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Small non-coding RNAs (ncRNAs) are key regulators of plant development through modulation of the processing,
stability, and translation of larger RNAs. We present small RNA data sets comprising more than 200 million aligned
Illumina sequence reads covering all major cell types of the root as well as four distinct developmental zones. MicroRNAs
(miRNAs) constitute a class of small ncRNAs that are particularly important for development. Of the 243 known
miRNAs, 133 were found to be expressed in the root, and most showed tissue- or zone-specific expression patterns. We
identified 66 new high-confidence miRNAs using a computational pipeline, PIPmiR, specifically developed for the
identification of plant miRNAs. PIPmiR uses a probabilistic model that combines RNA structure and expression in-
formation to identify miRNAs with high precision. Knockdown of three of the newly identified miRNAs results in altered
root growth phenotypes, confirming that novel miRNAs predicted by PIPmiR have functional relevance.

[Supplemental material is available for this article.]

Small regulatory non-coding RNAs (ncRNAs) were discovered only

20 years ago (Lee et al. 1993) but have been implicated as key

regulators in both development and disease for most eukaryotes

(Farazi et al. 2011). Plants have a diverse array of small RNAs, in-

cluding transposon-derived small interfering RNAs (siRNAs), trans-

acting small interfering RNAs (tasiRNAs), natural antisense RNAs

(nat-siRNAs), heterochromatin- and repeat-associated siRNAs, and

microRNAs (miRNAs) (Chen 2010). In plants, miRNAs can both

transcriptionally and post-transcriptionally repress expression of

their targets (Cuperus et al. 2010).

In Arabidopsis thaliana, miRNA biogenesis begins with a DNA-

dependent RNA polymerase II–produced primary transcript,

which folds into a stem–loop structure (Voinnet 2009). The stem

portion of the primary transcript is cleaved by a protein complex

that contains a DICER-LIKE endonuclease (DCL) to produce the

miRNA precursor. The precursor is further cleaved to remove the

loop portion of the stem–loop by the same processing enzymes.

The remaining duplex contains the mature miRNA and a com-

plementary miRNA* sequence. The mature miRNA sequence is

loaded into the RNA induced silencing complex (RISC), which

contains an ARGONAUTE (AGO) protein. It is in this complex that

the miRNA finds its messenger RNA target by base-pair comple-

mentarity and represses target expression by either causing mRNA

degradation or by blocking translation (Huntzinger and Izaurralde

2011). Alternatively, activated RISC can cause methylation and

transcriptional silencing of target loci (Khraiwesh et al. 2010; Wu

et al. 2010). There are four DCL and 10 AGO proteins in Arabi-

dopsis, which can be used to produce a variety of small RNAs with

different first nucleotide specificity and varying functionality. For

example, canonical miRNA precursors are processed by DCL1, and

the resulting 21-nt species with a 59 uridine is selectively in-

corporated with AGO1 (Mi et al. 2008).

The variable size and structure of plant miRNA precursors

have made the identification of new miRNA genes a challenge

both computationally and experimentally. To date, two types of

approaches have been used for the high-throughput identifica-

tion of new plant miRNA genes. The first approach is purely

computational and involves the systematic folding of all inter-

genic regions into miRNA-like hairpin structures while including

additional features such as conservation or simultaneous pre-

diction of stem–loops and their targets (Bonnet et al. 2004; Jones-

Rhoades and Bartel 2004; Adai et al. 2005). The downside to this

approach is that there are a vast number of putative miRNA genes

with little experimental validation. The second major approach

has been to analyze all sequences from small RNA deep-sequencing

data sets to see if they meet a given set of rules. If a sequence meets

the necessary rule requirements and the surrounding sequence is

able to fold into a stem–loop like structure, then it is automati-

cally classified as a new miRNA (Moxon et al. 2008; Hendrix et al.

2010). Currently there is only a single tool, miRDeep (Friedlander

et al. 2008), that uses a probabilistic model based on features from

both small RNA deep-sequencing data and genomic data; how-

ever, this tool was developed for animal miRNA genes and is not
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able to identify the types of complex miRNA precursors seen in

plants.

Several groups have undertaken studies to identify miRNAs,

along with other small ncRNAs, using sequencing technologies in

Arabidopsis shoots, flowers, and mature pollen (Llave et al. 2002;

Gustafson et al. 2005; Fahlgren et al. 2007; Grant-Downton et al.

2009). These studies identified miRNAs that control leaf, floral,

shoot, and vascular development. Additionally, miRNAs have been

shown to modulate miRNA and siRNA biogenesis by targeting

genes within the small RNA processing pathways. Plant miRNAs

have been implicated in hormone signal transduction pathways

and in responses to plant pathogens and environmental stresses.

Furthermore, miRNA expression patterns were precisely defined in

both space and time during the development of floral and seed

tissues (Valoczi et al. 2006). Taken together, these studies led us to

hypothesize that miRNAs exist that are specific not only to the root

as a whole, but also to precise spatial and temporal locations during

root development.

The Arabidopsis root offers an exceptional opportunity for the

study of development at cellular resolution because of its radially

symmetric structure (Fig. 1A). The different cell types of the root are

arranged in concentric cylinders around a central core of vascula-

ture. In the stem cell niche located close to the tip of the root, stem

cells divide to generate specific cell types that are constrained to

longitudinal cell files. Additionally, the developmental age of any

given cell can be ascertained from its distance from the stem cell

niche along the longitudinal axis, with the youngest cells at the root

tip and the oldest cells furthest from the tip. This effectively reduces

the four dimensions of development (three spatial dimensions

plus time) to two dimensions (the radial axis corresponds to cell type

and the longitudinal axis to age), making the root a useful and

powerful system in which to identify and study molecules and

networks that control development (Benfey and Scheres 2000).

