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ABSTRACT

Highly multiplex DNA sequencers have greatly
expanded our ability to survey human genomes for
previously unknown single nucleotide polymorph-
isms (SNPs). However, sequencing and mapping
errors, though rare, contribute substantially to the
number of false discoveries in current SNP callers.
We demonstrate that we can significantly reduce
the number of false positive SNP calls by pooling
information across samples. Although many
studies prepare and sequence multiple samples
with the same protocol, most existing SNP callers
ignore cross-sample information. In contrast, we
propose an empirical Bayes method that uses
cross-sample information to learn the error
properties of the data. This error information lets
us call SNPs with a lower false discovery rate than
existing methods.

INTRODUCTION

Highly multiplex sequencing technologies have made
DNA sequencing orders of magnitude cheaper; an indi-
vidual laboratory can now sequence targeted regions of
the genome for many individuals at reasonable depth
(1). This has dramatically increased our ability to search
for single nucleotide polymorphisms (SNPs). To avoid
being overwhelmed by false positives when we search for
SNPs in large genomic regions, we need to call SNPs in a
statistically rigorous way.

Although many studies involve multiple samples
prepared and sequenced by the same protocol, current
SNP detection methods (2-10) mostly analyze one
sample at a time, using sequencing and mapping quality
scores to distinguish true SNPs from sequencing and

mapping errors. These single-sample methods ignore im-
portant cross sample information. Error rates vary across
the genome and depend on local DNA content, but they
are consistent across samples. True SNPs tend to recur
across samples as well. A multisample version of GATK
(9,11) sums likelihoods across samples to take advantage
of the recurrence of true SNPs but ignores the fact that
high error rates are also reproduced across samples.
Another existing method, SNIP-Seq (8), uses the consist-
ency of true SNPs and of error rates, but still relies on
quality scores. The cross-sample statistical properties of
sequencing data have not been extensively explored or
used in SNP calling.

In this article, we propose a statistical approach to SNP
detection using deep sequencing data from multiple
samples. Instead of relying on quality scores, we pool in-
formation across samples to estimate the error rate for
each position. We do this with an empirical Bayes model
that can be fit quickly using a computationally efficient
algorithm. Our results show that using cross-sample infor-
mation efficiently can lead to substantially fewer false
discoveries. Since our method uses only the 4, C, G, T
counts (basewise coverage depth information) for ecach
position and sample, it is not specific to any sequencing
technology or data set, and eliminates the substantial com-
putational burden associated with using quality scores.

The intuition behind our approach is simple. Suppose
there are N genome positions of interest; for the entire
human genome, N is near 3 billion, and for targeted
sequencing of selected genomic regions, N can be in the
hundreds of thousands. Sequencing yields one N x 4 table
of A, C, G, T counts for each sample (as well as other
platform-specific information which our method does
not use, such as quality scores). We can view SNP
calling as a multiple testing problem, where the null hy-
pothesis for each position is that all samples are homozy-
gous for the reference base. If we knew the null
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distribution of counts at each position—the distribution of
base counts if the position were truly homozygous for the
reference base—we could apply standard multiple testing
ideas to call SNPs and control the false discovery rate of
our calls.

It is well known, however, that sequencing and mapping
error rates vary substantially across positions (3,6,7). We
find that these variations are highly reproducible across
samples. Accordingly, we pool information across samples
to estimate the null distribution for each position. Figure 1
illustrates this idea. The left simplex shows 4, C, G, T
frequencies for four homozygous positions with quite dif-
ferent error rates, while the right simplex shows a true
SNP position with genotypes GG, GC, CC. If we were to
analyze each sample separately, we might falsely conclude
that some of the noisier positions were SNPs, since they
show high non-reference base frequencies. With a
cross-sample model, we can learn the error distribution
for each position and distinguish noisy positions from
true SNPs.

We also pool information across genome positions,
taking advantage of genome-wide error patterns to
improve our null distribution estimates. This can be
viewed as a statistical shrinkage estimation method,
where the position-specific error distributions are shrunk
toward a genome-wide consensus. For most data sets, the
number of positions is far greater than the number of
positions. For example, the data we use in this article
has 300000 positions and 30 samples. The large number
of positions means that any noise property shared across
positions can be learned fairly accurately, and thus con-
tribute to the quality of SNP calls. This particularly
benefits low-coverage positions, which contain little infor-
mation in themselves.

