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Illumina-based analysis of microbial community
diversity

Patrick H Degnan and Howard Ochman
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA

Microbes commonly exist in milieus of varying complexity and diversity. Although cultivation-based
techniques have been unable to accurately capture the true diversity within microbial communities,
these deficiencies have been overcome by applying molecular approaches that target the
universally conserved 16S ribosomal RNA gene. The recent application of 454 pyrosequencing to
simultaneously sequence thousands of 16S rDNA sequences (pyrotags) has revolutionized the
characterization of complex microbial communities. To date, studies based on 454 pyrotags have
dominated the field, but sequencing platforms that generate many more sequence reads at much
lower costs have been developed. Here, we use the Illumina sequencing platform to design a
strategy for 16S amplicon analysis (iTags), and assess its generality, practicality and potential
complications. We fabricated and sequenced paired-end libraries of amplified hyper-variable 16S
rDNA fragments from sets of samples that varied in their contents, ranging from a single bacterium
to highly complex communities. We adopted an approach that allowed us to evaluate several
potential sources of errors, including sequencing artifacts, amplification biases, non-corresponding
paired-end reads and mistakes in taxonomic classification. By considering each source of error, we
delineate ways to make biologically relevant and robust conclusions from the millions of
sequencing reads that can be readily generated by this technology.
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Introduction

Microbes in nature typically exist in complex com-
munities, which can be highly variable in both the
composition and the abundance of their constituent
species. Initial surveys of microbial community
diversity applied cultivation-based methods, but
these were often biased and of limited value owing
to the inability to cultivate many (more likely, the
majority of) naturally occurring species. Such meth-
ods were supplanted by molecular approaches that
did not rely on cultivation but were based rather on
the PCR amplification, cloning and Sanger sequen-
cing of universally conserved molecules, usually
the 16S ribosomal RNA gene. Current sequence
databases contain over a million full-length 16S
rRNA sequences spanning a broad phylogenetic
spectrum than can serve as a benchmark for assessing
the bacterial taxa (also referred to as ‘phylotypes’
or ‘ribotypes’) present in environments worldwide
(Cole et al., 2009).

Although the traditional 16S-cloning-and-sequen-
cing approach has the potential to provide an in-
depth view of the richness and evenness of bacterial
species within a community, its application is
somewhat laborious and costly, with the result that
most applications have assayed on the order of only
100 sequences per sample, which may not be
sufficient to fully characterize all but the simplest
communities. This has led to the development of
alternative techniques for assessing rRNA variation
(for example, ARISA, DGGE, tRFLPs) (Muyzer et al.,
1993; Liu et al., 1997; Fisher and Triplett, 1999);
however, the most revolutionary innovation has
been the application of 454 pyrosequencing to
survey hundreds of thousands of 16S rRNA gene
amplicons (termed ‘pyrotags’) in a single sequencing
run (Sogin et al., 2006). Since its initial introduc-
tion, pyrotag analysis has been widely implemented
(for example, Dethlefsen et al., 2008; Bowers et al.,
2009; Cardenas et al., 2010; McLellan et al., 2010)
and further optimized in order to obtain thousands
of sequences from multiple samples in parallel
(Parameswaran et al., 2007; Hamady et al., 2008;
Costello et al., 2009; Engelbrektson et al., 2010).

Advancements in sequencing technologies, by
offering greater numbers of sequencing reads at
much lower costs, might eventually supplant
pyrotag analysis for the characterization of microbial

Received 14 March 2011; revised 2 May 2011; accepted 2 May
2011; published online 16 June 2011

Correspondence: PH Degnan, Department of Ecology and Evolu-
tionary Biology, Yale University West Campus, PO Box 27388,
West Haven, CT 06516-7388, USA.
E-mail: patrick.degnan@yale.edu

The ISME Journal (2012) 6, 183–194
& 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12

www.nature.com/ismej

http://dx.doi.org/10.1038/ismej.2011.74
mailto:patrick.degnan@yale.edu
http://www.nature.com/ismej


communities. Recent interest has focused on the
applicability of other sequencing methodologies,
most notably Solexa/Illumina (Lazarevic et al.,
2009; Claesson et al., 2010; Gloor et al., 2010;
Caporaso et al., 2011; Zhou et al., 2011), which is
currently less than 1/100 the cost per read than 454
pyrosequencing. Although realizing much shorter
read lengths, the Illumina technology can be tailored
to yield sequences of increased lengths, as can be
obtained by merging the paired-end reads generated
from the same amplicon (Gloor et al., 2010; Rodrigue
et al., 2010; Zhou et al., 2011). By integrating
sample-identifying barcodes into the amplification
primers, the Illumina platform, like 454 pyrosequen-
cing, is amenable to a high level of multiplexing,
which further increases its utility for examining
large and complex sets of samples (Gloor et al.,
2010).