Using GFP marker lines, we generated cell type–specific small

RNA deep-sequencing profiles of each of the major cell types in the

Arabidopsis root (Fig. 1A). In addition, we obtained profiles of the

early and late meristematic, elongation, and early maturation de-

velopmental zones. This information provides us with an atlas of

small RNA expression, most notably miRNA expression, across the

entire root organ. Furthermore, we present a probabilistic classifier,

PIPmiR (pipeline for the identification of plant miRNAs), which

uses both genomic and small RNA deep-sequencing information to

identify 66 novel miRNAs with high confidence.

Results

Radial and developmental data sets reveal small
ncRNA expression

We determined the cell type specificity of small ncRNAs in the root

by using cell-sorting technology followed by deep sequencing. We

used five independent lines expressing GFP in the stele, endoder-

mis, cortex, epidermis, and columella, which cover the major cell

types of the root tip. Isolation of individual cell types by fluores-

cence-activated cell sorting was then coupled with Illumina small

RNA deep sequencing to generate two independent libraries for

each cell type. We also generated a root developmental time course

by hand-sectioning 100 Columbia-0 roots into early and late

meristematic, elongation, and differentiation zones. In addition,

we made four libraries consisting of whole root tissue (WT): two

unsorted and two mock sorted. An overview of the data sets is

given in Figure 1A.

Approximately 200 million short reads were mapped to the

Arabidopsis (TAIR9) genome (Supplemental Table 1). The number

of raw reads per sample was normalized to transcripts per million

(TPM) to correct for a varying number of reads in the different

sequencing lanes. This type of normalization is still open to bias

from PCR amplification, RNA ligase preference, and the reverse

transcription reaction, but is currently the standard procedure

(Linsen et al. 2009; Meyer et al. 2010).

A measure of the high quality of these data can be seen in the

size distributions of the sequence reads (Fig. 1B). As expected for

known small ncRNAs, 77% of the reads fall within the range of 19–

24 nt. Small RNAs of different read lengths show a bias in their most

59 nucleotide because the 59 base of small RNAs is a characteristic of

the AGO with which it associates (Mi et al. 2008). Of the reads that

are 21 nt in length, 62% have a 59 uridine (Fig. 1C). This is charac-

teristic of the DCL1 cleavage and AGO1 association found in most

known miRNAs (Llave et al. 2002; Park et al. 2002; Reinhart et al.

2002; Rajagopalan et al. 2006; Fahlgren et al. 2007; Grant-Downton

et al. 2009). In addition, 58% of the 24-nt length reads have a 59

adenosine, characteristic of AGO4 association (Mi et al. 2008).

Roots have recently been shown to contain an abundant class

of 19-nt small RNAs derived from fragmentation of tRNAs (Hsieh

et al. 2009). This size class is abundantly represented in our data

(15% of all reads 19–24 nt) and is highly enriched in the stele and

endodermis. Taken together, our data represent a rich resource of

root small RNA expression profiles.

Known miRNAs display cell type and developmental
zone enrichment

We profiled the expression of the 243 currently annotated mature

miRNAs that originate from 213 precursors as defined by MirBase

v.16 (Griffiths-Jones et al. 2008) and found 133 mature miRNAs

derived from 127 precursors represented in our data sets (Supple-

mental Data Set 1). The expression of each miRNA gene in a cell

type or longitudinal section was normalized by a scaling factor

designed for read count data (Anders and Huber 2010). For the cell

type and whole root samples with a biological replicate, average

expression values were used for further analyses since the bi-

ological replicates demonstrated high reproducibility (r = 0.81–

0.97) (Supplemental Table 2). We found both broad and very

specific expression patterns for known miRNAs (Fig. 2A). The

miRNAs with the lowest variance across tissues, i.e., those that

would be most useful for qPCR normalization, are the miR169 and

miR162 families (Supplemental Table 3), while the miRNAs with

the lowest variance across longitudinal sections were the miR156

and miR157 families (Supplemental Table 4). Overall, clustering of

miRNA expression profiles resulted in nine distinct radial expres-

sion patterns (Supplemental Fig. 1). Intriguingly, many miRNAs

displayed cell type specificity as determined by the information

content of their expression profiles (Supplemental Fig. 2A).

The expression values of the longitudinal data sets were

similarly analyzed and clustered (Fig. 2B; Supplemental Fig. 2B).

Each of the developmental zones had specifically enriched groups

of mature miRNAs. We also observed patterns that show fluctua-

tions in miRNA expression across the developmental zones (Sup-

plemental Fig. 3).

In the simplest case, miRNAs and the mRNA of their targets

are expected to have reciprocal expression patterns. To determine

how often this occurs, we compared our miRNA expression profiles

with target mRNA expression profiles from a previous microarray-

based root study (Brady et al. 2007). First, we obtained validated
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Figure 1. (Legend on next page)
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targets for known miRNAs expressed in our data sets from the

Arabidopsis thaliana Small RNA Project (ASRP) website (Gustafson

et al. 2005; Backman et al. 2008). While using only validated tar-

gets lowered our sample size, we wanted to remove the error that

would be associated with false-positive target predictions. Expres-

sion values of all targets for a particular miRNA were averaged

within each cell type and compared with the log2-normalized ex-

pression of the miRNA in the same cell types and zones (Fig. 3).

This method will not identify miRNAs that show translational

repression of their targets. Analysis of the correlations show three

miRNA:mRNA sets with significant P-values for a strong negative

correlation: miR156 with squamosa promoter binding like pro-

teins (SPLs), miR157 with SPLs, and miR396 with growth-regulat-

ing factors (Supplemental Table 5). Additionally, two sets show an

unexpected strong positive correlation: miR447 with 2-phospho-

glycerate kinase-related proteins and miR779 with a leucine-rich

repeat protein kinase. The sets with no correlation included

miR397 with laccases, miR172 with APETALA2-domain contain-

ing transcription factors, miR159 with MYBs, and two sets that

target members of the miRNA biogenesis pathway, miR168 with

AGO1 and miR162 with DCL1. Overall, many known miRNAs

have enrichment in one or more cell types and/or developmental

zones (Supplemental Fig. 2). These spatio-temporal patterns will be

very useful in the elucidation of specific functional roles for root

miRNAs in biological circuits.

