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Abstract
Corin is a transmembrane serine protease identified in the heart, where it converts natriuretic
peptides from inactive precursors to mature active forms. Studies in animal models and patients
with hypertension and heart disease demonstrate that corin is critical in maintaining normal blood
pressure and cardiac function. Like many proteolytic enzymes, corin expression and activity are
regulated. Cell biology experiments indicate that transcriptional control, intracellular protein
trafficking, cell surface targeting, zymogen activation and ectodomain shedding are important
mechanisms in regulating corin expression and activity in the heart. More recently, soluble corin
was detected in human blood and its levels were found to be reduced in patients with heart failure
(HF). These findings indicate that corin deficiency may be involved in the pathogenesis of HF and
suggest that soluble corin may be used as a biomarker for the disease. In this review, we describe
the function and regulation of corin and discuss recent studies of soluble corin in human blood and
its potential use as a biomarker for HF.

1. Introduction
Proteolytic cleavage mediated by serine proteases plays an important role in many biological
processes, including food digestion, inflammatory response, wound healing, hormone
processing, blood coagulation, and fibrinolysis [1]. In the heart, for example, serine
proteases such as tissue kallikrein, chymase and urokinase are involved in processing of
many bioactive molecules, including bradykinin, angiotension II, interleukin-1β,
transforming growth factor-β, stem cell factor, and matrix metalloproteases [2]. These
protease-mediated activities are critical in regulating blood pressure and cardiac function,
and may contribute to pathological conditions such as hypertension, cardiac hypertrophy and
heart failure (HF).

Most trypsin-like serine proteases are secreted proteins. More recently, a new class of type II
transmembrane serine proteases (TTSPs) has been identified [3–5], which includes
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enteropeptidase [6–8], hepsin [9–11] and matriptases [12–15]. All these proteases consist of
an N-terminal cytoplasmic tail, a single-span transmembrane domain and an extracellular
region with a C-terminal trypsin-like protease domain. Corin is a TTSP identified in the
heart [16–18]. In this review, we describe the biology of corin and discuss recent findings of
soluble corin in human blood and its potential use as a biomarker for the diagnosis of HF.

2. Corin protein and domain structure
Human corin is a protein of 1042 amino acids [18]. It contains an N-terminal cytoplasmic
tail of 45 amino acids followed by a single-span transmembrane domain of 21 amino acids.
The rest molecule is extracellular and contains several types of domains, including two
frizzled-like domains, eight LDL receptor (LDLR)-like repeats, one scavenger receptor-like
domain, and a C-terminal trypsin-like protease domain (Fig. 1). These distinct domains
serve for specific functions [19, 20]. The transmembrane domain anchors the protein on the
cell surface, whereas the protease domain carries out the catalytic function. The other
extracellular domains participate in interactions with corin substrates and possibly
activator(s). Unlike many membrane receptors whose cytoplasmic tails transduce outside-in
signals, the cytoplasmic tail of corin did not appear to have such a function. Instead, it has a
role in intracellular trafficking and membrane targeting. A recent study identified a specific
amino acid motif, DDNN, in human corin cytoplasmic tail that is important for cell surface
expression [21].

Human corin contains 19 predicted N-linked glycosylation sites in its extracellular region
[18] (Fig. 1). Most of these glycosylation sites are conserved among mammalian species
[18, 22], indicating the importance of glycosylation in corin biosynthesis and/or function.
Studies with tunicamycin-treated cells and glycosidase digestion have detected abundant N-
glycans on human, rat and mouse corin, which are critical for corin cell membrane targeting
and zymogen activation [23, 24]. To date, no O-linked glycans or sialic acids have been
detected on corin [24].

