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Gamma Oscillation in Schizophrenia
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Dysfunctional neural circuitry has been found to be involved in abnormalities of perception and cognition in patients with schizophrenia.
Gamma oscillations are essential for integrating information within neural circuits and have therefore been associated with many per-
ceptual and cognitive processes in healthy human subjects and animals. This review presents an overview of the neural basis of gamma
oscillations and the abnormalities in the GABAergic interneuronal system thought to be responsible for gamma-range deficits in schizo-
phrenia. We also review studies of gamma activity in sensory and cognitive processes, including auditory steady state response, attention,
object representation, and working memory, in animals, healthy humans and patients with schizophrenia.
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INTRODUCTION

Individuals with schizophrenia show diverse symptoms
and deficits in multiple domains of perception and cogni-
tion."? These include cognitive disturbances, such as atten-
tion deficits and delusional ideation; disturbances of self-aw-
areness and agency; alterations in emotional expression; dis-
turbed motor behavior; and sensations in the absence of exter-
nal stimulation, or hallucinations. These varied abnormalities
in schizophrenia may be due to a dysfunction in neural circui-
try, which affects many brain systems, rather than to a lesion af-
fecting a localized site. One model that has garnered much at-
tention in the past decade is the “disconnection hypothesis;”
which proposes that schizophrenia disrupts signaling among
brain regions, systems or cellular circuits.** As early as a centu-
ry ago, Wernicke hypothesized that psychosis was caused by a
pathology of association fibers.® Recently, diffusion tensor im-
aging has suggested that changes occur in the integrity of the
white matter tract in schizophrenia,” findings are supported by
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post-mortem analysis of white matter pathology.®® Deficits in
functional connectivity have been consistently observed in
schizophrenia, as shown by reduced interregional correla-
tions of positron emission tomography and functional mag-
netic resonance imaging signals. Functional connectivity has
been reported to affect the prefrontal, temporal, cingulate and
parietal cortices in individuals with schizophrenia.'®!?
Functional dysconnectivity may result from structural alter-
ations in axonal integrity, differences in mapping of projections
among brain regions or physiological disturbances of neuro-
transmission. Disruption of neural synchrony and oscillations,
for example, could have a marked impact on functional con-
nectivity within and across brain regions. Findings from cellu-
lar, local field potential, and electroencephalographic record-
ings suggest that gamma oscillations (>30 Hz) are important
for integration of information within neural circuits. Gamma os-
cillations in the neural system were first reported in the olfac-
tory nerves of hedgehogs, which in response to olfactory sti-
mulation, produced trains of sinusoidal oscillations in the
gamma frequency band.” More recently, gamma oscillations
have been associated with numerous perceptual and cognitive
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processes, including attention,'*"” memory,
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object recogni-
tion,” word processing,*** and consciousness.”
Electroencephalography (EEG) and magnetoencephalog-
raphy (MEG) have shown that schizophrenia is characterized
by alterations in synchrony and oscillatory activity in a variety

of paradigms, particularly in the gamma range. These disturb-



ances could have pervasive effects on cognitive function. This
review will provide an overview of the neural basis of gamma
range oscillations, methods of eliciting and measuring gamma
activity in humans and animals, evidence for the roles of gam-
ma activity in sensory and cognitive processes, and findings in
schizophrenia.

CELLULAR MECHANISMS SUPPORTING
GAMMA OSCILLATIONS

Gamma oscillations have been observed in many cortical re-
gions and networks, including visual,*** auditory,”® motor,”
parietal,” and hippocampus.”*” Due to its simple laminar st-
ructure, which generates higher gamma power than other cor-
tical areas, the hippocampus has been most frequently used
in investigations of the cellular mechanisms underlying the ge-
neration of gamma oscillation.* The first in vitro demonstra-
tion that networks of inhibitory gamma-aminobutyric acid
(GABA) interneurons generated gamma oscillations were in
rat hippocampal specimens.” Tetanic stimulation evoked gam-
ma oscillation in the CA1 region, even in the presence of glu-
tamate receptor inhibitors, suggesting that excitatory neuro-
nal function might not be necessary for gamma oscillations.”
In contrast, gamma oscillations were totally blocked by the GA-
BA type A receptor antagonist bicuculline, suggesting that
GABAergic interneurons are essential in generating gamma
oscillations.”* Moreover, single GABAergic interneurons were
observed to synchronize the firing of a large number of pyra-
midal cells, due to the divergence of outputs from these GAB-
Aergic interneurons.”