A new classifier, PIPmiR, is used to predict miRNA
foldback structures

Plant miRNA precursor sequences are much more diverse in both

length and secondary structure than those in animals, thus making

them more challenging to identify computationally (Jones-Rhoades

and Bartel 2004). There are two precursor-processing pathways that

have been identified for plant miRNA genes. The first, and primary,

pathway involves stem-to-loop processing in which the sequence

and structure beyond the miRNA–miRNA* site are necessary and

used by the cleavage pathway components to excise the mature

sequence(s) (Reinhart et al. 2002; Kurihara and Watanabe 2004;

Cuperus et al. 2010; Mateos et al. 2010; Song et al. 2010; Werner

et al. 2010). The second pathway involves loop-to-stem processing

in which only the structure between the miRNA and miRNA* is

necessary for the cleavage pathway components to excise the ma-

ture sequence(s) (Addo-Quaye et al. 2008; Bologna et al. 2009).

We developed a computational pipeline that, beginning with

a mature miRNA candidate, can accurately identify the precursor

sequence necessary for proper processing of the miRNA gene (Fig.

4). We applied our pipeline to all mature sequences listed in miRBase

v16 (Jones-Rhoades and Bartel 2004). Our pipeline identified

valid precursor sequences for all known mature miRNAs, except

ath-mir406 and ath-mir824. The precursor sequence defined in

miRBase for ath-mir406 places the mature miRNA within a loop

such that there is no matching miRNA* sequence. This structure is

not consistent with established miRNA processing pathways. The

size of the precursor identified for ath-mir824 is >500 nt long, the

current limit of our method. We found that the majority of our

predicted precursors were very similar to what is currently listed in

miRBase, although they were frequently a few nucleotides shorter

or longer than the current annotation. There were six exceptions

in which we found substantially different precursor sequences

than those currently annotated (Supplemental Data Set 1). For

these transcripts, our predictor identifies a precursor that places the

mature sequence on the arm opposite from the current miRBase

annotation (i.e., the stem–loop structure is upstream of the mature

miRNA instead of downstream, or vice versa).

Recent studies have experimentally validated the length of

the precursor sequence necessary for proper processing of eight

different miRNA genes. Two of these genes, ath-mir159a and ath-

mir319a, have been shown to be processed by the loop-to-stem

pathway, meaning that the structure and sequence required for

processing reside between the miRNA and the miRNA* and that

structure and sequence beyond this site are not necessary (Bologna

et al. 2009). For these experimentally validated examples, our

pipeline predicts a precursor structure that ends within 2 nt of the

miRNA–miRNA* duplex. In contrast, there are six miRNAs—ath-

mir164c, ath-mir171a, ath-mir172a, ath-mir167a, ath-mir390a,

and ath-mir398a—known to require certain nucleotides beyond

the miRNA–miRNA* duplex for proper processing (Cuperus et al.

2010; Mateos et al. 2010; Song et al. 2010). We accurately predict

the necessary precursor sequence that contains these nucleotides

for four of the six. Our predictions for both ath-mir167a and ath-

mir390a are that the precursor sequence ends at the miRNA–

miRNA* duplex. Overall, we predict that 149 of the 213 precursor

sequences extend >2 nt beyond the miRNA–miRNA* duplex,

consistent with the majority of precursors being processed by the

stem-to-loop pathway (Supplemental Data Set 1).

The processing mechanisms that result in the generation of

multiple mature miRNAs from a single precursor are not known.

There are currently 29 precursors in miRBase that are annotated to

contain more than one mature miRNA sequence. Regardless of the

starting mature sequence within these precursors, our pipeline

identified a precursor sequence that contains all of the mature

miRNAs in 26 of the 29 instances. The three exceptions are ath-

mir779, for which folding by starting with miR779.2 does not

extend the precursor to include miR779.1; ath-mir774b, for which

folding by starting with miR774b does not include the full

miR774b*; and ath-mir829, for which folding by starting with

miR829.1 stops 1 nt short of including the complete sequence of

miR829.2. For subsequent analysis, we used the fold that con-

tained all mature sequences for the precursor or used the longest

predicted form of the precursor.

PIPmiR classifier accurately predicts miRNAs

The second phase of PIPmiR uses the short read data in combina-

tion with genomic features to specifically identify miRNAs present

in the sequence libraries and to distinguish miRNAs from other

Figure 1. Small RNA characterization in the Arabidopsis thaliana root. (A) Overview of the Arabidopsis root developmental zones and cell types used in
this study. (From left to right) Schematic drawing of an Arabidopsis seedling; the root denoting developmental zones isolated by hand sectioning; and the
root tip displaying the cell types analyzed in this study. The colors indicate the regions covered by the GFP marker lines used for isolation of cell types by cell
sorting. (B) Size distributions display preferences for small RNAs of different types. Size distribution of the reads in the radial and longitudinal data sets is
shown. Reads were normalized to transcripts per million (TPM), and the two biological replicates of each radial cell type were averaged. (C ) Highly
abundant small RNA species are reflected in the read size and the identity of the first nucleotide. Read size by first nucleotide of the reads from the radial and
longitudinal data sets is depicted. Canonical miRNAs are 21 nt and begin with a U (blue star), while heterochromatin-associated siRNAs are 24 nt and begin
with an A (red star) (Mi et al. 2008). The 19-nt peak corresponds to tRNA fragments, similar to what was reported in roots (orange star) (Hsieh et al. 2009).
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Figure 2. Cell type– and developmental zone–specific enrichment of known miRNAs. MiRNA expression profiles from the radial data sets represented
as heat maps. (Yellow) Enrichment; (blue) under-representation. (A) Radial expression map, in which columns are cell types and rows are mature miRNAs.
Note that some miRNAs are enriched in only one cell type, while others are enriched in multiple cell types. Individual clusters are shown in more detail in
Supplemental Figure 1. (B) Developmental zone expression map, in which columns are developmental zones and rows are mature miRNAs. Note that
some miRNAs are enriched in a specific developmental zone, while other miRNAs are under-represented in specific developmental zones. Individual
clusters are shown in more detail in Supplemental Figure 2. The miRNAs listed are the representative members of the family as listed in Supplemental
Figure 10.