Corin is made as a zymogen, which is activated by cleavage at a conserved site, Arg801-
Ile802 (Fig. 1). The cleavage induces conformational changes in the protease domain,
making it catalytically active [25]. Purified single-chain corin had no detectable enzymatic
activity [20]. Substitution of Arg801 with Ala prevented corin activation, thereby abolishing
its function [20, 26]. After the Arg801-Ile802 peptide bond is cleaved, the protease domain
remains attached to the rest of molecule through a disulfide bond (Fig. 1). The disulfide
bond can be broken by reducing agents such as β-mercaptoethanol and dithiothreitol. This
method is used to distinguish corin zymogen from the activated form [20, 24]. Based on the
Arg801-Ile802 activation sequence, corin activator is predicted to be a serine protease that
favors basic residues. To date, however, the corin activator has not been defined.

3. Corin gene and expression
The human CORIN gene is located on the short arm of chromosome 4 at p12–13, a region
adjacent to the centromere [18]. It has 22 exons and spans >200 kb [27]. The intron-exon
junctions correspond to boundaries of corin protein domains. For example, frizzled-like
domains are encoded by two exons each whereas each LDLR repeat is encoded by one exon
[27]. Such a genomic structure supports that the CORIN gene arose from exon duplication
and rearrangement during evolution.

The mouse corin gene is located on chromosome 5 with an overall structure similar to that
of the human gene. One exception is that the first exon, which encodes the cytoplasmic tail,
differs in both length and sequence between human and mouse, suggesting that alternatively
spliced variants may exist [27]. Indeed, a recent study showed that both human and mouse
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corin genes have alternative first exons, encoding two versions of cytoplasmic tails with
different membrane targeting efficiencies [21]. It remains to be determined if mechanisms
exist to regulate the use of these alternative exons, which in turn regulate corin expression
and activity on the cell surface.

Corin is highly expressed in the heart, primarily in cardiomyocytes [16, 18, 28, 29]. This
tissue expression pattern is controlled by its promoter that contains conserved binding sites
for TBX5, GATA, NKX2.5 and Krüppel-like transcription factors [27]. GATA-4 appears to
be a major transcription factor for corin expression in the heart. Mutations at a major
GATA-binding site and antibodies again GATA-4 markedly inhibited corin expression in
cardiomyocytes [27]. A similar GATA-4-mediated mechanism also is involved in natriuretic
peptide expression in the heart [30].

Corin mRNA expression has been detected in other tissues, including kidney [18, 29, 31],
skin [32], bone [18], brain [33, 34] and pregnant uterus [18]. In general, expression levels in
these tissues were lower than that in the heart. The significance of corin expression in these
tissues is not well understood. For example, corin expression is detected in dopaminergic
neurons but its function in the brain remains unknown [33, 34]. In mice, corin is expressed
in the dermal papilla of the hair follicle [32, 35]. Mice lacking corin have a lighter coat
color. It is unclear if the role of corin in regulating coat color provides an advantage for
these animals in natural environments. In addition to its expression in normal tissues, corin
mRNA is detected in cancer cells, including small cell lung cancer, osteosarcoma,
endometrium carcinoma, and leiomyosarcoma [18, 36].

4. Corin in natriuretic peptide processing
Atrial and B-type or brain natriuretic peptides (ANP and BNP) are cardiac hormones that
regulate body fluid balance and blood pressure [37, 38]. Upon binding to their receptor,
these peptides stimulate intracellular cGMP production, thereby promoting natriuresis and
diuresis in the kidney and muscle relaxation in the blood vessel. These peptide hormones are
well conserved from primitive vertebrates to humans. In many migratory fish species such
as salmon and eels, natriuretic peptides are critical for maintaining electrolyte homeostasis
during their life cycles in fresh and salty water environments [39–41].

Like many peptide hormones, natriuretic peptides are made as inactive pro-forms that are
converted to active forms by proteolysis. Corin has been identified as the physiological pro-
ANP convertase (for reviews see refs. [42, 43]). When pro-ANP is secreted from
cardiomyocytes, corin activates it on the cell surface. In mice, knockout the corin gene
abolished ANP generation [44], indicating that no other enzymes act redundantly for this
function in vivo. Apparently, the function of corin is not cell membrane-dependent. A
soluble corin lacking the transmembrane domain cleaved pro-ANP as efficiently as the
membrane-bound corin [20]. Similar findings of cell membrane-independence have been
reported in other TTSPs, such as hepsin [45] and matriptase [15, 46]. These data suggest that
the primary function of the transmembrane domain in TTSPs is to localize the enzymes at
specific tissue sites but not to enhance their catalytic activities [3, 47].