Our fundamental idea, pooling data to estimate the null
distribution at each position, comes from Efron’s empir-
ical null methods for microarray data (12). One of our
contributions in this article is extending Efron’s ideas to
the sequencing setting. Efron’s approach is designed for
continuous data, and requires a z-score for each hypoth-
esis tested. The SNP detection problem is quite different,
since the data is discrete, many positions have very few

Figure 1. The simplex on the left shows four non-polymorphic genome
positions of varying degrees of noisiness taken from the example data
set, coded by different colors. Within each color, each point is for a
different sample. There are two 7°s (blue and green), one 4 (yellow)
and one G (red). The simplex on the right shows a true SNP that has
genotypes C/C, C/G, and G/G among the samples.
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counts, and the number of counts at each position varies
dramatically. We take an empirical Bayes approach
similar to Efron’s, and use a Dirichlet mixture model to
estimate the null distributions efficiently while accounting
for the discreteness and depth variation of sequencing
data.

MATERIALS AND METHODS
Description of data

In this section, we will summarize important aspects of the
data. Unlike existing methods, we take an empirical
approach and avoid models tailored toward a specific
platform or mapping protocol, so we will largely omit
platform specific details.

In a typical sequencing experiment, DNA from the
sample of interest is isolated and randomly fragmented,
and possibly amplified in a PCR procedure. A fixed
number of bases from the ends of the fragments are read
by a sequencer, forming a read, that is, a sequence of fixed
length from the alphabet A = {4, C, G, T}. The reads are
then mapped to a reference genome by an alignment al-
gorithm, yielding {4, C, G, T} counts for each position in
the given sample. Different sample preparation protocols,
sequencing technologies and alignment methods produce
different errors.

As an example, we analyze a collection of 29 normal
T cell derived DNA samples. In addition, we also include
one sample derived from NA18507, a fully sequenced in-
dividual of Yoruban descent (13). In each sample, the
coding regions and some nearby intronic regions of
53 genes were selectively enriched as decribed in (14)
and (15). The targeted region was recovered in the form
of 1157 double stranded linear amplicons covering 309Kb.
This material was concatenated and mechanically frag-
mented in order to avoid overrepresentation of amplicon
ends. Sequencing libraries were prepared from this
material and sequenced following established procedures
(see the Supplementary Data for more details).

Our analysis focuses on the array of {4, C, G, T} counts
to avoid being tied to any particular sample preparation,
sequencing or alignment technique. We call the number of
reads that contain a given position the coverage of that
position. The coverage varies substantially across pos-
itions because of random errors introduced at each stage
of the sequencing process and the influence of the local
genomic environment.

The error rate also varies substantially across positions.
As discussed in earlier reports (3,6,7), there are many
sequence-specific features that contribute to this variation.
For example, some genomic regions are more repetitive
than others, and are thus more prone to alignment
errors. Certain combinations of DNA bases can also
lead to higher sequencing error.

These causes of increased error rates depend on the
genome environment, which to a large extent does not
vary between samples. We thus expect the error rate for
a given position to be consistent across samples that are
prepared, sequenced and mapped using the same protocol.
Figure 3 in the ‘Results’ section shows that this is indeed
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true for our data. The reproducibility of error rates
suggests that we can estimate and correct for positional
error rate variation through a cross-sample model.

Error rates also show genome-wide patterns. For
example, in our data, C is globally more likely to be
misread as 4 than as 7. These global error patterns can
help us estimate the error rate for low-coverage positions,
since the small number of counts at these positions make
even the cross-sample error estimates unreliable.

Dirichlet mixture model

We frame SNP detection as a multiple hypothesis testing
problem in order to detect SNPs in a statistically rigorous
way. We want to test N null hypotheses, where the i-th
null hypothesis is that position i is homozygous for the
reference base in all of the samples. Since most positions in
the human genome are non-polymorphic, most positions
in any data set will be null. To test these hypotheses rigor-
ously, we need to learn the appropriate null and alterna-
tive distributions at each position.