The miRNA landscape of the Arabidopsis root
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small RNAs. These features were selected based on known bio-

genesis, processing, and targeting properties of plant miRNAs. The

classifier was trained on small RNA deep-sequencing data from five

different experiments, which cover a variety of Arabidopsis tissues

(Montgomery et al. 2008; Hsieh et al. 2009; Fahlgren et al. 2010;

Kanno et al. 2010). Our positive set consisted of 144 known miRNAs

that were expressed with 10 or more reads in at least one of the five

training libraries. The negative set consisted of intergenic or in-

tronic genomic locations where at least 10 reads mapped and

a potential precursor foldback structure was identified using the

pipeline. Overall, we included 42,916 genomic locations in our

negative training set. A fourfold cross-validation test of our model

revealed that PIPmiR separated the known miRNAs from other

ncRNAs with a sensitivity of 91.7% and a specificity of 99.9%. This

is the minimum specificity possible since some members of the

negative set may correspond to currently unannotated mature

miRNAs. For comparison purposes, we used the rule-based plant

miRNA identifier miRCat (Moxon et al. 2008) on the same training

data. At a specificity of 99.9%, this algorithm correctly identified

113 (78%) of the known miRNAs expressed (Supplemental Table 6).

PIPmiR identifies novel miRNAs expressed in the root

We next applied PIPmiR to each of our root data sets to identify

new miRNA genes. Across all libraries, we identified 420,974

unique putative mature miRNA sequences from intergenic or intronic

regions that had a valid pre-miRNA fold structure. Putative mature

miRNAs that overlapped by at least 90% were grouped into a single

mature sequence. Our algorithm identified 183 putative mature se-

quences from 168 precursors that were classified as an miRNA in at

least one of the data sets. Of these potential mature miRNAs, 145 from

135 precursors had a median classification score >0 across all of the

data sets in which they were observed (Supplemental Data Set 2).

All of these candidates bear the hallmarks of products of the

small RNA processing pathways in plants and exceed the evidence

available for many recent miRBase additions based on high-

throughput sequencing. However, the presence of a small RNA

pathway substrate does not imply its consistent physiological

function. Here, we took advantage of our biological replicates and

applied a more rigorous filter to identify a more stringent set of

novel miRNAs for further analysis. We additionally required that

each of the putative miRNAs be expressed in both biological rep-

licates for at least a single tissue and have a positive score in each of

those replicates. To account for the single replicates of the de-

velopmental zones, we required a minimum raw transcript count

of 25 and a positive score. Overall, the pipeline reported 66 novel

miRNAs from 64 precursors (Table 1; Supplemental Table 7). Fifty-

eight of the 66 previously unknown miRNAs (88%) are reported

to have at least one target using the WMD3 target predictor

(Ossowski et al. 2008; Supplemental Data Sets 1–3). This is highly

Figure 3. Expression of miRNAs and their validated targets varies by cell type and developmental zone. Heat map representation of known miRNA
expression and average miRNA target expression z-scores side by side for each of the cell types. An inverse relationship between the expression level of miRNAs
and their validated targets was found for many known miRNAs. (Yellow) High expression; (blue) low expression.

Breakfield et al.
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similar to the number of known miRNAs with predicted targets

(220 of 243, 91%).

Additional mature miRNAs emerge
from currently known precursors

Of the 133 currently annotated miRNAs found in our expression

data, 23 had a dominant form different from miRBase v16 (Sup-

plemental Data Set 3) in at least one of the data sets. Fifteen of

those were the more dominant form in both replicates of a single

cell type, 13 of which were the dominant form in both replicates of

more cell types than the current miRBase annotation (Table 1).

Most of these alternate forms differed by only a single nucleotide,

with the exception of ath-miR169g*,

which differed by 4 nt. Contrary to all

known processing pathways, this partic-

ular miRNA would produce a 2-nt 59

overhang when in an miRNA–miRNA*

duplex as annotated in miRBase. The

miRNA* form corresponding to the

expected 2-nt 39 overhang is the only one

present in our data sets.

In addition to the adjusted forms of

currently annotated miRNAs, we also

observed additional mature miRNA se-

quences arising from the previously

identified precursor sequences. We identi-

fied 62 miRNA* sequences from currently

known miRNAs that may function as in-

dependent mature miRNAs (Supplemental

Table 8). These miRNA* sequences met the

most stringent thresholds of the PIPmiR

classifier in that they were expressed in

both replicates of a tissue (or at the higher

level in the longitudinal sections), had a

score above 0 in both replicates, and had a

median score >0 for all of the tissues in

which they were found. Further validation

is needed to determine how many of these

function as independent mature miRNAs.

Similar to what was observed by

others (Zhang et al. 2010), we found that

mature miRNAs may also arise from re-

gions of the precursor that are not cur-

rently annotated as either a mature

miRNA or miRNA*. In addition to miRNA

precursors known to contain more than

one mature miRNA (ath-mir319a, ath-

mir319b, ath-mir447a, and ath-mir822),

we found 11 additional precursors that

give rise to a novel mature miRNA. These

were each expressed in both replicates of

at least a single tissue and had a median

classification score >0 (Supplemental Ta-

ble 9; Supplemental Data Set 3).

