
Method

Accurate identification of A-to-I RNA editing
in human by transcriptome sequencing
Jae Hoon Bahn,1 Jae-Hyung Lee,1 Gang Li, Christopher Greer, Guangdun Peng,

and Xinshu Xiao2

Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California Los Angeles,

Los Angeles, California 90095, USA

RNA editing enhances the diversity of gene products at the post-transcriptional level. Approaches for genome-wide
identification of RNA editing face two main challenges: separating true editing sites from false discoveries and accurate
estimation of editing levels. We developed an approach to analyze transcriptome sequencing data (RNA-seq) for global
identification of RNA editing in cells for which whole-genome sequencing data are available. We applied the method to
analyze RNA-seq data of a human glioblastoma cell line, U87MG. Around 10,000 DNA–RNA differences were identified,
the majority being putative A-to-I editing sites. These predicted A-to-I events were associated with a low false-discovery
rate (~5%). Moreover, the estimated editing levels from RNA-seq correlated well with those based on traditional clonal
sequencing. Our results further facilitated unbiased characterization of the sequence and evolutionary features flanking
predicted A-to-I editing sites and discovery of a conserved RNA structural motif that may be functionally relevant to
editing. Genes with predicted A-to-I editing were significantly enriched with those known to be involved in cancer,
supporting the potential importance of cancer-specific RNA editing. A similar profile of DNA–RNA differences as in
U87MG was predicted for another RNA-seq data set obtained from primary breast cancer samples. Remarkably, sig-
nificant overlap exists between the putative editing sites of the two transcriptomes despite their difference in cell type,
cancer type, and genomic backgrounds. Our approach enabled de novo identification of the RNA editome, which sets the
stage for further mechanistic studies of this important step of post-transcriptional regulation.

[Supplemental material is available for this article.]

RNA editing is a post-transcriptional process that alters the RNA

sequences by base modifications, insertions, and deletions, thereby

enhancing the diversity of gene products (for reviews, see Gott

and Emeson 2000; Bass 2002; Maydanovych and Beal 2006;

Farajollahi and Maas 2010; Nishikura 2010). The most prevalent

type of known RNA editing in higher eukaryotes is A-to-I editing,

where adenosine (A) residues are converted into inosine (I). The

ADAR (adenosine deaminase acting on RNA) enzymes are the main

players known to mediate A-to-I editing by binding to double-

stranded RNAs (dsRNAs) ,which serve as the substrate for editing

(Bass 2002; Nishikura 2010). However, target recognition by

ADARs and the mechanisms of substrate interaction are not well

understood. Since I is interpreted as guanosine during translation,

A-to-I changes in protein-coding sequences may lead to codon

changes and altered functional properties of the proteins (Maas

2010). In addition, A-to-I editing can play important roles in reg-

ulating gene expression (Maas 2010), such as by altering alterna-

tive splicing (Rueter et al. 1999; Laurencikiene et al. 2006; Schoft

et al. 2007), miRNA sequences (Kawahara et al. 2007, 2008; Reid

et al. 2008; Dupuis and Maas 2010), or miRNA target sites in the

mRNA (Liang and Landweber 2007; Borchert et al. 2009). Other

types of putative RNA editing events are also known, for example,

C-to-U editing and U-to-C and G-to-A conversions (Nutt et al.

1994; Sharma et al. 1994; Villegas et al. 2002; Klimek-Tomczak

et al. 2006), but with much less prevalence.

To identify RNA editing sites on a genome-wide scale, new

approaches were developed in recent years built upon bioinformatic

analyses and high-throughput sequencing methods (Wulff et al.

2010). Bioinformatic methods were often used to identify disparities

between DNA and RNA sequences (likely due to RNA editing) by

analyzing cDNA, expressed sequence tag (EST), and genomic se-

quences (Athanasiadis et al. 2004; Kim et al. 2004; Levanon et al.

2004; Gommans et al. 2008; Zaranek et al. 2010). To reduce false

positives due to sequencing errors or somatic mutations, it was often

necessary to use a priori knowledge of editing patterns to restrain the

search, such as the known feature of clustering of putative editing

sites or the presence of dsRNA structure. However, incorporation of

such constraints often limits the results to editing sites with the

corresponding characteristics. Taking advantage of the recently

available high-throughput sequencing technology, Li et al. (2009a)

developed an approach to verify 36,000 editing-site candidates by

designing padlock probes to amplify the corresponding cDNA and

genomic DNA (gDNA) regions, followed by sequencing of the am-

plification products. Others also designed similar approaches where

editing-site candidates were specifically amplified and sequenced

(Wahlstedt et al. 2009; Abbas et al. 2010).

The above approaches depend on a priori knowledge of

editing-related features or candidate editing sites. Another desir-

able feature that is not afforded by some of the methods is the

estimation of RNA editing levels. RNA editing levels (or editing

ratios) represent the proportion of edited RNA molecules among all

RNA molecules of a particular gene. Knowledge of editing levels

can have profound biological significance. Recently, de novo

identification of editing sites was made possible by whole-tran-

scriptome sequencing (RNA-seq) (Picardi et al. 2010; Rosenberg

et al. 2010; Ju et al. 2011; Li et al. 2011). Quantitative estimation of
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editing levels may be achieved by sequencing a large number of

reads via high-throughput sequencing.