In addition to pro-ANP processing, corin also cleaves pro-BNP [29, 48–50]. The reaction,
however, is less sequence-specific and less efficient. To date, several other enzymes such as
furin and dipeptidyl peptidase IV have been shown to process pro-BNP [48, 51–53]. Furin
also cleaves pro-C-type natriuretic peptide (pro-CNP) but not pro-ANP [54]. Recent studies
show that human pro-BNP contains abundant O-glycans that are terminally sialylated [55–
59]. This posttranslational modification is unusual, because no N- or O-linked glycosylation
was detected in human pro-ANP and pro-CNP [56]. The O-glycans were shown to increase
pro-BNP stability [56]. In human pro-BNP produced from HEK293 cells, O-glycans near
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the processing site inhibited furin- and corin-mediated cleavage, indicating that
glycosylation may regulate BNP production and activity [59–61]. Currently, pro-BNP and
its derivatives are used as biomarkers for HF [62]. It will be important to determine if pro-
BNP glycosylation is altered under pathological conditions.

5. Corin shedding from the cell membrane
Ectodomain shedding is an important mechanism in regulating the function of a variety of
membrane proteins, including adhesion molecules, enzymes, cytokines, growth factors, and
receptors [63, 64]. Many TTSPs have soluble forms. In fact, enteropeptidase was first found
in the intestinal juice by Ivan Pavlov, who won a Nobel Prize in 1904 for his discovery of
digestive enzymes [5, 47]. What Pavlov found was likely a soluble form of enteropeptidase,
which was shown to be released into the small intestine lumen upon bile stimulation [65].
Ectodomain shedding is also a critical mechanism in controlling the activity of matriptases
on the cell surface [15, 46, 66–68].

Several forms of soluble corin have been identified in cell culture. In the conditioned
medium from transfected HEK293 cells, fragments of recombinant human corin were
detected by immunoprecipitation and Western blotting [69]. Three major fragments were of
~180, ~160, and ~100 kDa, respectively. These fragments were generated from proteolytic
cleavage but not from alternatively spliced mRNAs that lack the transmembrane domain
coding sequence, because the production of these fragments was inhibited when the cells
were incubated with protease inhibitors. Similar findings were confirmed in transfected
HL-1 cardiomyocytes [69].

In experiments with protease inhibitors, small interfering RNA knockdown and site-directed
mutagenesis, the metalloproteinase ADAM10 was found to be responsible for cleaving corin
in its juxtamembrane region, producing the ~180-kDa fragment that corresponds to the near
entire extracellular region [69] (Fig. 2). Corin also cleaved itself at Arg164 in frizzled 1
domain and Arg427 in LDLR 5 repeat, generating the ~160- and ~100-kDa fragments,
respectively (Fig. 2). In functional studies, the ~180-kDa fragment, but not the ~160- and
~100-kDa fragments, was active in processing pro-ANP [69] (Fig. 2). The result was
consistent with early structure-function studies, showing that frizzled 1 domain and LDLR
repeats are required for corin to process pro-ANP [19].

Physiologically, proteolytic enzymes are tightly regulated to avoid potential hazardous
consequences. The ectodomain shedding and autocleavage of corin may represent an
important mechanism to regulate its activity in the heart. It is likely that after corin is
activated and cleaves natriuretic peptides, active corin molecules are removed to prevent
excessive proteolytic activities on the surface of cardiomyocytes. This function appears to be
carried out primarily by ADAM10 [69]. Corin inactivates the remaining molecules by
autocleavage. This hypothesis was consistent with the finding that the majority of soluble
fragments were from activated corin molecules [69]. Once corin fragments are detached
from cardiomyocytes, these molecules may enter blood circulation if they are not degraded
quickly in the tissue.