New miRNAs are validated

Twenty-nine of the miRNAs we identified

could immediately be classified as new

miRNAs based on standard annotation

criteria (Meyers et al. 2008) that accept as

evidence the presence of both miRNA and miRNA* sequences on

predicted hairpin structures. We failed to detect miRNA* for the

remaining putative new miRNAs, which is not unexpected con-

sidering the low abundance of the mature miRNA. We further

validated eight new miRNAs using stem–loop PCR (Table 2). Seven

of these miRNAs had T-DNA insertion lines readily available (Ses-

sions et al. 2002; Alonso et al. 2003). For the eighth, we generated

a target mimicry line (Franco-Zorrilla et al. 2007). To assess whether

the disruptions in our new miRNAs resulted in root development

phenotypes, we compared growth rates of the primary root of the

knockout lines with a wild-type or empty vector control.

Mutations in three of the new miRNAs—miR5023, miR5648-3p,

and miR5657—resulted in a root growth phenotype (Fig. 5). miR5023

Figure 4. PIPmiR pipeline. (A) A schematic depiction of each step of the PIPmiR pipeline. (B) The min-
imum normalized free energy by sequence length calculated while determining the miRNA–miRNA*
foldback structure for ath-mir171a. The blue circle highlights the sequence with the overall minimum value
that was used in the subsequent step. (C,D) The minimum normalized free energy by sequence length
calculated while extending the miRNA–miRNA* foldback structure for ath-mir171a and ath-mir319a, re-
spectively. The blue circles highlight the location identified by PIPmiR as the correct foldback structure. The
vertical blue lines represent the sequence identified as necessary for the proper processing of the miRNA.

The miRNA landscape of the Arabidopsis root
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was found in the epidermis and all developmental zones, with highest

expression in the late meristematic zone. The T-DNA insertion in this

line would interrupt the predicted hairpin of the precursor, and the

phenotype of the mutant was enhanced root growth. MiR5648-3p

was expressed in the late meristematic, elongation, and maturation

zones, with the highest expression in the late meristematic zone. No

T-DNA insertion lines were available, but a line using suppression by

target mimicry (MIM5648-3p) also had an enhanced root growth

phenotype. MiR5657 was found in all radial cell types and all de-

velopmental zones, with the highest expression in the epidermis, and

a knockout line exhibited retarded root growth. The knockdown in

mutants miR5023 and miR5657 is shown in Supplemental Figure 4A,

while the increased relative expression of targets and the comple-

mentary miRNA regions in MIM5648-3p are shown in Supplemental

Figure 4, B and C. While further analysis is needed to determine the

exact role of these miRNAs in root development, these results suggest

that new miRNAs we identified have functional relevance.

Discussion
In this study, we present analyses of small RNA deep-sequencing

data sets generated from the major cell types and developmental

zones of the Arabidopsis root. Using these data, we describe the

expression profiles not only of known miRNAs, but also identify

a substantial number of new mature miRNAs. We observed that

many known and new miRNAs have developmental zone speci-

ficity, with a large number of known miRNAs enriched in the early

maturation zone. This suggests that the miRNAs function to re-

press targets after the developmental program is initiated.

High-resolution profiling of individual cell types can provide

insights into the role of miRNAs that are masked by profiling entire

organs (Fig. 3). For example, miR156/157 was the most highly

expressed miRNA family in all of our data sets, and the known

targets had very low expression. Looking at the developmental

zones, however, miR156/157 targets had higher and lower ex-

pression in the elongation and maturation zones, respectively,

while miR156/157 had the opposite expression pattern. Since this

particular family of miRNAs has a known role in vegetative phase

change in leaves (Poethig 2009), it is possible they could be per-

forming a similar role in the root, delineating the region between

elongating and mature cells.

Another known miRNA family, miR165/166, was recently

shown to play a role in the specification of the xylem in roots

(Carlsbecker et al. 2010), leading us to examine the expression

pattern of these miRNAs in our data sets. Carlsbecker et al. found

that these miRNAs are highly expressed in the endodermis and

quiescent center with weaker expression in the cortex and epi-

dermis. We found a similar pattern of miR165/166 expression in

Table 1. Variant mature sequences of known miRNAs

This table lists mature miRNAs for which a form different from that annotated in miRBase was the most highly expressed variant. Ath-miR169g* in miRBase shows
a 2-nt 59 overhang rather than the expected 2-nt 39 overhang. The expected form is the only one present in our data sets. The ‘‘Expression Locations’’ column lists
the locations within the root in which each form is expressed in all biological replicates. Locations in which one variant is present in a single replicate and the other
is the dominant form in the other replicate are not listed. (WOL) stele; (SCR) endodermis; (COR) cortex; (WER) epidermis; (PET) columella; (LS) longitudinal
section. LS1 corresponds to the early meristematic zone, LS2 to the late meristematic zone, LS3 to the elongation zone, and LS4 to the maturation zone.

Breakfield et al.
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Table 2. Validated novel miRNAs

This table lists novel mature miRNAs identified in the deep sequencing data that either had a miRNA* sequence or were validated by qPCR. Cloning refers
to stem–loop PCR with traditional cloning and sequencing. ‘‘Expression Location’’ represents tissues in which the miRNA is expressed in all biological
replicates. (*) Star sequence was present in that particular tissue in addition to the mature sequence. (WOL) Stele; (SCR) endodermis; (COR) cortex; (WER)
epidermis; (PET) columella; (LS) longitudinal section. LS1 corresponds to the early meristematic zone, LS2 to the late meristematic zone, LS3 to the
elongation zone, and LS4 to the maturation zone.
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our data sets, but our cortex expression was higher than in the

endodermis (Fig. 2A). This could be due to the expression of the

cortex GFP marker used for sorting, which labels the cortex cells in

the elongation to maturation zones. While previous studies fo-

cused on the meristematic zone, we have additional information

about miR165/166 localization. Our data show that the highest

levels of miR165/166 are in the early meristematic zone, and these

levels drop in the late meristematic zone (Fig. 2B; Supplemental

Data Set 1). This indicates that the action of this miRNA could be to

set up a gradient of target expression necessary for proper pattern

formation in the meristematic zone.

