

Fold-R - 2.2 2.5 1.2 5.3

P-value - 0.0006 0.97 0.94 0.43
3'-azido-6-DM-P-TP

1Cso (uM) 23.44+13.0 >50 >50 N.D.¢ >50

Fold-R - >2.0 >2.0 >2.0

P-value - - - - -
3'-azido-6-MX-P-TP

I1Cso (ULM) 2444+7.0 80.1£6.1 >100 32.9+23.0 78.0 £34.0

Fold-R - 33 >4.0 1.3 3.2

P-value - 0.10 - 0.71 0.31

“The QI5IM RT contained the A62V, V751, F77L, F116Y and QI151M mutations.
°ICs, values are the concentration of drug required to inhibit 50% of DNA synthesis under steady-state assay conditions.
Data are shown as the mean +standard deviation of at least three independent experiments.

‘Fold-resistance (Fold-R) values are calculated by

mutant RT WT RT
1Cs /ICsq .

dp-value compares the Fold-R values determined for the 6-modified 3'-azido-ddGTP analogs to the Fold-R value determined for

3'-azido-ddATP.
°Not determined.

and incorporate the 6-modified-ddGTP analogs, we deter-
mined the concentration of nucleotide analog required to
inhibit 50% of the DNA polymerase activity (i.e. 1Csg)
under steady-state assay conditions using the heteropoly-
meric DNA/DNA T/P substrates as described in the
‘Materials and Methods’ section (Table 2). 3’-Azido-
ddATP, 3-azido-ddGTP and ZDV-TP were again in-
cluded as controls. The 6-modified-3-azido-ddGTP
analogs were also incorporated as adenosine analogs by
the mutant HIV-1 RTs (data not shown). In general, the
mutant HIV-1 RTs exhibited fold-resistance values to
each of the 6-modified-3-azido-ddGTP analogs that
were similar (i.e. <2-fold) to the fold change in resistance
values determined for 3’-azido-ddATP. The only statistic-
ally significant exceptions (P <0.05) included 3'-azido-
6-AA-P-TP and 3’-azido-2,6-DA-P-TP which exhibited
better activity against K65R HIV-1 RT and M184V
HIV-1 RT, respectively. Of interest, the fold-resistance
values for all of the 3’-azido-dideoxypurines against
HIV-1 RT containing A62V/V751/F77L/Y116F/QI151M
were significantly less than the fold-resistance value that
was determined for ZDV-TP.

Excision of 6-modified-3'-azido-ddG-5'-MP analogs by
WT and TAM containing HIV-1 RT

HIV-1 RT has the intrinsic ability to rescue DNA synthe-
sis from an NRTI-MP blocked primer, using ATP as a
phosphate donor (14). This ATP-mediated excision activ-
ity of HIV-1 RT is selectively increased by TAMs (15).
Accordingly, we investigated the ability of WT and
TAM-containing RT to excise the 6-modified-3’-azido-
ddGMP analogs from a DNA chain-terminated T/P.
Two RT enzymes that contained different patterns of
TAMs [e.g. D67TN/K70R/T215F/K219Q (TAMG67) and
M41L/L210W/T215Y (TAM41)] were studied. Our
results (Figure 3) showed that the WT, TAMG67, and
TAM41 RTs could unblock T/Ps chain-terminated with
3'-azido-ddAMP, 3’-azido-2,6-DA-P-MP and 3’-azido-6-
AA-P-MP, although TAM41 RT and TAM67 RT were
more efficient in this regard than was the WT enzyme. By
contrast, both the WT and TAM-containing RTs could
not efficiently unblock T/P substrates chain-terminated
with  3-azido-6-MX-P-MP, 3'-azido-6-CI-P-MP  or
3’-azido-6-DM-P-MP.
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Figure 3. ATP-mediated excision of 6-modified-3’-azido-ddGMP analogs by WT (A), TAM67 (B) or TAM41 (C) HIV-1 RT. Data are the
mean + standard deviation from at least three independent experiments. Reaction conditions are described in the ‘Materials and Methods’ section.