In analyzing RNA-seq data, a significant challenge lies in the

mapping of the sequencing reads. At an RNA editing site, some or all

RNA-seq reads contain the nucleotide that is different from the one

in the reference genome. Mapping of such reads via commonly used

approaches can suffer from a bias favoring reads harboring the ref-

erence base, a similar problem as previously reported for read-map-

ping in the presence of expressed single nucleotide polymorphisms

(SNPs) (Degner et al. 2009; Heap et al. 2009). Here, we developed new

mapping and analysis strategies to study RNA editing based on RNA-

seq. We show that this approach is associated with a false-discovery

rate of ;5%, much lower than those reported by previous methods

(Wulff et al. 2010). In addition, our method allows relatively accurate

estimation of editing levels that correlate well with those derived

by the traditional clonal sequencing method. Enabled by the large

number of events identified in our study, we conducted a detailed

characterization of sequence, evolutionary, and structural features

related to A-to-I editing, and revealed novel insights about potential

regulatory mechanisms and functional roles of editing.

Results

Mapping of RNA-seq reads for analysis
at single-nucleotide level

To identify candidate RNA editing sites, we developed an approach

that can accurately distinguish single-nucleotide differences in

one set of RNA-seq data (Fig. 1A). A key step in this approach is the

mapping of short sequencing reads containing the edited bases.

Incorrect mapping of such reads may lead to not only inaccurate

estimates of editing levels but also false-positive predictions of

editing sites (see Discussion). By using the RNA-seq data described

below (ADAR [also known as ADAR1] knockdown and control ex-

periments), we estimated that the false-discovery rate could be as

high as 28% if read-mapping was carried out in the nominal way

used by many previous studies (e.g., allowing three of four mis-

matches in a 60-nt read).

It is expected that the mapping accuracy of reads originating

from regions with alternative bases in the RNA is sensitive to the

treatment of mismatches in the mapped reads. Problems related to

mapping can be exuberated if the sequence alignment tool does

not provide 100% accuracy, as is the case for all available tools. To

this end, we developed a strategy that combines the power of

multiple read-mapping tools and stringently filters the mapping

results according to the number of mismatches, uniqueness, and

relative mapped locations of read pairs (Methods). In this strategy,

we applied ‘‘double-filtering’’ of mismatches in the mapped reads

such that only reads that mapped uniquely with #n1 mismatches

and did not map to other genomic loci with #n2 mismatches are

retained (n2 > n1). This method effectively removes reads with

ambiguous mappings and those overlapping homologous regions

in the genome.

Evaluation of mapping bias for single-nucleotide differences

To evaluate the mapping strategy, we simulated 870,280 reads (60

nt in length) covering 21,757 heterozygous genomic sites assumed

to have alternative alleles (1:1 ratio). Paired-end reads were gen-

erated to be consistent with the actual RNA-seq data in our study

(see below). Nevertheless, the methods presented in this work apply

to single-end reads as well. Forty pairs of reads were generated to

overlap each genomic site with a random insert size in the range of

[60, 240] bp and random start position relative to the site, both

sampled from a uniform distribution. The base at the heterozygous

site was chosen as one of the alternative alleles with equal probability.

Sequencing errors and base quality scores were simulated based on

read position–specific Gaussian distributions parameterized using

our actual RNA-seq data. With correct mapping, it is expected that

the ratios between the numbers of aligned reads of the two alleles

would be similar to those in the original reads. As shown in Figure

1B, the relative ratios (defined in the figure legend) of most of the

sites are close or equal to the expected ratio 0.5, and the average

and median values of the distribution are not different from 0.5.

In this simulation, we chose the values of n1 and n2 to be 5 and 12,

respectively, to achieve the best mapping accuracy. This result

confirms the effectiveness of our mapping strategy in eliminating

mapping biases associated with RNA editing or other types of

single-nucleotide differences.

Identification of putative RNA editing sites in U87MG cells

Following read-mapping, we designed a statistical framework to

analyze uniquely mapped reads, identify significant candidate RNA

editing sites, and estimate their editing levels (Methods). Note that

mechanisms generating DNA–RNA differences other than the A-to-

G or C-to-U types are not well known and may not be related to RNA

editing. However, we generally refer to all differences as candidate

RNA editing events and their levels as editing levels or editing ratios

for convenience. We first applied the method to study RNA editing

in the U87MG cells. U87MG is a commonly used cell line derived

from a human grade IV glioma, one of the most deadly types of brain

cancer. The genome of this cell line was sequenced recently using

Figure 1. Identification of RNA editing sites. (A) Generative process of
the pipeline. (B) Evaluation of mapping bias using simulated data. Histo-
gram shows the distribution of relative ratios of all simulated genomic sites
with alternative alleles. Relative ratio is defined as follows: (N_mapped_
ref/N_simulated_ref)/(N_mapped_ref/N_simulated_ref + N_mapped_
edit/N_simulated_edit), where N_mapped_ref is the number of reads
mapped to the reference base (e.g., A for A-to-I editing) and N_mapped_
edit is the number of reads mapped to the edited base. N_simulated_ref
and N_simulated_edit are defined similarly, but for the originally simu-
lated reads. The average of all relative ratios is 0.499 and median is 0.500,
neither of which is significantly different from the expected ratio 0.5 (P =
0.1, P = 0.3, respectively).
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high-throughput sequencing (Clark et al. 2010), which easily en-

ables a distinction between editing sites and expressed genetic vari-

ants such as SNPs. In addition, using a cell line facilitates convenient

molecular perturbations and experimental validations of RNA edit-

ing. As one means of validation, we conducted ADAR knockdown

followed by RNA-seq, in parallel to RNA-seq of control cells. Note

that the other family members of ADAR are expressed at very low

levels in U87MG, as reported by Cenci et al. (2008) and calculated

from our RNA-seq data of control cells (RPKM [Mortazavi et al. 2008]

values: ADAR, 53.2; ADARB1 [also known as ADAR2], 5.2; ADARB2

[also known as ADAR3], 0.1). Given the known function of ADAR in

A-to-I editing, these data enabled us to evaluate the results of our

methods.