We propose an empirical Bayes mixture model that
shares information across samples and positions to effi-
ciently estimate these distributions. We use the following
generative model for the counts of the four bases at each
position. First, for each position 7, a null frequency vector
pi=@:beA) and an alternative frequency vector
q; = (qf’ :b € A) are generated from null and alternative
priors G, and G, repectively. Next, each sample is
assigned to the null or alternative: indicators §; are
generated for each sample j at each position i, assigning
the sample to the null (5; = 0) or the alternative (5, = 1)
at the position. Finally, counts for each sample are
generated from the appropriate multinomial distribution,
using the observed coverage N;; and either the null (p;) or
the alternative (q;) frequency vectors. Expressed mathem-
atically, this gives the following model for position i:

P; ~ G,
q; ~ Gair»
8;; ~ Bernoulli (r;),
X185, pi, q; ~ Multinomial (1 — 8;)p; + 8;¢i, Ny).-

Figure 2 shows a diagram of this model.

With this model, we proceed in three steps. We first
estimate G, Gus T, Pp; and q; by maximum likelihood
using a modified EM algorithm detailed in the
Supplementary Data. We then use the estimated param-
eters to find the posterior probability that each position is
homozygous for the reference base in each sample (that is,
we find E(5;]/X)). Last, we use the estimated posterior
probabilites to call SNPs. Estimating the priors G,..;, Gui
lets us share information across positions, and estimating
the non-null probability n; and the position specific null
and alternative frequency vectors p; and q; lets us share
information across samples.

In the rest of this section, we explain our modeling
approach in more detail. Our fitting algorithm is a
modified EM algorithm. It is reasonably fast; fitting our
model for our 300000 position, 30 sample example data
set takes about 25 min on a 1.6 Ghz computer with 2 Gb
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Figure 2. Our model, displayed in graphical model plate notation. The
boxes denote generation of a quantity for each position and each
sample. We display (1 —93)p+9dq as ‘r’ for brevity.

RAM. The algorithm is easily paralellizable as well. We
defer the full details of our fitting algorithm to the
Supplementary Data.

We model the priors G, and G,; as G component
Dirichlet mixtures:

G

Gt = Z Ouir¢ Dirichlet (o)
g=1
G

Ganr = ZOWLgDirichlet(ag).
g=1

Mixture models give us convenient conjugate priors, but
with the flexiblity to adapt to many different error
distributions.

To estimate G,,; and G,;, more efficiently, we impose
extra constraints on the mixture parameters. First, we
require that all the Dirichlets have the same precision

4 .
Y 1) &g Second, we choose our mixture components to

take advantage of the structure of SNP data. The simplest
version of our approach would be to use four null com-
ponents (one each of homozygous {4, C, T, G}), and six
alternative components (one for each heterozygous com-
bination of {4, C, G, T}). Geometrically, the null compo-
nents put probability near the corners of the {4, C, G, T}
simplex, while the alternative components put probability
near the edge midpoints. We require that the null mixture
probabilities 0,,;,, be non-zero only on the null compo-
nents and the alternative mixture probabilities 0,,, be
non-zero only on the alternative components.

This basic approach, however, does not fit our data
well. In our data, we found that nearly all positions are
‘clean’, with very low error rate, but a small proportion
are ‘noisy’, with a much higher error rate. The noisy pos-
itions often reside in repetitive regions that are hard to
map. This error rate distribution is not modeled well by
a single Dirchlet group for each corner and edge midpoint
of the simplex, but is well modeled by a mixture of two
Dirichlets in each corner and edge midpoint. This gives us
8 null and 12 alternative mixture components.

Our algorithm does not explicitly model the possibility
that a position is homozygous for a non-reference base.
Instead, our fitting procedure is such that each position is
very likely to have a null distribution generated from the
homozygous group corresponding to the reference base.
This means that if a position is homozygous for a
non-reference base, it will strongly appear to have been
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generated from an alternative group, and will thus be cor-
rectly called as a SNP. For example, suppose the reference
base for a position is C and a position is homozygous 44
in a given sample. The position is far more likely to have
been generated from the AC alternative than the CC null,
so even though our model does not explicitly consider the
possiblity that the position is A4, we will still detect it
as a SNP. We re-genoytpe all called positions in post-
processing, so all that matters is that this step of our
algorithm makes the right SNP calling decision.