6. Detection of soluble corin in human blood
By ELISA-based assays, soluble corin has been detected in human blood [29, 70–73]. The
levels in plasma and serum were similar [71, 73], indicating that soluble corin did not
interact with activated platelets or clotting proteins. The reported values from five published
studies are listed in Table 1. In addition to corin antigen, corin activity in human plasma was
detected by pro-ANP or pro-BNP processing assays [29, 72]. To date, molecular forms of
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soluble corin in plasma or serum have not been well characterized. Most likely, fragments of
various lengths are present, which were detected by antibodies used in the ELISA assays.

Interestingly, plasma corin levels were significantly higher in males than females [29, 70,
71]. It is unclear if this difference reflects different corin expression levels or rates of corin
shedding and/or degradation between males and females. Within the same gender group,
plasma corin levels were similar among different age groups [71]. One report, however,
suggested that plasma corin levels may be slightly higher among older (>60 years)
individuals [29]. It was noticed that the levels reported in the Chinese were lower than those
from other ethnic groups [29, 70, 71, 73]. Previously, lower levels of plasma pro-BNP were
reported in a Chinese population when compared to those in European and American
populations [74]. Because soluble corin assays in the reported studies were not standardized,
it is unknown if the observed difference was due to specific ethnic backgrounds or simply
due to different assay conditions. Values of plasma soluble corin concentration may vary if
different types of anticoagulants are used. For example, the values in plasma samples with
heparin were found to be significantly higher than that in samples with sodium citrate or
EDTA [71].

Many plasma proteases such as blood coagulation factors are unstable in test tubes. In
comparison, soluble corin was remarkably stable in plasma or serum. No apparent
degradation was observed when plasma samples were left at room temperature for up to 12
hours [71]. If samples were kept at 4°C with or without protease inhibitors, no significant
reduction in soluble corin levels was detected within 72 hours [71]. Similar results were
obtained if recombinant corin was added to pooled human plasma. If samples were stored
below −20°C, soluble corin remained stable for at least one year [73]. In serum or sodium
citrate-containing plasma samples, levels of soluble corin remained unchanged after several
cycles of freezing-and-thawing [71]. This remarkable protein stability may represent a
significant advantage over other unstable plasma proteins or peptides if soluble corin is used
as a diagnostic biomarker in clinical settings, where strict time or temperature controls may
not be feasible.

7. Plasma soluble corin in patients with HF
Corin is essential for maintaining normal blood pressure. In mice, corin deficiency causes
spontaneous hypertension and cardiac hypertrophy [44, 75]. In African Americans, who are
known for their high prevalence of cardiovascular disease, corin variants with impaired
natriuretic peptide processing activity have been associated with hypertension [49, 76].
Patients with these variants developed severe cardiac hypertrophy and had poor clinical
outcomes [77, 78]. These data suggest that corin defects may be an important contributing
factor in hypertension and heart disease.

Recently, plasma corin antigen levels were found to be significantly lower in patients with
HF than that in normal individuals [70]. This finding was supported by another independent
study, in which both plasma corin antigen and activity were measured [72]. The reduction of
plasma corin levels appeared to correlate with the severity of HF, as indicated by lowest
levels in patients with New York Heart Association classes III and IV [70, 79]. In contrast,
no significant changes in plasma corin levels were found in patients with acute myocardial
infarction (AMI) [70]. These results indicate that low plasma corin levels are associated
closely with pathological changes in HF but not AMI.

Natriuretic peptide production is highly elevated in patients with hypertensive disease [62].
The function of this compensatory mechanism is to reduce blood volume and pressure.
Many studies detected unprocessed pro-ANP and pro-BNP in patients with severe HF,
suggesting that the function to process these peptides is compromised under the pathological
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condition [43, 80–82]. In animal models of HF and human failing hearts, corin expression
was increased but the activity was not [83–85], indicating that corin zymogen activation
may be a rate-limiting step in HF. As reported in cell-based studies, most soluble corin
fragments were derived from activated corin molecules [69]. These data suggest that low
plasma corin levels in patients with HF may reflect impaired corin activation in failing
hearts. It is possible, therefore, that plasma corin may be used as a biomarker for the
diagnosis of HF. Such a biomarker may also be tested in other hypertensive disease.