We obtained RNA samples from U87MG cells transfected with

either a siRNA that targets the ADAR gene or a control siRNA (Sup-

plemental Methods). The ADAR siRNA led to significant reduction of

the protein expression to a barely detectable level (Supplemental Fig.

1). Two biological replicates were collected for each type of trans-

fection. Each replicate was sequenced in one lane of the Illumina GA

IIx sequencer. A total of ;115 million paired-end reads (2 3 60 nt

long) were obtained. By using the mapping strategy described above,

about 59 million pairs (51.5%) of reads were uniquely mapped, most

of which overlap known genes and known exons (Supplemental

Table 1).

Our initial analyses showed that putative editing sites and

their editing levels identified using individual samples are highly

concordant between biological replicates (Supplemental Fig. 2;

Supplemental Table 2). Therefore, in the subsequent analyses, we

combined data from the two replicates to maximize the statistical

power. In the control sample, 9636 DNA–RNA differences were

identified using our method (Fig. 2A, red bars). Strikingly, 5965

(62%) of these sites correspond to A-to-G differences, consistent

with A-to-I editing. This observation supports the existing knowl-

edge that A-to-I editing is the primary type of RNA editing in hu-

man. Other types of differences are much less abundant. We found

that 854 A-to-G differences resulted from our study are already in-

cluded in the DARNED database (Kiran and Baranov 2010), a com-

prehensive repository of predicted or validated RNA editing events

(mostly A-to-G types). The overlaps of our results with other pub-

lished works are shown in Supplemental Table 3.

As expected for results without significant false positives, the

positions of putative editing sites in the reads are distributed rela-

tively uniformly (Supplemental Fig. 3). If we assume that all the

G-to-A differences reflect sequencing errors, then the false-discovery

rate in the A-to-G identification is ;7%, because sequencing errors

are expected to produce at least as many G-to-A and A-to-G differ-

ences. This false-discovery rate may be an overestimate because

there might exist authentic G-to-A differences due to RNA editing

or other mechanisms. If we further filter the events by requiring

a minimum editing level of 20%, then a total of 4141 sites (75% of

all 5505 potential editing events) support A-to-I editing with an

estimated false-discovery rate of 3.6% (see below for experimental

validations of individual editing sites) (Supplemental Fig. 4).

Upon ADAR knockdown, the number of A-to-G differences

significantly decreased (Fig. 2A), and it is the only type of difference

with a considerable change in the number of events. This finding

indicates that ADAR is indeed the main enzyme involved in A-to-I

editing in the studied cell line. It also suggests that the other types of

differences, if being bona fide editing events, are not likely affected

by ADAR. Among the A-to-G differences identified in the control

and knockdown samples (5965 and 938, respectively), 294 sites

were in common, with 5671 unique to the control samples and 644

unique to the knockdown samples. In the subsequent sections, we

only used the sites resulted from the control samples given the al-

ready large number of events in this group. Next, we examined the

RNA editing level (i.e., editing ratio) calculated for each predicted

site. Putative A-to-I editing events showed the largest degree of re-

duction in the editing level among all types of events upon ADAR

knockdown (Fig. 2B; Supplemental Fig. 5). Note that the T-to-C

events also demonstrated a significant change in editing level, which

is discussed later. Importantly, the response of A-to-G differences to

ADAR knockdown supports the validity and effectiveness of our

method to identify RNA editing sites.

Validation of predicted A-to-I editing events

For a predicted editing site, it is desirable to validate two aspects of

the prediction: whether it is a true event or not and the accuracy of

the estimated editing level. For this purpose, we first used conven-

tional Sanger sequencing to analyze the gDNA and cDNA sequences

of the editing sites amplified with poly-

merase chain reaction (PCR) (Supplemen-

tal Fig. 6; Supplemental Table 4). The gDNA

sequencing aims to confirm that the puta-

tive editing site is not a heterozygous SNP.

The cDNA sequences can enable detection

of edited nucleotides in the corresponding

RNA. However, cDNA sequencing is not

sensitive and quantitative enough to de-

tect low-level editing or to provide accurate

estimates of editing ratios (Supplemental

Fig. 6). Instead, we used the traditional

clonal sequencing approach to analyze the

cDNA sequences and used PCR sequenc-

ing to confirm the gDNA sequences only.

We randomly picked four genes where

a number of A-to-I editing sites are located

within 400 bases (Supplemental Table 4).