Since the data contains so many positions and most
positions are null, we can expect the fitted null parameters
to be quite accurate. But since SNPs are rare, our data will
typically contain few positions displaying each heterozy-
gous genotype. This makes the alternative mixture com-
ponents very difficult to estimate. We solve this issue by
constraining the alternative Dirichlet parameters a,. We
require o, for the heterozygote groups ge {AC, AG, AT,
CG, CT, GT} to be equal to the averages of their corres-
ponding homozygote groups. For example,

QAC, clean = 5 (OlAA,clean + aCC,clezm)‘

This constraint significantly stabilizes the parameter and
FDR estimates.

Calling, filtering and genotyping. Given our parameter
estimates and posterior estimates of 8;, we call SNPs as
follows. We estimate the positional false discovery rate,
the posterior probability that all of the samples for a
position are homozygous for the reference base:

fdr = P(8; = Oj|X).

We estimate fdr by taking a weighted product of the
estimated 9;s, downweighting very low-coverage
positions:

fczh' = exp (Z Wi log(l — 81])/ Z Wij) .
J J

We use weights w; = max((N;—3);, 20). This gives
samples with coverage less than three no weight, since
these are particularly noisy in our data, and saturates
the weights at an arbitrary depth of 23, since increasing
N beyond such coverage does not make 6 more accurate.
Given the estimated fdr, we make a list of putative SNPs
with low fdr (we used a threshold of 0.1).

We then fit a mixture model by maximum likelihood to
genotype the called positions. First, we reduce the counts
to the reference and highest non-reference base counts;
suppose for concreteness that these are 4 and C, respect-
ively. This produces a M x 2 count matrix Y for each
putative SNP, with each row Y; corresponding to one
sample. Next, we fit the following generative model for
Y;: each sample Y; is first assigned a genotype g; with
probability p = (p44, Pac» Pcc). The non-reference base
counts are then binomial, Yj ~ Binomial(N;, 7ry,), where
N; is the depth for sample j and =, is the expected
non-reference proportion for the assigned genotype. For
example, if the reference base is 4, w4 is the probability
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of error, and m4¢ would would ideally be 0.5 but is typic-
ally lower due to mapping bias.

We use the EM algorithm to fit this model under the
Hardy-Weinberg restriction that p = (p%, 2pa(1 — pa4),
(1 — p4)?). This restriction can be removed for popula-
tions where the Hardy—Weinberg model does not apply.
We constrain 7, so the homozygous types have n near 0
and 1, and the heterozygous types have m near 0.5. The
estimated group membership indicators from the EM
algorithm give us estimated genotypes for each sample
at the position.

This calling procedure assumes we are interested in
detecting SNPs. If we are interested in detecting
nonreference positions in particular samples, we can
look at the Hardy—Weinberg genotype results, or simply
consider the estimated indicators §; from the mixture
model. Although they do not distinguish between hetero-
zygosity and homozygosity for a non-reference base, the
d; are typically more accurate indicators of SNP status
than the Hardy—Weinberg genotypes for very low-depth
samples. For the single-sample comparison in the results,
we detect SNPs as above, using fdr, then detect SNPs in
the sample of interest using the genotypes, but require that
8;>0.9 for low depth (N <4) positions.

An estimator of the false discovery proportion

Assessing SNP calls is difficult since we do not know the
true SNP status of most positions. We propose a simple
nonparametric way to estimate the false discovery propor-
tion (FDP) for a set of calls in a single sample, which we
use to evaluate the accuracy of different SNP calling
methods. A specific instance of this estimator justifies
the use of the Ti/Tv ratio, a popular assessment metric
for SNP callers.

Our method is based on a simple general inequality.
Consider a set R of candidate SNP positions. Let Z; be
a random variable that is observed for each candidate
position ieR. Let H; be the event that position i is
actually null, and let

n=PH; =0lieR)
be the FDP for this candidate set. Suppose we know that
EZ|Hi=0,icR]=a, EZl|Hi=1,ieRl=b, (1)
with a <b. Then
w=E[Zlie Rl =na+ (1 —nb

and hence
b—p
= . 2
=5 2)

If a and b are upper bounds for the conditional expect-
ations in Equation 1, then the right side of Equation 2 is
an upper bound on n.

If we have such a quantity Z,, we can estimate L using

the data,
a=IRI" Yz,
i€R
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and use Equation 2 to estimate the FDP n. If we know «
and b exactly, we obtain an unbiased estimate of the FDP,
and if we have upper bounds on a and b, we obtain an
estimated upper bound on the FDP.