In addition to describing the root expression profile of cur-

rently known miRNA genes, including their variants, we devel-

oped a computational pipeline capable of identifying precursor

sequences, which are then used in a probabilistic framework to

accurately distinguish new miRNAs from other small ncRNAs. We

identified 183 new miRNA candidates across all of our data sets.

When we required consistency in classification score and expres-

sion across biological replicates, we arrived at a subset of 66 new

mature miRNAs from 64 precursor sequences for which there is

high confidence.

The PIPmiR classifier also identified

new mature miRNAs that emerge from

the precursor sequences of known

miRNA genes. We found that there are 62

mature miRNAs for which their miRNA*

sequence could be considered as a sepa-

rate, functional mature miRNA. In addi-

tion, we identify 15 mature sequences

that originate from precursor sequences

not currently annotated as either a mature

miRNA or its miRNA* sequence. Unlike

animal miRNAs that can have hundreds of

targets (Friedman et al. 2009), plant mi-

RNAs have only a few targets but may di-

versify their mRNA targets through the

production of multiple mature miRNAs

from the same precursor.

Reduction in activity for three new

miRNA genes resulted in significant dif-

ferences in root growth rate when com-

pared with wild-type controls. Reduction

in activity for two of the miRNAs resulted

in increased root growth, whereas re-

duction in the third miRNA resulted in

reduced root growth. As has been pre-

viously reported, regulators that affect

root growth are likely to have specific ex-

pression patterns across developmental

zones (Tsukagoshi et al. 2010), and we see

this for two new miRNAs with root growth

phenotypes. MiR5023 and miR5657 show

enrichment in specific developmental

zones, namely, the two meristematic sec-

tions (Supplemental Fig. 2B; Supplemen-

tal Data Set 2). Further analysis is needed

to clarify the specific roles of these mi-

RNAs in the regulation of root growth.

Finally, our small RNA deep-se-

quencing data sets provide detailed ex-

pression profiles of classes of ncRNAs in

the Arabidopsis root other than miRNAs.

An example is the distribution of small ncRNA sizes found in the

different developmental zones. A larger number of 21-nt small

ncRNAs, the canonical miRNA size, were found in the meriste-

matic zone, while more 24-nt small RNAs, the canonical hetero-

chromatin-associated siRNA size, were found in the early matura-

tion zone. This could indicate a functional role of the maturation

zone in silencing that has not previously been recognized, and

future work will examine additional classes of small RNAs in these

data sets, because they can also be expected to exhibit distinct

spatio-temporal expression patterns. In summary, our study

demonstrates the power of isolating individual cell types and de-

velopmental zones in combination with deep sequencing and

computational analyses to obtain detailed profiles of ncRNAs, as

well as to significantly extend the compendium of known func-

tional RNAs.

Methods

Cell sorting and Illumina small RNA library preparation
Cell type–specific sorting was performed using GFP-labeled lines
(Birnbaum et al. 2003). The stele was marked by pWOODEN

Figure 5. Novel miRNAs display root length phenotypes. (A) Mutants in two novel miRNAs (miR5023
and MIM5648-3p) have longer roots than their Columbia-0 wild-type or empty vector control,
respectively, while one novel miRNA mutant (miR5657) has shorter roots than the wild-type control. (*) P-
value <0.05 from Student’s t-test (see Supplemental Table 10). (B) Mutant and control roots
grown vertically on plates display root length phenotypes. Pictures were taken at 8 d post-imbibition.
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LEGTGFP (WOL) (Mahonen et al. 2000), endodermis and quies-
cent center by pSCARECROWTGFP (SCR) (Birnbaum et al. 2003),
the cortex by pCORTEXTGFP (COR) (Lee et al. 2006), the epi-
dermis and lateral root cap by pWEREWOLFTGFP (WER) (Lee
and Schiefelbein 1999; Sena et al. 2004), and columella by en-
hancer trap PET111 (PET) (Nawy et al. 2005).

At least 1 million GFP-positive cells (or mock-sorted cells in
the case of whole root sorted samples) were collected directly into
miRVana (Ambion) lysis buffer and stored at �80°C until extrac-
tion. The total RNA extraction protocol was used. For the longi-
tudinal sections, 100 6-d-old Columbia-0 wild-type roots were
hand-dissected into four pieces: two meristematic zone sections,
one elongation zone section, and one ;2-mm maturation zone
section. The sections were placed in the miRVana kit lysis buffer
immediately after dissection, and then the 100 roots for each
section were combined before total RNA extraction.

High-molecular-weight RNA was precipitated using 5%
PEG8000 and 0.5 M NaCl, and low-molecular-weight (LMW) RNA
was ethanol-precipitated from the supernatant as described in Lu
et al. (2007). LMW RNA used in small RNA library construction had
an RIN score of 8 or above by Agilent Bioanalyzer. Illumina small
RNA sequencing libraries were prepared as described in the v.1
protocol. To validate each library before using for sequencing, <1
ng was traditionally cloned and about 100 colonies were Sanger-
sequenced. Libraries that contained <5% adapter:adapter
sequences (indicating no small RNA insert) with small RNA se-
quences that could be aligned to the Arabidopsis genome were
used for Illumina sequencing on an Illumina Genome Analyzer II.
Two biological replicates of each cell type, two biological replicates
of the whole root sorted, two biological replicates of the whole root
unsorted, and one of each longitudinal section were constructed
and sequenced.