Their cDNA sequences were amplified and

cloned into a TOPO vector. Twenty clones

for each gene were randomly picked and

analyzed by Sanger sequencing. A total of

Figure 2. DNA–RNA differences identified via RNA-seq. (A) Number of events for the 12 types of
differences between RNA reads and genomic DNA sequences in samples transfected with control siRNA
and ADAR siRNA, respectively. Labels of x-axis denote DNA and RNA nucleotides (e.g.: ‘‘AC’’ denotes
‘‘A’’ in DNA and ‘‘C’’ in RNA). (B) Empirical cumulative distribution function of editing ratios of putative
A-to-I editing events identified from RNA-seq. A union of editing events identified in the two samples is
included (6422 in total) in each curve. For nonediting events in one sample (those that failed the sta-
tistical identification procedure), the editing ratio was calculated as the number of reads with the ‘‘G’’
nucleotide at the predicted editing position divided by the total number of reads at that position.
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93 A-to-I editing sites were detected by either RNA-seq or clonal

sequencing or both. Among all the sites, four sites each were

detected by only one method (Fig. 3A). The false-discovery rate of

our predicted editing events is thus up to 4.5% (four of 89 sites).

In addition, the estimated editing ratios by the two methods cor-

relate relatively well (r = 0.76). The results in Figure 3A included all

predicted editing sites regardless of the level of read coverage in

RNA-seq (for more discussion about read coverage, see Supple-

mental Material; Supplemental Fig. 7). If we require at least 20 RNA-

seq reads (same as the number of clones for Sanger sequencing)

covering each editing site, the four false positives are not present in

the predicted set (Supplemental Fig. 8) and the false-discovery rate is

close to 0.

The above result suggests that a modest increase in read

coverage may facilitate better accuracy in editing identification.

Many of our tested A-to-I sites had relatively low read coverage

(31 reads or less per site) except those in the CTSB gene (35–69

reads per site). To further confirm the impact of read coverage on

the estimation of editing ratios, we randomly picked 30 more

clones for this gene so that the coverage of RNA-seq and clonal

sequencing on the putative editing sites are comparable. Improved

correlation and linear regression were observed between the edit-

ing ratios estimated by the two methods using 50 clones (Fig. 3B)

compared with the original 20 clones. (Note that collecting 20 clones

for Sanger sequencing limits the validation accuracy similarly as

having only 20 reads per site.) Thus, our method can enable re-

latively high level of accuracy in the quantification of editing

ratios, which can be demonstrated for sites with high RNA-seq

read coverage.

The above validation focused on genes where a number of

predicted A-to-I editing sites are clustered together, which is a fea-

ture found for the majority of the predicted sites (Supplemental

Fig. 9) and is consistent with the known properties of A-to-I edit-

ing. In addition to such sites, we tested 10 randomly picked A-to-G

events to represent those that are distant from other predicted sites

(distance to closest neighbor, >1500 nt) and to encompass a wide

range of predicted editing levels (Supplemental Table 5). This val-

idation was carried out by a combination of Sanger sequencing and

clonal sequencing methods. All 10 sites were confirmed as authen-

tic A-to-G differences between the DNA and RNA sequences.

Characterization of predicted A-to-I editing events

Since sites with relatively low editing levels may not be associated

with significant functional consequences, all analyses in this section

focused on the 4141 A-to-I editing sites with a minimum editing

level of 20% identified from the control siRNA samples (Supple-

mental Fig. 4; Supplemental Table 6). Among these sites, a large

fraction is located in noncoding regions (introns or untranslated

regions [UTRs]) (Supplemental Table 7). Only 45 (1.1%) sites reside

in coding sequences, 31 of which change amino acids. The relative

enrichment of synonymous and nonsynonymous sites is not

significantly different (p » 1). Consistent with the functional

properties of ADAR, A-to-I editing sites were more often located in

double-stranded regions compared with random controls (Sup-

plemental Methods). This observation holds whether the sites are

located in Alu sequences (88% of all 4141 sites) or not (Fig. 4A). As

reported previously (Lehmann and Bass 2000; Athanasiadis et al.

2004; Li et al. 2009a), the nucleotides 59 and 39 to the editing site

(�1 and +1 positions) have a strong preference for G depletion and

enrichment, respectively (Fig. 4B). Moreover, we observed strong

sequence biases at other positions (+12, +18, P < 3 3 10�9) (Fig. 4B)

as well.

The sequence neighborhood of the editing sites shows an

enhanced conservation level in primates compared with random

sequences in similar regions (Supplemental Methods) (Fig. 4C;

Hoopengardner et al. 2003), indicating that editing function of

ADAR may be affected by the immediate sequence neighbor-

hood. In addition, the editing sites themselves are less conserved

on average than the neighboring bases, which is consistent with

previous findings (Yang et al. 2008). Interestingly, if conserva-

tion was evaluated assuming editing has occurred (i.e., both A

and G are present) in human RNA, the sequence conservation is

much higher than that of the original base A (P < 2.2 3 10�16)

(Fig. 4D). This difference in conservation is more pronounced

than that between randomly picked As and when these As were

converted to As and Gs in the human genome (Fig. 4D). There-

fore, our results suggest that RNA editing may increase the

conservation of a gene relative to its homologs in primates,

which may have important evolutionary implications (see Dis-

cussion).