8. Perspectives
HF is a major disease. Effective managing this life-threatening disease depends on timely
and accurate diagnosis. Currently, N-terminal pro-BNP and BNP are used as diagnostic
markers to identify patients with HF [62, 86, 87]. The accuracy rates of these diagnostic
tests are only ~75–85% in hospital emergency settings [88–91]. Similar results also were
reported in patients with chronic HF [92]. Therefore, more sensitive and accurate tests are
needed to improve the diagnosis and treatment of HF. Previously, soluble forms of several
membrane proteins such as tumor necrosis factor-α and interleukin-1 receptors were found
to be increased in patients with HF [93–96]. However, the levels of these proteins were also
increased in patients with AMI, indicating that the shedding of these membrane receptors
may represent a general inflammatory response in the heart, which is not specific for HF.

Discovery of corin as the long-sought natriuretic peptide convertase has extended our
knowledge of the natriuretic peptide system [42, 43]. Many important questions remain
regarding the role of corin in the cardiovascular biology and disease. Recent findings of
soluble corin in human blood and the reduced levels in patient with HF are intriguing. Given
its remarkable stability in plasma and serum, soluble corin could be used as a novel
biomarker for HF. Current data are still limited. More prospective and comparative studies
are needed with large patient populations to determine how soluble corin levels change in
patients with HF and if the changes correlate with the underlying pathology. The results
shall help us to understand the role of corin in HF or other heart disease and to determine
diagnostic and prognostic values of soluble corin in clinical settings.

Highlights

> Corin is a transmembrane protease that processes natriuretic peptides. > Corin is
critical for maintaining normal blood pressure and cardiac function. > Proteolytic
shedding is an important mechanism in regulating corin activity. > Soluble corin is
detected in human blood and its levels are lower in patients with heart failure. > Soluble
corin may be used as a novel biomarker for heart failure.

Abbreviations

AMI acute myocardial infarction

ANP atrial natriuretic peptide

BNP B-type or brain natriuretic peptide

CNP C-type natriuretic peptide

HF heart failure

LDLR LDL receptor

TTSP type II transmembrane serine protease
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Fig. 1.
Corin protein domain structure. The transmembrane domain (TM), frizzled-like domains
(Fz), LDLR repeats, scavenger receptor-like domain (SR), and protease domain (Protease)
with active site residues histidine (H), aspartate (D), and serine (S) are indicated. Y-shaped
symbols indicate predicted N-glycosylation sites. An arrow head indicates the activation
cleavage site between Arg801-Ile802. A disulfide bond (S-S) connects the protease domain
and the rest of the molecule after corin zymogen (upper) is activated (lower).
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Fig. 2.
Illustration of soluble corin fragments. Activated corin (top) on the cell surface is shed by
ADAM10 to produce a near full-length extracellular fragment that is active in processing
pro-ANP. Corin also cleaves itself in Fz1 domain and LDLR5 repeat, respectively, to
produce two shorter but inactive fragments [69].
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Table 1

Serum and plasma corin concentrations in healthy individuals.

Study sample total male female

Peleg et al. [73] serum 296–2590a
(n=30)

n/a n/a

Dong et al. [70] plasma 690 ± 260b
(n=198)

798 ± 285b
(n=104)

551 ± 224b
(n=94)

Dong et al. [71] plasma 216–1663a
(n=348)

842 ± 283b
(n=182)

569 ± 192b
(n=166)

Ichiki et al. [29] plasma 889 (587 – 1477)c
(n=55)

1623 (1187–1827)c
(n=19)

810 (509–982)c
(n=36)

Ibebuogu et al. [72] plasma 180d
(n=16)

n/a n/a

All concentrations were in pg/mL.

a
range;

b
mean ± S.D.;

c
median (25th–75th quartiles);

d
median;

n/a, not available.
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