Small RNA data set processing and alignment

All small RNA libraries, including those from previous studies
(Montgomery et al. 2008; Hsieh et al. 2009; Fahlgren et al. 2010;
Kanno et al. 2010), were stripped of their respective 39-adapter
sequences using the FASTX toolkit (Blankenberg et al. 2010). Reads
that were <13 nt in length or contained an ambiguous nucleotide
were discarded. The remaining reads were aligned to the Arabi-
dopsis thaliana genome (TAIR9) allowing up to three mismatches
using the Bowtie (Langmead et al. 2009) algorithm. We allowed
each sequence to map to multiple locations with a maximum of 25
locations per sequence because many families of small ncRNAs
share precisely the same sequence. Reads that failed to map to the
genome or mapped to the genome in more than 25 locations
within their optimal mismatch stratum were discarded. Mapped
locations where at least one read mapped with no mismatches
were used for further analysis; this removed mapped locations
where all of the reads mapping to that particular location con-
tained one or more mismatches. Only intergenic and intronic se-
quences were considered for further analysis. Of the locations
where 10 or more reads mapped and at least one read was a perfect
match, <18% of the total reads contained a mismatch.

miRNA expression profiles

All reads that mapped to a known mature miRNA as identified in
miRBase v16 (Griffiths-Jones et al. 2008) or overlapped at least 90%
with a known miRNA were counted toward the expression value.
The count value was normalized by the size factor as defined by
Anders and Huber (2010). As to not be biased by miRNA family
size, one representative member of each of the families was used in
the calculation of this normalizing factor (Supplemental Table 10).

The normalizing factors were calculated using the ‘‘DESeq’’
(Anders and Huber 2010) library in the R statistical software
package (R Development Team 2009).

Identification of putative miRNA mature sequences

Initially, we constructed a set of putative hairpin sequences based
on the aligned short sequence reads. We then used those reads to
derive a subset of putative miRNA precursor sequences that are
used as input to a probabilistic binary classifier. In the remainder of
this section, we describe all the analysis steps in more detail.

Aligned reads that overlapped were grouped together, and the
most abundant read within that group was considered the putative
mature miRNA; only putative mature miRNAs with more than 10
reads were considered for further analysis. For the purposes of
training PIPmiR, exact matches to miRBase v16 (Griffiths-Jones
et al. 2008) mature sequences were used as the positive set, re-
gardless of whether that was the most abundant form of reads at
that location. In addition, no unannotated mature miRNA se-
quences that overlapped a known precursor were used in training
the model.

PIPmiR precursor prediction

Given the large variation as to the location of a mature miRNA in
the precursor sequence, all sequences starting with the potential
mature miRNA were extended upstream of and downstream from
50 to 500 nt with a step size of 2 nt. Each sequence was folded with
RNAFold (Zuker and Stiegler 1981), and the minimum free energy,
normalized by sequence length, was recorded if there was a valid
miRNA* sequence. A valid miRNA* sequence was required to be at
least half the length of the mature, no more than 1.53 the length
of the mature, and to contain no hairpin structures. The precursor
sequence that contained the lowest normalized free energy was
truncated back to the miRNA–miRNA* sequence containing the
stem–loop. This new hairpin sequence was then extended up to
a total length of 500 nt stepwise by adding 2 nt to both ends of the
sequence. At each step, the sequence was folded and the normal-
ized minimum free energy recorded. The sequence with the overall
lowest minimum free energy normalized by length was kept as the
miRNA precursor sequence. If the miRNA* sequence in this puta-
tive precursor sequence did not overlap with the miRNA* sequence
identified at the initial stem–loop identification stage by at least
90%, then the sequence was discarded and this putative miRNA
was not considered further.

To combine precursors that contained multiple mature se-
quences, we first required that such precursors overlapped by at
least 90%. Then they were combined to the most upstream and the
most downstream location of all of the predictions. This was done
to ensure that we included all mature sequences.

PIPmiR classifier

PIPmiR applies a naive Bayes classifier that uses 15 different fea-
tures (listed below) collected from either genomic information or
small RNA deep-sequencing experiments. The resulting score from
the classifier is the log-odds of the probability of a sequence being
a mature miRNA versus that sequence being another type of
ncRNA. Therefore, any sequence with a score above 0 is classified as
a mature miRNA. All continuous features were converted to 10
equal-sized bins between the minimum and maximum values seen
in the training data. Values observed in the data that were either
less than or greater than the range of the training data were set to
the minimum or maximum value found in the training data. The
classification was implemented using the naive Bayes function in

The miRNA landscape of the Arabidopsis root

Genome Research 173
www.genome.org



the e1071 library (Dimitriadou et al. 2010) from the R statistical
software package (R Development Team 2009).

A total of five different data sets of A. thaliana small RNA se-
quencing were used in the training and evaluation of PIPmiR. Four
data sets were downloaded from the NCBI Sequence Read Archive
(Leinonen et al. 2010) and consisted of data from different plant
tissues: SRX014817 (shoot) (Hsieh et al. 2009), SRX003110 (in-
florescence tissue: flower stages 1–12) (Montgomery et al. 2008),
SRX021356 (total aerial, bolting, and flowering) (Fahlgren et al.
2010), and SRX016973 (mixed-stage inflorescence tissue) (Kanno
et al. 2010). The fifth data set used in the training and evaluation
was from this study (whole root; replicate 2).

All mature miRNAs listed in miRBase v16 (Griffiths-Jones
et al. 2008) with 10 or more reads in any individual data set were
used in the positive set; this resulted in 144 mature sequences
being included. The data set that had the largest number of reads
for each mature sequence was used to calculate the features for that
particular miRNA.