GABAergic interneurons are present throughout the cere-
bral cortex, extending to all layers and constituting approxi-
mately about 25-30% of the neuronal population in primate
neocortices.”** These interneurons can be categorized accord-
ing to their electrophysiological characteristics, as fast-and
non-fast-spiking interneurons; according to their formation of
synapses with other neurons, as soma-inhibiting and dendrite-
inhibiting; or immunocytochemically, according to their lo-
calized expression of calcium-binding proteins, such as parv-
albumin, calretinin, and calbindin.” Among those subpopul-
ations, GABAergic neurons that express parvalbumin were
found to generate gamma oscillations in vivo and in vitro.**”
Stimulation of parvalbumin GABAergic interneurons was
found to increase gamma oscillations, whereas inhibition of
these interneurons suppressed gamma oscillations.” Howev-
er, even if GABAergic interneurons are primarily responsible
for gamma oscillations, pyramidal neurons, the principal class
of excitatory neurons, are required to induce long-range gam-
ma synchronization in networks that exceed the limited spa-
tial projections of GABA neurons. Pyramidal neurons show-
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ing intrinsic generation of 20- to 70-Hz repetitive firing, or ch-
attering cells,” were found to constitute 10-15% of intracell-
ularly-recorded neurons, with each chattering cell diverging
into a large population of cortical neurons. The repetitive fir-
ing by chattering cells was not spontaneous but was induced
by suprathreshold depolarizing current injection,” suggest-
ing that gamma oscillations could be elicited by afferent stimul-
ation of these cells in vivo.

The negative feedback interaction between pyramidal cells
and fast-spiking interneurons could also generate gamma os-
cillations. For example, a characteristic phase relationship dur-
ing gamma oscillation was observed between pyramidal cells
and interneurons in the rodent hippocampus, such that inter-
neurons fired a few milliseconds after pyramidal cells.*® Excit-
atory input from pyramidal cell firing likely induces inhibi-
tory interneurons to generate synchronized activity, thus im-
posing gamma oscillation onto the entire local network. How-
ever, the combined action of pyramidal cells and GABAergic
interneurons does not suffice to explain long-range gamma
synchronization. Most gamma oscillations occurred with zero-
phase lag, indicating modulation of neuronal activity without
any temporal delay between areas. This is intriguing, since many
factors, such as conduction time and synaptic delay, contribute
to delays in propagation of neural signals in cortical networks.
Electrical gap junctions may be relevant to rapid oscillatory
induction. Electrical gap junctions have been observed be-
tween interneurons and between pyramidal cells and inter-
neurons, and blockade of gap junctions has been reported to
reduce gamma oscillation (Figure 1).”

CELLULAR MECHANISMS
FOR GAMMA-RANGE DEFICITS
IN SCHIZOPHRENIA

Combined networks of pyramidal neurons and GABAer-
gic interneurons are most likely the neural substrates that gen-
erate gamma oscillation. Abnormalities in both systems have
been reported in patients with schizophrenia. For example, a
post-mortem study reported that the volume of pyramidal
neurons® and the densities of axon terminal markers in the au-
ditory cortex*' were lower in patients with schizophrenia than
in normal controls. Patients with schizophrenia also showed
deficits in glutamatergic synaptic connectivity in pyramidal
cells.”” Phencyclidine an antagonist of the N-methyl-D-aspar-
tate (NMDA) subtype of glutamate receptor, has been shown
to induce schizophrenia-like symptoms, including paranoid
ideation, depersonalization and hallucinations, via hypofunc-
tioning of NMDA receptors in pyramidal cells.”**