A structural motif in ADAR editing

The large number of A-to-I editing sites

allowed us to investigate common se-

quence or structural features important

for editosome function. We analyzed the

region in the vicinity of the editing sites

(�100 to 100 nt) using the Multiple Em for

Motif Elicitation (MEME) algorithm (Bailey

and Elkan 1994). This method aims to de-

tect motifs that are significantly enriched

within this region, regardless of their rela-

tive location to the editing sites. Since most

of the editing sites are located in Alu re-

gions, we randomly picked other Alu

sequences to generate a second-order

Markov model to control for inherent Alu

sequence background. (Results were sim-

ilar if random Alu sequences were used as

a background control sequence set.) This

analysis revealed a significant 21-nt motif

Figure 3. Validation of predicted A-to-I editing events identified via RNA-seq. (A) Scatterplot of
editing ratios for the full set of 93 A-to-I editing events identified by RNA-seq and the traditional clonal
sequencing method (20 clones were picked for each editing site). Pearson correlation coefficient is
shown. Data points corresponding to false-positive or false-negative predictions are shown as green
dots. (B) Same as A, but for the 29 editing events in the CTSB gene (read coverage, 35–69 reads per site).
A total of 50 clones were picked for each site.
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with a very small E-value (<10�100) (Fig. 5A). Interestingly, the first

to 18th bases of the motif appear to be palindromic, indicating the

existence of a possible RNA secondary structure (Fig. 5A).

The sequences of the motifs occurring within 100 nt of the

editing sites are not very significantly conserved among primates

(Supplemental Fig. 10A). However, considerable co-conservation

was observed (Fig. 5B; Supplemental Fig. 10B) for the five pairs of

positions with base-pairing patterns in the structure shown in

Figure 5A. In addition, two motifs in the same gene potentially

forming intermotif dsRNAs are much less co-conserved than the

intramotif co-conservation (Supplemental Fig. 11). Thus, the motif

by itself likely represents a functional

structural unit under evolutionary selec-

tion. Since the consensus motif resembles

part of a typical Alu sequence (Kriegs et al.

2007), we evaluated whether the motif is

specifically relevant to RNA editing or

it is an artifact due to the prevalence of

Alus near editing sites. For the motif

occurring in Alu sequences in coding

exons without A-to-I editing in the vi-

cinity, the structural conservation is

much less than those near editing sites

(Fig. 5B, ‘‘motifs in controls’’). In addi-

tion, strong motifs are also significantly

enriched near editing sites far away

from Alus (Supplemental Table 8). These

results suggest that this structural motif

is likely functionally relevant to A-to-I

editing, although its exact role is not yet

clear.

Functional relevance of A-to-I editing
to cancer

The set of 1167 genes with A-to-I editing

sites in this study significantly overlaps

the list of genes related to cancer as an-

notated by the NCI Cancer Gene Index

project (341 genes in common, P < 2.2 3

10�16; P = 0.009 if only highly expressed

genes were analyzed) (see Supplemental

Material). Among the 341 genes, many

are associated with processes critical to

malignancy (Supplemental Table 9), in-

cluding tumor suppressor and cancer

marker genes and genes involved in apo-

ptosis, metastasis, DNA repair, and sig-

naling pathways. Editing sites in these

genes are often located in the 39 UTR

regions, such as for the MDM4, MALT1,

ERCC4, and TEP1 genes, which may

affect regulation of gene expression via

miRNA targeting or other mechanisms.

A-to-I editing sites also induce non-

synonymous changes to the coding

sequences of the cancer-related genes

PRKCSH and CHD3. The PRKCSH gene

encodes a substrate for protein kinase C,

an important player in signal trans-

duction cascades and many cancer-re-

lated processes (Reyland 2009). The

CHD3 gene, possibly associated with leukemia (Camos et al.

2006), is one of the components of a histone deacetylase com-

plex, which participates in chromatin remodeling. Thus, al-

though hypo-editing was reported in cancer for some genes subject

to A-to-I editing in normal tissues (Paz et al. 2007; Gallo and Galardi

2008), our results showed that editing of cancer-related genes might

be prevalent in tumors. In addition, a number of RNA-binding

proteins were found to harbor A-to-I editing sites (e.g., APOBEC3D,

DDX58, EIF2AK2, FXR1, INTS1, MED28, and RBM5), suggesting

that RNA editing may affect various steps of post-transcriptional

gene regulation.

Figure 4. Sequence features of predicted A-to-I editing sites and the flanking regions. (A) Double-
stranded regions in the neighborhoods of predicted A-to-I editing sites. (Left) Editing sites and controls
are located in Alu elements. Controls were picked as random As in such regions with matched G+C
content relative to the test regions (Supplemental Methods). Percentage of editing sites in double-
stranded regions shown by arrow; percentage of control sites in double-stranded regions shown by
black histogram. P-value was calculated by fitting a normal distribution to the control histogram. (Right)
Same as the left panel, but editing sites and controls are outside of Alu elements. (B) Sequence prefer-
ences for base positions flanking predicted A-to-I editing sites. Editing sites (the A nucleotide at position
0) are aligned together. Sequence preference is represented using a two-sample logo program (Vacic
et al. 2006). (C ) Conservation of the immediate neighborhood of predicted A-to-I editing sites. Se-
quence conservation (percentage of identity) of each position flanking editing sites was calculated using
the UCSC multiz46way alignments of primate genomes (Supplemental Methods). Random controls
were picked for each editing site in the same type of regions (e.g., Alus in coding exons, Alus in introns).
Vertical lines represent 95% confidence intervals. (D) Sequence conservation among primates at the
edited sites before and after editing. Cumulative distribution functions are shown for percentage of
identity at the editing sites assuming the nucleotide being A and (A or G) in human, respectively.
Random controls were picked similarly as described in C.
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Other types of DNA–RNA differences