The negative training set consisted of all putative mature se-
quences found in each of the five data sets that mapped to inter-
genic or intronic regions. If a putative mature miRNA was present
in multiple data sets, the data set with the largest number of reads
at that location was used to calculate the features for that particular
negative control. To be included in the negative set, the putative
mature miRNA had to have more than 10 reads and be predicted to
have a valid precursor sequence. There were a total of 42,916 pu-
tative mature miRNAs used in the negative set. If a putative mature
miRNA mapped to a location of a known miRNA precursor se-
quence but was not a known mature miRNA as defined by miRBase
v16, then it was discarded from being either in the positive or the
negative set.

Feature list

GC% of first half of miRNA: Percent of ‘‘G’’ or ‘‘C’’ nucleotides in the
first half (59 end) of the mature miRNA sequence

GC% of second half of miRNA: Percent of ‘‘G’’ or ‘‘C’’ nucleotides in
the second half (39 end) of the mature miRNA sequence

Nucleotide 10: Tenth nucleotide from the 59 end of the mature
miRNA sequence

Nucleotide 11: Eleventh nucleotide from the 59 end of the mature
miRNA sequence

First nucleotide: 59-most nucleotide of the mature miRNA sequence
Last nucleotide: 39-most nucleotide of the mature miRNA sequence
Mature length: Number of nucleotides in the mature miRNA se-

quence
Star length: Number of nucleotides in the miRNA star sequence
Normalized energy: Minimum free energy of the precursor foldback

structure divided by the length of the precursor sequence
Consecutive mismatches: The maximum number of consecutive

non-base pairings between the mature miRNA and the miRNA*
sequence

miRNA–miRNA* match: The percent of nucleotides in the mature
sequence that have a base-pairing to a nucleotide in the miRNA*
sequence

miRNA*–miRNA ratio: The ratio of the number of reads that exactly
map to the miRNA* sequence divided by the number of reads
that map to the mature miRNA sequence. Any value >1 for this
feature is set to a value of 1.

Overhang ratio: The number of reads that overlap 85% or less of the
mature miRNA divided by the number of reads that map exactly
to the mature sequence. Any value >1 for this feature is set to
a value of 1.

miRNA and miRNA* compared to entire precursor: The number of
reads that map exactly to the mature miRNA or the miRNA*

divided by the number of reads that map to the precursor se-
quence

Opposite strand ratio: The number of reads that map to the precursor
sequence, but on the opposite strand, divided by the number of
reads that map to the precursor on the transcribed strand. Any
value >1 for this feature is set to a value of 1.

miRNA expression analysis

Heat maps were produced using the multiexperiment viewer
(MeV) that is part of the TM4 microarray software suite (Saeed et al.
2006). Z-scores for miRNA expression and z-scores for their average
target(s) expression value were calculated before entering into MeV
for heat map production. The Z-score was defined as [(log2-nor-
malized expression) � (mean of log2-normalized expression of
group)]/SD. After loading data, the gene expression profiles were
hierarchically clustered using Euclidean distance. A figure of merit
was generated with 100 iterations to obtain the approximate
number of clusters appropriate for k-means clustering. k-means
clustering was performed using Euclidean distance and up to 50
iterations.

For known miRNA target expression analysis, the list of vali-
dated targets was downloaded from the ASRP website (Backman
et al. 2008), and the average expression value was calculated per
family by averaging the expression values of the targets of that
family from laboratory microarray data (Brady et al. 2007). Pearson
product moment correlation coefficients (r) and P-values were
calculated using the ‘‘HMisc’’ library in the R statistical software
package (R Development Team 2009), and correlations of the
miRNA:mRNAs sets were ordered from lowest to highest P-values.

miRNA validation, target prediction, and phenotyping

Verification of the expression of novel miRNAs was performed
using whole root Col-0 total RNA and stem–loop RT-PCR (Varkonyi-
Gasic et al. 2007) using miR156 as the normalizing control. Some
miRNAs were further validated (designated ‘‘cloning’’ in Table 2)
using stem–loop endpoint PCR, and these PCR products were
cloned into a pCR-Blunt-TOPO vector (Invitrogen) and their se-
quences confirmed by Sanger sequencing (Varkonyi-Gasic et al.
2007).

Targets for both known and novel mature miRNAs were pre-
dicted using the WMD3 web microRNA designer using default
settings (Ossowski et al. 2008).

Homozygous T-DNA insertion mutants (usually producing
knockout mutants) were identified for the novel miR candidates
(McElver et al. 2001; Sessions et al. 2002; Alonso et al. 2003). The
insertion line for mir5023 was CS824777–SAIL_582_B05, and for
mir5657 was CS833058–SAIL_739_F11. The target mimicry line
for miR5648-3p was produced as described (Franco-Zorrilla et al.
2007). Root lengths were assayed by growing mutant seeds versus
control seeds vertically on 13 Murashige and Skoog salt mixture,
1% sucrose, 2.3 mM 2-(N-morpholino)ethanesulfonic acid (pH
5.8), and 1% agar plates. Root lengths were measured using ImageJ
(Abramoff et al. 2004), and the Student’s t-test was used to de-
termine statistical significance.

Data access
The raw sequencing files have been submitted to the NCBI Se-
quence Read Archive (SRA) (http://trace.ncbi.nlm.nih.gov/Traces/
sra/sra.cgi) under accession number SRA037191 and study number
SRP006839. The PIPmiR pipeline can be found at http://www.
genome.duke.edu/labs/ohler/research/PIPmiR/.
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Note added in proof

We note that while our paper was under review, another study (Borges

et al. 2011) also identified four of our high-confidence novel miRNAs

(miR5014, miR5020a, miR5024, and miR5026). A second study (Yang

et al. 2011) reported an additional two of our high-confidence novel

miRNAs in their supplemental materials. The miRBase names we ob-

tained for these miRNAs are miR5650 and miR5654.
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