Deficits in GABAergic interneurons have been found con-
sistently in schizophrenia. A postmortem study found that the
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Figure 1. Schematic representation of the GABAergic interneurons
and pyramidal neurons that generate gamma oscillation. A) Pyra-
midal neurons send excitatory signals to B) chandelier cells, a type
of fast-spiking, parvalbumin-producing GABAergic interneuron, which
in turn sends inhibitory signals back to the pyramidal cells. Activat-
ed interneurons can propagate inhibitory signals to multiple pyra-
midal cells and other electrically coupled () interneurons via C)
electrical gap junctions. The excitatory input from pyramidal cells
and the inhibitory responses of the GABAergic interneurons gener-
ate synchronized activity imposing gamma oscillation onto the en-
tire local network.

level of mRNA encoding the 67 kD isoform of glutamic acid
decarboxylase (GAD), the key enzyme in GABA synthesis,
was lower in the dorsolateral prefrontal cortex’ and the ante-
rior cingulate cortex” of patients with schizophrenia than in
normal controls. Moreover, the level of mRNA encoding the
neuronal GABA transporter-1 (GAT-1) protein in the prefron-
tal cortex™ and the density of GABA immunoreactive trans-
porter axons termed “cartridges”, which synapses exclusively
at the axon initial segment of pyramidal cells in the dorsal pre-
frontal cortex,” were lower in patients with schizophrenia
than in controls. The GABAergic deficits in schizophrenia
were mostly in the basket and chandelier types of interneu-
rons,” both of which have fast-spiking and parvalbumin-
producing properties,” which seem crucial for generating

gamma oscillation.>”

A study of mRNA transcripts encoding
GABA-related substances in multiple cortical areas of pa-
tients with schizophrenia showed that levels of mRNA encod-
ing somatostatin, parvalbumin, GAD, GABA A receptor, and
GAT-1 were lower in patients with schizophrenia, with one
of the greatest decreases observed for parvalbumin mRNA.*

Alterations in glutamatergic neurotransmission may lead to
changes in the GABAergic system. In animals, treatment with

an NMDA receptor antagonist induced reductions in GAD
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and parvalbumin mRNAs in GABAergic interneurons.”* NM-
DA hypofunction may lead to failure of exciting parvalbu-
min-producing GABA interneurons since these interneurons
monitor NMDA receptor activity; thus hypofunctioning of
NMDA may be falsely interpreted as inactivity of the pyrami-
dal cell system, resulting in low production of GAD or GA-
BA in the inhibitory interneuronal system.* This hypothesis,
that NMDA hypofunction is responsible for schizophrenia,
also suggests deficits of gamma oscillation in individuals with
schizophrenia.

GAMMA OSCILLATIONS IN SENSORY
AND COGNITIVE FUNCTION

Sensory processing in healthy subjects and animals:
Auditory steady state response

Auditory and visual stimuli at specific frequencies entrain
EEG activity, called a steady state response (SSR), an evoked
EEG potential whose frequency components remain constant
in amplitude and phase during sensory processing of present-
ed stimuli.”® In healthy subjects, amplitude modulated tones or
click sounds evoked auditory SSR (ASSR), with stimuli of ab-
out 40 Hz inducing maximal spectral power.*® Although su-
perposition of mid-latency event related potentials (ERPs) may
generate these 40 Hz ASSRs,”*® gamma range ASSRs reflect
the phase reorganization of neuronal responses with their in-
trinsic resonance frequency, rather than the superposition of
mid-latency ERPs.” This superposition hypothesis could not
explain the shortened phase delay of ASSR after repeated sti-
muli or continued phase synchronization after offset of a stim-
ulus. !