Molecular models of 3'-azido-2,6-DA-P-TP and
3'-azido-6-CI-P-TP in the active site of HIV-1 RT

We used molecular modeling to gain structural insight
into the binding interaction between the 6-modified-3'-
azido-ddGTP analogs and the thymine base in the DNA
template in the active site of HIV-1 RT. Specifically we
modeled 3’-azido-2,6-DA-P-TP and 3'-azido-6-CI-P-TP
into the active site of HIV-1 RT using the co-ordinates
(IRTD) from the RT-T/P-TTP complex (10). Both
3'-azido-2,6-DA-P-TP and 3’-azido-6-Cl-P-TP were found
to fit comfortably into the active site of HIV-1 RT and
formed hydrogen-bond interactions with the thymine base
in the DNA template (Figure 4). However, the base
hydrogen-bonding characteristics differed for each analog.
The base of 3’-azido-6-CI-P-TP forms two hydrogen-bond
interactions through the nitrogen (NH) at position 1 and
the amine (NH>,) at position 2 with the template thymine
(Figure 4B). In addition to these two hydrogen-bonding
interactions, 3’-azido-2,6-DA-P-TP can form an add-
itional hydrogen bond via the amino group (NH,) at
the 6-position of the purine base (Figure 4D). Therefore,
the 2,6-diaminopurine:thymine base-pairing interaction

mimics the canonical Watson—Crick guanine:cytidine
interaction.

Molecular models for ATP-mediated excision of the
6-modified-3'-azido-ddG-5'-MP analogs

To gain structural insight into why the 6-modified-3'-
azido-ddG analogs are differentially excised by HIV-1
RT containing TAMs, we modeled their excision products
(6-modified-3’-azido-ddG adenosine dinucleoside tetra-
phosphate) in the enzyme’s active site. These models
reveal a hydrogen-bonding network that is different from
those observed for the TP forms. 3'-Azido-ddA forms
hydrogen bonds from the 1 and 6 atoms to the 3 and 4
atoms of the complementary thymine template in both the
incorporation (Figure 4C) and excision (Figure S5A)
models. By contrast, the hydrogen bond observed between
the 2-amino substitution and the 2-carbonyl of the thymine
template observed for the nucleotide triphosphate analogs
(Figure 4B and D) is lost in all related excision complexes
(Figure 5B-D). 3’-azido-2,6-DA-P (Figure 5B) and
3-azido-6-AA-P (Figure 5C) retain an H-bond from the
6 atom position of the purine ring and the 4 atom position
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Figure 4. Molecular models of 3’-azido-ddGTP (A), 3’-azido-6-CI-P-TP (B), 3’-azido-ddATP (C) and 3'-azido-2,6-DA-P-TP (D) in the DNA poly-
merase active site of HIV-1 RT. Each of the analogs was modeled into the ternary RT-T/P-TTP complex (pdb co-ordinates IRTD). A schematic
representation of the hydrogen-bonding patterns between the incoming nucleotide analog and the template base is depicted below each model.

on the template thymine, whereas this interaction is not
maintained for 3’-azido-6-CI-P (Figure 5D), 3’-azido-6-
DM-P and 3'-azido-6-MX-P (data not shown). Taken
together, these different hydrogen-bonding patterns may
explain why 3’-azido-2,6-DA-P and 3’-azido-6-AA-P are
more efficiently excised by HIV-1 RT than are 3'-azido-
6-Cl-P, 3’-azido-6-DM-P and 3’-azido-6-MX-P.

DISCUSSION

In this study, we demonstrated that 6-modified-3'-azido-
ddGTP nucleotides act as adenosine mimetics for DNA
synthesis carried out by HIV-1 RT. Of the five analogs
studied, 3’-azido-2,6-DA-P-TP, which has a 2,6-diamino-
purine base, was found to be the most efficient substrate
for incorporation by HIV-1 RT. In pre-steady-state
kinetic experiments, 3’-azido-2,6-DA-P-TP was recognized
and incorporated by WT HIV-1 RT as efficiently as dATP
and 3’-azido-ddATP. The analogs that contain the
2-amino-6-N,N-dimethylaminopurine (3’-azido-6-DM-P-
TP) or 2-amino-6-methoxypurine (3'-azido-6-MX-P-TP)