The other types of DNA–RNA differences shown in Figure 2A may

be due to RNA editing (e.g., for C-to-U events) or other unknown

mechanisms, which is not a focus of our study. The number of

each type of event is much smaller than that of the A-to-G events,

and most are not affected by ADAR knockdown (Fig. 2A; Supple-

mental Fig. 4). The categories of genomic regions harboring each

type of events are shown in Supplemental Table 7. Interestingly,

the other types of DNA–RNA differences tend to co-occur in genes

with putative A-to-I editing (Supplemental Table 10). In addition,

their ‘‘editing ratios’’ are sometimes correlated with those of the

A-to-G events in the same genes (Supplemental Fig. 12), especially

for the C-to-U, G-to-A, and T-to-C events. Different from A-to-I

editing, the other types of events (except T-to-C, see below) are not

enriched in Alu regions (<20% located in Alus).

We carried out clonal sequencing to validate a set of randomly

selected events among all non–A-to-G events. To be cost-effective,

we sequenced only five to 12 clones for each event because here we

aim to validate the presence of the DNA–RNA differences, but not

the quantitative values of the ‘‘editing ratio.’’ DNA sequences were

confirmed by Sanger sequencing of PCR products. A total of 37

events were tested encompassing all types of non–A-to-G events.

The success rate of this validation was 49% (18/37) (Supplemental

Fig. 13; Supplemental Table 11). This result suggests that about half

of the non–A-to-G differences are authentic, many of which may

have been generated by novel mechanisms to be discovered in the

future. Nevertheless, the validation rate is lower than that for the

A-to-G differences. Events that failed validation may be due to

the relatively small number of clones we analyzed. Alternatively,

they may be resulted from mistakes introduced during RNA library

preparation or other steps of data acquisi-

tion and processing. For example, the re-

verse transcriptase is known to have a rel-

atively high error rate that can introduce

base substitutions (Roberts et al. 1988).

Although such errors may introduce dif-

ferent types of events at roughly the same

rate, their impact on the accuracy of the

A-to-G events can be relatively small be-

cause a much larger number of authentic

A-to-G differences exist as a result of RNA

editing compared to the other types.

The T-to-C events demonstrated some

interesting features differing from the other

types of events, including reduced ‘‘editing

ratios’’ and a smaller number of events

identified upon ADAR knockdown (Sup-

plemental Figs. 4, 5). These observations

bring up the question whether the T-to-C

difference is also regulated by ADAR.

However, since the RNA-seq libraries were

prepared using the standard Illumina pro-

tocol that is nonstrand specific, the exact

type of event (e.g., A-to-G vs. T-to-C) was

determined using the strand information

of known genes (Methods). DNA–RNA

differences in regions with both sense and

antisense transcription were excluded

from the final list. However, regions with

unknown sense-antisense transcription

may lead to confusion of an actual A-to-G

event as a T-to-C event, and vice versa. For this reason, it cannot be

concluded that the T-to-C events are ADAR-dependent. Never-

theless, we expect that many of the identified T-to-C events are

valid, as evidenced by the fact that five out of eight tested T-to-C

events were confirmed in the validation experiments (Supple-

mental Table 11). Indeed, if most T-to-C events were resulted from

A-to-I editing on the opposite strand, then they are expected to be as

highly enriched in Alus as the A-to-G events. Yet, 63% of T-to-C

events occur in Alus, significantly lower than the 88% among A-to-G

events (P < 1 3 10�10).

Comparison to DNA–RNA differences identified in another
cancer sample

We analyzed the genome-wide profile of DNA–RNA differences in

another cancer sample, primary human breast cancer, for which

RNA-seq and whole-genome sequencing data have been published

(Shah et al. 2009). The genomic data were used to identify homo-

zygous DNA sites and heterozygous SNPs. The RNA-seq data were

analyzed in the same manner as for the U87MG data. The numbers

of various types of DNA–RNA differences in the breast cancer sam-

ples are shown in Supplemental Figure 14. Similar to the U87MG

results, the A-to-G type (Supplemental Table 12) represents the

largest category of potential RNA editing in breast cancer, accounting

for 82% (9722 out of 11,791) of all predicted events. Next, we ex-

amined whether there exists a significant overlap between the results

from the two data sets. For this purpose, the background set con-

sisted of all genomic homozygous sites in known genes that are

common to the two data sets. In addition, we required at least five

RNA-seq reads overlapping each homozygous site in each data set

because this was the minimum read coverage requirement in iden-

Figure 5. A novel motif with potential function in A-to-I editing. (A) Consensus motif (left) identified
by MEME in the 201-nt neighborhood centered around each predicted A-to-I editing sites. (Right)
Structure of the one to 18 bases of the consensus motif (RNAalifold). Y = U or C, R = G or A, N = A, C, G or
U. (B) Conservation of the base-pairing patterns of the motif in primates based on multiz46way align-
ments. Strong motifs, motif score >24.4; all motifs, motif score >6.6; controls (motif score >6.6) were
randomly picked from Alu elements in coding exons devoid of A-to-I editing sites. Error bars represent
95% confidence intervals. The conservation levels were normalized against expected levels calculated
using random controls (Supplemental Methods).
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tifying editing sites. As shown in Supplemental Table 13, a significant

overlap was found between the results of the two cell types. In-

terestingly, a larger extent of overlap exists for genes undergoing

RNA editing if the exact match of the sites themselves was not re-

quired. For example, 218 genes are common (P < 2.2 3 10�16) be-

tween those with predicted A-to-G sites in U87MG (647 genes) and

breast cancer (379 genes) data. Our results suggest that cancer cells

may have significant overlap in their editing profiles, despite the

difference in cell types, cancer types, and genomic backgrounds.