Studies in animals have shown that the auditory cortex and
the subcortical structure, including the hippocampus and infe-
rior colliculus, play key roles in the generation of ASSRs.***
In cats, lesions in the lower auditory structures, including the
inferior colliculus, were reported to decrease the phase syn-
chrony of the ASSR in the gamma range.®* Ablation of the au-
ditory cortices and inferior colliculi was reported to decrease
ASSR to 40 Hz trains of clicks.* Rats with neonatal ventral
hippocampal lesions failed to show increased intensity and
synchronization of ASSR after injection of GABA A receptor
agonist, findings observed in control rats.®

Sensory processing in schizophrenia: ASSR

Deficits in ASSR have been reported in patients with schizo-
phrenia. The spectral power on frontal EEG channels evok-
ed by 40 Hz clinic trains was lower, whereas the phase delay,
defined as the time gap between a click and the EEG peak re-
sponse while listening, was higher in patients with schizo-
phrenia than in control subjects.”® The decreased phase delay



after stimulus offset observed in patients with schizophrenia
compared with control subjects suggested that the neuronal
assembly in patients with schizophrenia had deficits in the sy-
nchronization and/or desynchronization to presented stimu-
1i.%° In addition, patients with schizophrenia showed reduc-
tions in evoked power and phase synchronization to steady
state auditory stimulation in the gamma range.* Moreover, re-
latives of patients with schizophrenia who had schizophrenic
spectrum personality symptoms showed reduced gamma
power on the frontal channels to steady state auditory stimu-
lation at 40 Hz, although gamma power was not lower in pa-
tients with schizophrenia than in control subjects.” In con-
trast, patients with schizophrenia taking atypical antipsycho-
tics showed enhanced gamma power at 40 Hz stimulation
compared with patients taking conventional antipsychotics.”’

Sensory integration and object representation
in healthy subjects and animals

Following the first report of gamma oscillations in hedgehog
brains,” gamma oscillations in human brains were first report-
ed in intracranial recordings of patients with epilepsy while
the patients performed simple visual tasks.®® However, the sig-
nificance of gamma oscillations was not known until they
were shown to play a role in integrating sensory informa-
tion.**%7° Local field potential (LFP) and multiunit activity
(MUA) were measured in the primary visual cortices of cats
responding to visual stimuli.* LFP measures the synchroniz-
ed neural activity of local populations of neurons, whereas
MUA measures spikes of several neurons. Therefore, simul-
taneous recording of LFP and MUA can reveal the relation-
ship between cortical oscillations and individual neuronal ac-
tivity. Individual neuronal firings, as measured by MUA, were
found to be synchronized to the rhythm of gamma oscilla-
tions of LFP if the neurons were coding common primary vi-
sual properties of a visual stimulus, even if the neurons were
spatially discrete.?* Similarly, recording the neuronal activity in
two areas of cat visual cortices, the posteromedial lateral su-
prasylvian area and area 17, which function in global pattern
and fine grain analyses of visual objects, respectively, showed
that the two groups of neurons fired synchronously on gam-
ma oscillation in response to coherently moving lines, but not
to two lines moving in opposite directions.”” These findings
suggested that two separate groups of neurons integrated in-
formation across different feature domains through temporal
synchronization on gamma oscillation.

Increased gamma oscillations were observed in patients re-
quiring sensory integration, from simple perceptions like see-
ing a moving bar to higher cognitive processes including ob-
ject representation. The perception of illusory objects induced
gamma oscillations in human brains. The spectral power of
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gamma oscillations in the occipital area of scalp EEG was fo-
und to be higher for coherently downward moving lines than
for irregularly moving lines.”" Healthy subjects watching co-
herent but not incoherent dot motion showed increased gam-
ma activity around 40 Hz (Figure 2).”

Perceiving the Kanizsa triangle also induced gamma oscil-
lations, whereas non-triangle control stimuli did not.”*’* Simi-
larly, illusory triangles increased spectral activity at the 70 Hz
MEG frequency band compared with no triangles and increas-
ed activity at 90 Hz compared with real triangles.” Recogni-
tion of illusory triangles requires the identification of all ele-
ments comprising the triangle and their linkage globally across
space.”® Therefore, the emergence of gamma oscillations fol-
lowing the recognition of illusory objects suggests that gamma
oscillations play a key role in binding information for object
representation in the brain.