bases, however, were poor substrates for incorporation
by HIV-1 RT. Our molecular modeling studies suggest
that 6-modifications with a branched side-chain (e.g.
3’-azido-6-DM-P-TP) or one with electronic incompatibil-
ity (e.g. 3’-azido-6-MX-P-TP) may alter the alignment of
the bases and move their a-phosphate away from the
primer 3’-OH, thus impairing nucleotide incorporation.
In contrast, 3’-azido-2,6-DA-P-TP, 3’-azido-6-CL-P-TP
and 3-azido-6-AA-P-TP form relatively planar base-
pairing interactions with the template thymine that en-
hance their a-phosphate interaction with the 3’-OH of
the primer. Compared to the canonical A:T base pair,
the additional hydrogen bond achieved by the 3’-azido-
2,6-DA-P:thymine base pair may further stabilize the
a-phosphate, facilitating the favorable catalytic efficiency
observed in pre-steady-state assays. In contrast, the
6-modified-3'-azido-ddGTP nucleotide analogs are ineffi-
ciently incorporated by HIV-1 RT opposite cytosine bases.
Taken together, these findings are consistent with those of
Cheong et al. who reported that oligodeoxyribonucleotide
duplexes containing 2,6-diaminopurine formed more
stable base pairs opposite thymine than cytosine (16).
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The mutations K65R, L74V, Q151M (in complex with
A62V, V751, F77L and F116Y) or M184V in HIV-1 RT
allow the enzyme to discriminate between the natural
dNTP substrate and modified nucleotide analogs. In
Table 2, we show that the K65R, L74V and Q151M mu-
tations confer low levels of resistance to both 3’-azido-
ddATP and 3-azido-ddGTP at the enzyme level.
Modification at the 6-position of the purine base does
not appear to enhance this discrimination phenotype:
the K65R, L74V or A62V/V751/F77L/F116Y/Q151M
HIV-1 RTs all exhibited fold-resistance changes to each
of the 6-modified-3-azido-ddGTP analogs that were
largely similar (i.e. <2-fold) to the fold change in resist-
ance values determined for 3’-azido-ddATP. Interestingly,
the structure—activity relationship for the ATP-mediated
excision of the 6-modified-3'-azido-ddGMP analogs by
WT or TAM-containing HIV-1 RT differed from the
structure—activity relationship for their incorporation.
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For example, whereas 3’-azido-6-CL-P-TP is a relatively
good substrate for incorporation, it is not efficiently
excised by either WT or TAM-containing HIV-1 RT. In
this regard, our modeling data show that the hydrogen-
bonding patterns observed for this analog differs
from that of 3’-azido-2,6-DA-P and 3’-azido-6-AA-P
(Figure 5). As such, it is possible that the change in tran-
sition state geometry required for excision is not suffi-
ciently stabilized by the 6-Cl substituted guanine analog
base-paired with thymine. Taken together, these data
suggest that the optimal conformation of the HIV-1 RT
active site differs for incorporation and excision and
further suggests that 6-position modifications differen-
tially effect these two reactions. This finding provides
‘proof of concept’ that modified base analogs can be
identified that are efficiently incorporated by HIV-1 RT
but serve as a poor substrate for HIV-1 ATP-mediated
excision reactions. Further optimization of these
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divergent but favorable properties of purine analogs is in
progress.

We previously demonstrated that 3’-azido-2,6-DA-P,
3'-azido-6-CL-P, 3'-azido-6-DM-P, 3'-azido-6-MX-P and
3’-azido-6-A A-P showed comparable or superior antiviral
activities to 3’-azido-ddG in primary human cells
(5, Figure 1). Intracellular pharmacology analyses,
however, revealed that each of these compounds was
efficiently metabolized by adenosine deaminase to
3’-azido-ddG in cells (5). Therefore, the observed
anti-HIV-1 activity of each of these nucleoside analogs
was not primarily due to incorporation of the ambiguous
purine nucleotides described in this study. However, we
recently identified RS-788, a 5-monophosphate prodrug
of 3’-azido-2,6-DA-P, as a potent and selective inhibitor of
HIV-1 replication (Schinazi et al., 16th Conference on
Retroviruses and Opportunistic Infections (2009)
Abstract 557). In peripheral blood mononuclear cells,
RS-788 is metabolized ~1:1 to both 3’-azido-2,6-DA-P-
TP and 3’-azido-ddGTP. Consequently, RS-788 delivers
two chemically distinct metabolites each of which are
potent HIV-1 RT chain terminators that are incorporated
opposite different complementary bases (cytosine for
3-azido-ddGTP and thymine for 3’-azido-2,6-DA-P-TP).
Therefore, our studies provide a promising new approach
for the design and development of novel ambiguous NRTI
that exert profound antiviral activity against WT and
drug-resistant HIV-1.
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