Discussion
Here we presented an approach to identify and study genome-wide

RNA editing events in the human transcriptome. This RNA-seq–

based approach enables de novo identification of RNA editing of all

possible types. Different from many previous methods, it does not

assume any prior knowledge about RNA editing or require pre-

defined candidate editing sites. To distinguish RNA editing sites

from expressed genetic polymorphisms, this method requires

knowledge of the genomic homozygous sites, often available based

on genomic sequencing data. Experimental validations via tradi-

tional approaches confirmed a low false-discovery rate and rela-

tively accurate estimation of editing ratios. This is the first report, to

our knowledge, where the quantitative A-to-I editing levels derived

from a genome-wide approach were shown to be estimated rela-

tively accurately in a mammalian transcriptome.

Mapping of RNA-seq reads is critical to the accuracy of iden-

tified editing sites and estimated editing levels. In a related prob-

lem where expression of alternative alleles of SNPs was estimated,

previous studies observed a bias favoring the reference allele in

reads mapped to heterozygous SNPs (Degner et al. 2009; Heap et al.

2009). This bias is possibly due to the fact that mapping is usually

conducted using genome or transcriptome sequences where only

the reference allele of a SNP is included. However, the bias was not

completely eliminated when mapping was carried out against ge-

nome sequences in which degenerate bases were used at the lo-

cations of known SNPs (Degner et al. 2009), a method applicable

only to loci with known variants. This mapping bias will lead to

inaccurate estimate of editing levels, assuming the corresponding

candidate editing sites are true positives (Supplemental Fig. 15).

However, it is also possible that an editing site is a false-positive

prediction due to mapping errors (Supplemental Fig. 15). Such false

positives arise due to the existence of highly homologous regions

in mammalian genomes. This problem may not significantly affect

the estimated results of overall gene expression levels based on

RNA-seq. Yet, it is particularly alarming when the data are exam-

ined to identify single-nucleotide differences. Our mapping strat-

egy stringently removes ambiguously mapped reads, and filters the

reads according to the number of mismatches relative to the ge-

nome. This strategy was necessary to ensure unbiased mapping of

reads containing the reference nucleotide versus those containing

the edited nucleotide. In addition, we showed that increased read

coverage at putative editing sites enabled better accuracy in the

estimation of editing ratios (Fig. 3; Supplemental Fig. 8).

Genes harboring predicted A-to-I editing sites are enriched

with cancer-related genes in the U87MG cells. In addition, we ob-

served a significant overlap of the profiles of DNA–RNA differences

(a majority being putative A-to-I editing events) between the

U87MG cells and primary breast cancer samples. This high level

of preservation of putative editing profiles supports the notion

that RNA editing may contribute to important functional path-

ways that are common to many different (cancer) cell types. Our

results also have different extents of overlap with the putative

editing sites reported in the DARNED database (Kiran and Baranov

2010) and other previous studies (Supplemental Table 3), although

many of such sites resulted from noncancer cells. In particular, two

recent studies reported DNA–RNA differences identified using RNA-

seq data (Supplemental Table 3; Ju et al. 2011; Li et al. 2011). Among

the 1809 events reported by Ju et al. (2011), 172 sites were also

identified in our U87MG data. However, the overlap between our

study and that of Li et al. (2011) was small (73 out of 10,210 reported

in their study). Since different cell types, reads mapping, and analysis

approaches were used in the three studies, the accuracy of results from

each study needs to be further evaluated and compared in the future.

We found that the predicted A-to-I editing sites are often asso-

ciated with lower genomic conservation compared with their flank-

ing regions. However, changing the A to I (G) via editing increases

sequence conservation in primates. This observation indicates that

G-to-A genomic mutations may be corrected by post-transcriptional

RNA editing. Alternatively, an ancestral editing event may have been

fixed in some genomes through genetic mutations (Tian et al. 2008).

Regardless of the evolutionary origin, RNA editing contributes to

transcriptome diversity similarly as genetic variants. Moreover, RNA

editing enables such diversity at a low evolutionary cost because it is

a reversible and regulated process. Since the level of editing can range

from nearly zero to one, RNA editing creates a wide spectrum of ex-

pression variation. The combination of multiple editing events in the

same gene can potentially generate tremendous diversity in the

expressed transcripts.

Although spanning the range of [0, 1], editing levels of the

A-to-I editing sites tend to be relatively low (mean, 0.35; median,

0.33). Among all 5965 A-to-G sites in U87MG cells, 31% have

editing levels no more than 0.2, whereas only 5% have values

greater than or equal to 0.8. The enrichment of low-level editing is

consistent with the continuous probing (COP) hypothesis pro-

posed by Maas and colleagues (Gommans et al. 2009). According to

this hypothesis, low-level editing is prevalent due to COP of the

transient and dynamic RNA secondary structures by the editing

machinery. Widespread low-level editing generates transcript di-

versity that may render the organism survival advantage upon

environmental changes and enhances evolvability.