Sensory integration and object representation
in schizophrenia

In time frequency analysis of ERP, the phase-locking factor
(PLF) measures the consistency of the phases of EEG respons-
es across trials of presented stimuli at each frequency. PLF that
measures the synchronization of a neuronal assembly to a
stimulus may be a better biomarker than measures of EEG
power for patients with schizophrenia spectrum disorders.”
Patients with schizophrenia showed deficits in PLF while per-
ceiving both illusory and non-illusory stimuli, with deficits
more prominent for illusory than non-illusory stimuli.”® As
the PLF gap between illusory and non-illusory stimuli became
larger in control subjects, so did the ability to recognize illu-
sory stimuli, as measured by the difference in reaction time
(RT) between illusory and non-illusory stimuli. In patients
with schizophrenia, however, there was no such relationship
between PLF and performance.” Although gamma synchro-
nization during recognition of Mooney faces was lower in pa-
tients with schizophrenia than in control subjects, the gam-
ma power was not decreased during Mooney face recognition
in patients with schizophrenia.”

Working memory and attention in healthy subjects
and animals

Scalp EEGs showed that gamma activities were increased in
subjects asked to find a hidden dog figure in a picture with sc-
attered black blobs, while keeping the dog figure in mind.* In-
creases in gamma activity were observed when subjects were
asked to match a previously presented figure, but not in the con-
trol task requiring no memorization.'® The involvement of
gamma oscillation in memory tasks was also reported in ma-
caque monkeys, with elevated coherence in gamma frequency
between a single neuronal activity and LFP in the lateral intra-
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Figure 2. Increase in gamma activity
during the perception of coherent and
incoherent dot motions by healthy sub-
jects. The left column shows the two
stimulus conditions, for coherently dis-
placed dots from left to right (upper)
and for incoherently displaced dots at
randomly generated angles (lower).
The right column shows time-frequency
spectrograms of averaged electroen-
cephalography power for coherent (up-
per) and incoherent (lower) dot motions
in the channel Pz (Figure courtesy of
Giri P. Krishnan).

1,300

parietal area of the brain during the memory period.”
Attention increased gamma oscillations in the brains of ani-
mals and human subjects. When macaque monkeys attended
to visual stimuli, their activated neurons showed increased
gamma oscillation,” with selective attention to visual stimuli
increased gamma oscillation of LFP in area V4." In monkeys
trained to respond to a stimulus, the RT was decreased if the
degree of synchronization was increased between gamma
oscillation of LFP and individual neuronal firings during the
time period before response cues.'* Gamma oscillation was
also increased by attention in human subjects. Scalp EEG
showed that gamma activity was higher for attended stimuli
over parieto-occipital areas.*" Only consciously perceived stim-
uli were found to induce long-range gamma phase synchrony,
whereas subliminal stimuli increased local gamma oscilla-
tion.”” However, attention is not mandatory in generating gam-
ma oscillation considering early studies using the visual systems

of anesthetized animals to generate gamma oscillations.>**7

Working memory and attention in schizophrenia
Patients with schizophrenia showed a deficit in gamma ac-
tivity in the frontal area during mental arithmetic tasks.*> Gam-
ma activity during the retrieval period of working memory
was reduced in patients with schizophrenia compared with
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healthy subjects.®” Healthy subjects had increased gamma ac-
tivity in the prefrontal cortex in response to increased demands
of executive control in a working memory task, a finding not
observed in patients with schizophrenia.* Similarly, healthy
subjects, but not patients with schizophrenia, showed in-
creased gamma activity with increased working memory load.*®
Patients with first onset schizophrenia were recently found to
show reduced gamma power in the frontal area during the de-
lay period of a preparatory cognitive task compared with con-
trol subjects, regardless of medication status.*®