The key to applying this result is to choose a variable
Z; for which we can estimate a and b accurately. This
can be difficult because the expectations in (1) are con-
ditioned on the rejection set R. Ideally, we would
choose a Z; such that conditional on H;, Z; is independent
of the event {ie R}. We would then have a = E[Z;|H],
b = E[Z,|H,], and we could estimate these quantities from
a training set consisting of known null and non-null
positions.

This conditional independence property also makes it
easier to compare different SNP calling methods.
Suppose two methods yield two sets of candidate SNP
positions R, R, of candidate SNP positions. If Z; were
independent of both {ie R} and {ie R,} conditional on
H;, then a and » would be the same for the two methods,
and we could compare their accuracy using [ directly.
This lets us avoid using possibly inaccurate estimates of
a and b.

Exact conditional independence of Z and the event of
rejection is often hard to achieve, especially since Z must
also be chosen so that we have the inequality a<b.
However, there are cases where approximate independ-
ence can be assumed. This assumption must be carefully
evaluated for each study where this FDP estimator is
applied.

Ti/Tv ratio. The ratio of the number of transitions (Ti) to
the number of transversions (Tv) is often used to measure
specificity for SNP discovery methods. Null positions
should have a Ti/Tv ratio of 0.5, since there are twice as
many transversions as transitions. What makes the Ti/Tv
ratio useful is that its value for true SNP positions has
been empirically observed to be much higher than 0.5.
Recent studies from the 1000 genomes project shows
that Ti/Tv is around 2-2.1 for the whole human
genome, but can be >3.0 in exomes.

In our notation, this approach is equivalent to letting Z;
be the indicator of the event that a mutation from the
most frequently observed base to the second most fre-
quently observed base at position 7 is a transition. Using
Ti/Tv relies on the assumption that the SNP caller is not
biased toward calling any base pair combination as het-
erozygote. Although this assumption is never exactly true,
the biases of the SNP caller are usually small enough for
the Ti/Tv ratio to be informative.

Coverage biases between alleles. We now construct a new
Z; for which we can estimate ¢ and b. For a given position
i, define b; to be the reference base and b; to be the
non-reference base with highest coverage. That is, sup-
pressing the sample indicator j in our notation,
b; = argmax;_, Xy. We then let

Zi = 1(Xip, < Xipy)

be the event that the coverage of b; is lower than the
coverage of b/.
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Consider the case where i is a truly heterozygous
position. Assuming that one of the two alleles is the
reference base, the probability P(Z; = 1) should ideally
be 1/2, if the experiment does not favor either base. In
most cases, the final mapping step is biased toward
throwing away reads containing the non-reference base,
making the probability b in (1) slightly <0.5.

Now consider the case where i is a homozygous position
that has been falsely declared to be heterozygous. Usually,
this happens because the coverage of b is higher than
would be expected under random error. Even so, we
found empirically that it is extremely rare for the high
error rates to be greater than 0.5. That is, even when the
error rate is high enough to generate a false positive, the
event Z; = 1 is still rare enough that the probability a in
(1) is close to zero. Thus, we make the approximation
a ~ 0 which leads to

b—pn
N —. 3
n b A3)
Let by = P(Z,|H; = 1). By Bayes rule, we have
b _P(l€R|Z,:1,H,:1)

by  PieRIH=1 “@

We assume that the method rejects the null if Z; = 1, i.e.
PieR|Z;=1,H =1)=1. (5)

We found this to be a good approximation for all of the
methods compared (see ‘Results’ section).

Substituting (5) into the numerator of the right hand
side of (4) yields

b= p"by, (6)

where B= P(ie R|H; = 1) is the recall rate of the method,
which can be estimated on a training set of known
heterozygous positions. Substituting (6) into (3), we have

~Do—up
n by )

with each component of the above formula estimable from
data.

™)

RESULTS
Coverage and error rate variation

We find that the coverage and error rates vary
substantially across positions, and that the error rate is
reproducible across samples. In our data, the coverage
spanned five orders of magnitude, ranging from 0 to
over 100000, and was reproducible across samples
(Figure 1 in the Supplementary Data). Although the
error rate varies substantially across positions, it is
consistent across samples. Figure 3 plots each position’s
error rate in one of the samples across its error rate in
another. The consistency of the positional error rates
across samples justifies estimating them using a cross-
sample model.
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Figure 3. Error rates for sample 1 (x axis) and 2 (y axis), plotted on a log-log scale. The left plot shows the errors for all genome positions, while the
right one only shows the errors for high-coverage positions (at least 10000 in each sample). The reduced variability in the right plot illustrates how
most of the variability in observed error rates actually comes from binomial noise, because of the low depth. Points with no error are not shown.