In summary, we demonstrated that RNA editing can be ac-

curately identified from high-throughput RNA sequencing data. As

genome and transcriptome sequencing of a large number of or-

ganisms and human individuals is carried out, our method can en-

rich the analysis of such data sets and add an additional dimension

to the underlying mechanisms of gene expression diversity.

Methods

Reads mapping
We first mapped each end of the paired-end reads to the genome
(hg19) using a combination of tools, including Bowtie (Langmead
et al. 2009), BLAT (Kent 2002), and TopHat (Trapnell et al. 2009).
The latter two methods allow mappings across exon–exon junc-
tions. We combined the results of different tools because of the
observation that they could differ significantly for some reads due to
the different algorithms involved. To minimize the mapping bias for
the edited versus unedited bases, we allowed a relatively large
number of mismatches per read in the initial mapping. This pro-
cedure can diminish the apparent mismatch contribution by one
editing event in a read since it only creates one mismatch to the
genome. Based on simulations described in the Results, we chose to
allow a maximum of 12 mismatches in each 60-nt read in the initial
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mapping. The mapping parameters are as follows: BLAT (version
3.4): -minIdentity=75 -tileSize=11; Bowtie (version 0.12.3): -k 80 -e
140 -n 3 -l 20; and TopHat (version 1.0.13): -F 0–segment-mis-
matches 3. Subsequently, all mappings of each pair of reads were
examined to determine if they pair correctly, specifically with the
expected orientations and the distance between the pair being
<500,000 bp in the genome. For reads that passed the above filters,
we further required that the pair of reads map uniquely (as a pair,
not necessarily individually) with five or less mismatches on each
reads, and importantly, they do not map to anywhere else in the
genome as a pair with 12 or less mismatches each. This stringent filter
eliminates potentially ambiguous mappings to similar genomic re-
gions and mapping errors due to sequencing errors, editing, or SNPs.

Identification of RNA editing sites

For homozygous sites derived from the U87MG genome se-
quencing data (Clark et al. 2010), we piled up reads overlapping
these sites and examined whether mismatches to the genome se-
quence existed in the RNA reads. In this step, we removed all du-
plicate reads within each RNA-seq library except the one with the
highest-quality score at the mismatch position. Duplicate reads were
defined here as pairs of reads mapped to exactly the same genomic
locations. Since RNA molecules were randomly fragmented during
library construction, some duplicate reads are likely the results of
amplification bias in the RT-PCR process (Pepke et al. 2009). This kind
of bias can significantly affect the accuracy of the estimated editing
ratio since the statistical power will be artificially augmented and the
bias related to the edited and the original bases may be different.

We next determined the type of DNA–RNA differences. To
distinguish between complementary types (e.g., A-to-G vs. T-to-C),
the strand of the reads (i.e., the genomic strand from which the
RNA was produced) must be known. Given the standard library
preparation protocol used in our study, the resulted RNA-seq reads
do not preserve strand information of the original mRNA. However,
since the human transcriptome is well annotated, we inferred the
strand of the reads based on the strand of the genes they were
mapped to. Reads mapped to regions with bidirectional transcrip-
tion (sense and antisense gene pairs) were discarded. To get a most
comprehensive gene annotation, we combined gene structures
defined by the following databases: Ensembl, RefSeq, UCSC
KnownGenes, Gencode genes, and VegaGenes. Since the 59 and 39

ends of the genes may not be accurately annotated yet, we further
extended the gene boundaries by 1 kb each beyond the two ends.

Next, we used a statistical approach to determine whether the
DNA–RNA differences are likely authentic events or sequencing
errors. For a position with sequence differences (e.g., DNA being A,
RNA being a mix of A and G), we calculated the probability of ob-
serving the specific nucleotide (n) assuming that the site is ‘‘edited’’
with the true editing ratio r, the quality score of the observed n is q,
and the position of n in the read is i; that is,

Pðnjr; q; iÞ = PðnjfreqðAÞ = 1� r; freqðGÞ = r; q; iÞ;

for A-to-I editing.
In this model, we assumed that the base quality and the posi-

tion of the base in a read affect the likelihood of a base-call being
a sequencing error or not, which is similar as used by SNP calling
algorithms (Li and Durbin 2009; Li et al. 2009b). The optimal editing
ratio r is calculated as the one that maximizes the above likelihood
function. We then calculated a log-likelihood ratio (LLR) to evaluate
the significance of a predicted event, similarly as by Li et al. (2009a):

LLR = log10
max

r
P njr; q; ið Þ½ �

�
P njr = 0; q; ið Þ

� �
:

The LLR represents a comparison of the likelihood of the site
being ‘‘edited’’ at r to the likelihood that the DNA-RNA difference is
not real (r = 0) but a possible sequencing error. We used a LLR cutoff
of 2 to select significant candidates (Li et al. 2009a), which in-
dicates that the site is 100 times more likely being a true locus with
DNA–RNA difference than a result of sequencing error. To impose
further stringency, we required at least two edited reads and at least
five reads in total for each considered site. In addition, mismatches
within the first and last five bases of a read were discarded.

Data access
The sequence data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/) under accession no. GSE28040.
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