The evoked gamma oscillation studies using the auditory
oddball task have shown inconsistent results in patients with
schizophrenia. Gamma activity, narrowly defined as 37-41 Hz
in response to standard tones of auditory oddball tasks, was
lower in medicated patients with schizophrenia than in con-
trol subjects.” In addition, gamma activity to target tones was
also lower 200-400 ms after a stimulus in patients with schizo-
phrenia than in control subjects.” However, evoked gamma
activity to standard tones of the auditory oddball task did not
differ between unmedicated patients with schizophrenia and
control subjects, whereas gamma activity in response to tar-
get tones was lower in patients with schizophrenia than in con-
trols.®® Abnormal gamma activity was also observed in the
phase coherence between EEG channels in schizophrenia. For



example, impaired fronto-central gamma coherence was re-
ported in unmedicated patients with schizophrenia,* and de-
creased evoked gamma power in auditory oddball paradigms
was observed in medicated first-episode patients with schizo-
phrenia.” However, evoked gamma activity in the auditory
oddball task was reported similar in control subjects and ch-
ronic patients with schizophrenia.”" A study of a modified au-
ditory oddball task in a large number of patients with schizo-
phrenia found that early-evoked gamma activity was lower
in these patients than in a control group.”

In contrast to conflicting results on evoked gamma power in
schizophrenia, gamma phase locking was consistently report-
ed to be lower in schizophrenia during visual” and auditory
oddball tasks.®*” In a study using ASSR to evaluate PLF over
a broad range of stimulus frequencies, control subjects show-
ed pronounced increases in PLF and power around the gam-
ma frequency range of stimuli, whereas patients with schizo-
phrenia showed deficits in both PLF and mean power in bro-
adband frequencies, including gamma frequency. A noise
embedded in the 40 Hz stimulus decreased PLF only in con-
trol subjects, whereas patients with schizophrenia showed
diminished overall PLE**

GAMMA OSCILLATION AND SYMPTOMS
OF SCHIZOPHRENIA

Interestingly, symptoms of schizophrenia have been re-
ported to correlate with increased synchronization of gamma
oscillation, although mean gamma synchronicity was lower in
patients with schizophrenia than in control subjects.”****” Ph-
ase-locking effects in the occipital area, as measured by dif-
ferences in PLF during the perception of Gestalt stimuli, cor-
related with scores of positive symptoms.”® The phase-locking
effects in the parietal area correlated with negative symptoms
in patients with schizophrenia.”® Increased gamma phase syn-
chrony averaged across all channels during a Gestalt percep-
tion task was positively correlated with positive symptoms,
such as delusions and hallucination.” Using ASSR, PLF of the
40 Hz harmonic of the 20 Hz stimuli was reported to correlate
with positive symptoms in the frontocentral areas of patients
with schizophrenia.”” Increased gamma synchrony may reflect
the retrieval of stored experiences due to the role of gamma
activity in internal representations.”

CONCLUSION

Gamma oscillation is a universal phenomenon, found th-
roughout all areas of the brain and across species, from sim-
ple perception to higher cognitive functions. The dominant
frequency of gamma oscillation changes continuously accord-
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ing to cortical locations from moment to moment.” Differ-
ent neuronal groups may communicate during the time win-
dow of gamma oscillation,'® and the precise phase of gamma
oscillations may determine whether neuronal activity could
be effectively transmitted among cortical areas.'”" Therefore,
gamma oscillation may be a temporal limitation in the func-
tional connectivity of human and animal brains, modulating
efficient information processing at macro and micro levels of
neural circuits. The inhibitory feedback of GABAergic inter-
neurons combined with activations of pyramidal neurons
seems to generate gamma oscillation. Abnormalities of the
neuronal system, including pyramidal neurons and GAB-
Aergic interneurons, could result in the deteriorated gamma
oscillation observed in schizophrenia. Deficits of gamma os-
cillation and impaired neuronal communication would result
in erroneous processes in a variety of both basic and higher
cognitive functions, including sensory perception, coherent
feature binding, attention, memory and object representation,
all of which would lead to the positive and negative symp-
toms of schizophrenia.
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