SNP calling results

Results on 53 gene data set. We used our method on the
data from 53 genes and 30 samples, which includes the
sample NAI18507. We also applied SNIP-seq (8) and
GATK (9,11) Multi-sample on this data set, and GATK
single sample on NA 18507 alone. Both GATK and SNIP-
seq use quality scores. To assess the impact of using
quality scores on our method, we also ran our method
on quality score filtered depth charts. Details on our use
of GATK and our quality score filtering are in the
Supplementary Data.

To assess recall, we found the overlap of each method’s
calls with the SNPs identified by Bentley ef al. (13). To
eliminate possible false positives in the calls made by
Bentley et al. (13), we restrict our attention to the calls
they make that appear in dbSNP. Also, to assess
algorithmic power and not experimental power, we
ignore SNP calls made by Bentley ez al. (13) and dbSNP
that had very little coverage in our data (3 or fewer reads
in the unfiltered counts).

To assess the precision of the SNP callers, we use
two methods: the standard Ti/Tv ratio and the newly
proposed non-parametric FDP estimator based on the
proportion of times where highest nmon-reference base
frequency is higher than the reference base frequency
(PNRH). The PNRH on the calls made by Bentley et al.
(13) filtered by dbSNP was 0.611, while its value for the
rest of the positions was 0.0007. Figure 4 shows that
PNRH of our call set drops consistently as we lower the
calling threshold.

This empirical evidence indicates that PNRH reflects
the enrichment of true SNPs in a call set. To compute
the FDP from the PNRH, we used b, = 0.611, which
was computed from the set of SNPs in (Bentley er al.
(13) N dbSNP). The percentage of Bentley positions
called is used as the value of B for each method. To
check assumption (5), we focused on the set of positions
called by Bentley et al. that is also in snpDB, and filtered
by the observable characteristic Z; = 1. On this filtered set,
the proportion that is called is >0.99 for all methods but

Proportion of HNRF > RF
0.50 0.55 0.60
| | |

0.45
|

0.40
|

T T T T T T T
500 600 700 800 900 1000 1100

Number of calls
Figure 4. Decline in proportion of calls with non-reference base

frequency higher than reference base frequency as the number of calls
increase.

GATK Multisample. GATK Multisample called 90% of
the positions. Thus, we added a multiplier of 0.9 to the
right hand side of the formula (6) for » for GATK
Multisample.

Tables 1 and 2 show the results. All the methods have
about similar recall (the recall of GATK is slightly lower),
but they make dramatically different precision tradeoffs to
achieve that recall. SNIP-Seq makes many more calls than
our method, and its calls have low precision—its novel
calls have an estimated FDP of 63.4%. GATK makes
fewer calls, but both its single-sample and multi-sample
modes have a high estimated FDP on their novel calls,
37.3 and 41.9%, respectively. Our methods’ novel calls
are much more precise, with an estimated FDP of 29.6%
(28.0% after filtering by quality score). Accordingly, the
PNRH is highest for our method, and lower for the other
existing methods.
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Table 1. Calls on the Yoruban sample by various methods, with estimated FDPs

Nucleic Acids Research, 2012, Vol. 40, No. 1 e5

Method Our method Our method, SNIP-Seq GATK GATK
quality > 20 single-sample multi-sample

Positions called 623 622 1088 491 475

Bentley positions called (out of 238) 227 228 228 217 208

Percentage bentley positions called (%) 95.4 95.8 95.8 91.2 87.4

Estimated FDP of all calls (%) 15.0 14.8 48.0 15.7 21.0

Estimated FDP of new calls (%) 29.6 28.0 63.4 37.3 41.9

Table 2. Proportion of calls where highest non-reference base frequency is higher than reference base frequency (PNRH) and Ti/Tv ratios for

the various sets of calls

Method Bentley er al. (13) Our method Our method, SNIP-Seq GATK GATK
N snpDB quality > 20 single-sample multi-sample
PNRH (all calls) 0.611 0.520 0.521 0.318 0.515 0.483
Ti/Tv ratio (all calls) 2.31 2.03 2.03 1.20 1.81 1.55
PNRH (new calls) - 0.449 0.453 0.234 0.400 0.371
Ti/Tv ratio (new calls) - 1.88 1.88 1.02 1.49 1.12

The PNRH and Ti/Tv ratios were calculated on all calls and on new calls [calls not in (Bentley er a/. (13) N dbSNP)].

The same conclusion is reached if we use the Ti/Tv

ratio: it is highest for the validation set of Bentley et al. = " clean position
(13) calls that appear in dbSNP, at value 2.31. The set of * nosy postion
calls made by our method has a Ti/Tv ratio of 2.03, which _ 9
is not improved upon by quality filtering. The other 2 5
methods have much lower Ti/Tv ratios, at 1.20 (SNIP- g =
Seq), 1.81 (GATK Single-sample) and 1.55 (GATK 8
Multisample). © n
The multi-sample version of GATK seems less precise ﬁ
than the single-sample version, by both the FDP and the g *®71 \1
Ti/Tv ratio. This is probably because, by simply summing § \
the position wise likelihoods across samples, GATK g me
Multisample strengthens reproducible artifacts in noisy g \\
positions and falsely calls them as SNPs. g © MAcer "9
Quality score filtering has very little effect on our © \
method’s precision and recall. This indicates that our ...\° ceeoecooeserreeees
method can indeed use cross-sample information to
learn the error properties of the data that would otherwise ¥ ! , ..,.....,....,....,....,
have been obtained from quality scores. Replacing quality 0 5 10 15 20 25 30

scores with empirical cross sample modeling can yield
substantial computational savings and portability.

Both the Ti/Tv and FDP comparisons lead to the same
comclusion: our method is much more precise than and at
least as powerful as SNIP-Seq and both versions of
GATK.

Spike-in experiment results

A spike-in simulation also shows that our method has
good power on this data. We simulated SNP data and
added it to our experimental data. We took a clean null
position or a noisy null position and replaced the samples
with counts corresponding to SNPs, row by row starting
at the top (the original counts for the positions are in the
Supplementary Data). The SNP rows were (x, 0, n — x, 0),
where n is the assumed coverage for the SNP and
X~ Binom(n, %)

Number of Heterozygotic Samples

Figure 5. Coverage needed for 80% power at fdr <0.1 for clean and
noisy positions. The coverage needed for noisy positions at 28
heterozygous samples increases because our algorithm begins
considering that position extremely noisy at that stage.

Figure 5 shows the spike-depth n needed to call a SNP
with 80% power with fdr <0.1. Because our method
borrows information across samples, the power depends
on the number of heterozygous samples. The depth
required to call the SNP falls quickly as the number of
heterozygous samples increases. If two or more samples
are heterozygous at a clean position, our method only
needs a depth of seven to achieve good power (eight at a
noisy position).
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Model-based simulation

Finally, we investigated the fdr estimation accuracy of our
procedure with a parametric simulation, presented in the
Supplementary Data. In brief, these simulations show that
our method can conservatively estimate the true fdr when
the data is generated from the model we are fitting. This
test validates our fitting method, which is important, since
we are maximizing a non-convex likelihood with many
local optima.

CONCLUSION

In this article, we introduced an empirical Bayes method
that learns the error properties of sequencing data by
pooling information across samples and positions. Our
method uses mixture models to extend Efron’s empirical
null ideas (12) to sequencing data in a computationally
and statistically efficient way. By borrowing information
across samples and positions, we are able to detect SNPs
with fewer false discoveries than existing methods, without
sacrificing power.

As sequencing-based variant detection moves beyond
the proof-of-principle stage, statistical methods for false
discovery control become necessary for large-scale studies.
We have adapted empirical Bayes methods to this
problem, and showed that error information can be
reliably learned from the count tables, without relying
on platform specific models. This approach can be
useful for other types of sequencing applications, such as
finding somatic mutations in matched tumor and normal
tissues and detecting emerging quasi-species in virus
samples. Finding the best way to pool information in
each setting is an important direction for future research.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-3, Supplementary Figures 1
and 2, Supplementary Sections 1-3 and Supplementary
References [1-4].
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