Here, we use the Illumina sequencing platform for
16S rRNA amplicon analysis (called ‘iTags’) and
assess its generality, practicality and potential
complications. We first fabricate and sequence a
paired-end library of hyper-variable 16S rDNA
fragments amplified from samples that varied in
contents from a single bacterium, an artificial
community and a highly complex natural commu-
nity. The inclusion of identifying barcodes and
multiple primer pairs, combined with the selected
amplicon lengths, allowed us to evaluate the level
of sequencing error, amplification biases and asso-
ciation between paired-end reads, among other
variables. Despite recovering over 30 million reads,
our imposition of stringent quality filters resulted in
up to an 85% reduction in the number of potentially
informative reads. Nevertheless, tens to hundreds
of thousands of informative reads were returned
for each of the multiplexed samples. These results
uncovered both the major advantages and obstacles
in the application of these methods, and provide
insights into the ways that such impediments can
be ameliorated prior to the application of these
procedures.

Materials and methods

Designing amplification primers
During the development of this project, the Illumina
GAIIx sequencer could produce reads of up to 100
nucleotides (nt) in length from both ends of single
DNA fragments or amplicons (that is, paired-end
reads). We exploited this technology to assemble
reads spanning a 4100-nt region of the 16S rDNA. To
accomplish this, we identified candidate universal
primer pairs spanning the 16S rRNA variable loops
(Neefs et al., 1991) that would maximize sequence
information and be short enough to allow adequate
read overlap.

The phylogenetic distribution of each primer
sequence was analyzed using the RDP Probe Match
(Cole et al., 2009). The goal was to obtain broadly

distributed primers that amplify regions of approxi-
mately 100–150 bp in length such that the paired-
end reads from an amplicon would show some
overlap. Of primer sets meeting these criteria, two
flanking the variable loop-6 (V6) were chosen (XXX
denotes sample-specific barcodes): 967F 50-XXX
CAACGCGAAGAACCTTACC-30 and 1046R 50-XXX
CGACAGCCATGCANCACCT-30 (Short 1 V6 (S1V6);
98 bp in Escherichia coli) (Sogin et al., 2006), and
917F 50-XXX GAATTGACGGGGRCCCGC-30 and
1061R 50-XXX CACGRCACGAGCTGACGAC-30

(Long V6 (LV6); 163 bp in E. coli) (Keijser et al.,
2008). We further modified the S1V6 primer pair to
increase both the extent of overlap between paired-
reads and the number of potentially informative
sites as follows: 970F 50-XXX CGCGAAGAACCT
TACC-30 and 1050R 50-XXX ACGACAGCCATG
CANC-30 (Short 2 V6 (S2V6); 96 bp in E. coli).

Sample-identifying barcode sequences were in-
cluded at the 50 ends on both the forward and the
reverse primers. The barcodes were designed (1) to
be short, 3 or 4 bp, to minimize loss of sequence
information; (2) to have two or more differences
from one another (such that a single sequencing
error could not convert one into another); and (3) to
have the 30 nucleotide of the barcode be a low-
frequency match of nucleotide upstream from the
50 end of the priming site. The barcodes for the
primer pairs were as follows: S1V6–ATG, CAG, TCG,
ACT, CGT, GCA, GAT, and TGA; S2V6–AGC, ATT,
GTC, TCC, CCAT, CGGC, GCGT and TTAT; and LV6–
GTC, AAC, CCA, TAA, AGGA, GCGC, TTGC and
ATAC.

Selecting sequencing templates
We tested 16S primers on sets of samples representing
a range of microbial diversity. First, we used two well-
defined samples containing either DNA extracted
from a single sequenced strain of E. coli K-12
(MG1655) (Blattner et al., 1997) or from a mixture of
genomic DNAs of known concentrations from 19
cultivated strains of bacteria (Table 3). Next, we
analyzed a sample of unknown microbial diversity: a
fecal sample from a laboratory mouse. The QIAamp
DNA stool mini kit (Qiagen, Valencia, CA, USA) was
used following the manufacturer’s protocol to extract
total DNA from the feces of an individual lab-reared
mouse, Mus domesticus strain WSB.

Preparing samples for 16S amplification
PCR amplifications were performed in triplicate 30-ml
reactions using 30–50 ng of template DNA and one
of two DNA polymerases. Samples amplified with
the barcoded S1V6 primer pairs were performed
using 1.2 U of Taq DNA polymerase (5 PRIME) and
final concentrations of 1X polymerization buffer,
1 mM dNTPs and 0.4mM of each primer. The reaction
mixtures were subjected to an initial denaturation
cycle of 95 1C for 2 min, followed by 25 cycles at 95 1C
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for 30 s, 55 1C for 45 s and 72 1C for 1 min, and a final
extension step at 72 1C for 10 min. The samples
amplified with the barcoded S2V6 or LV6 primer
pairs used the high-fidelity Advantage 2 polymerase
mix and the Advantage 2 SA PCR buffer (Clontech,
Mountain View, CA, USA) following the manufac-
turer’s instructions. Amplifications with the S2V6
and LV6 primer pairs were performed in a laminar-
flow hood using screw cap tubes to minimize
contamination. The thermal cycling conditions were
identical to those detailed above except that the
annealing temperature was 58 1C.

Triplicate reactions for each sample were pooled,
visualized on 1% agarose gels, purified with the
MinElute PCR purification kit (Qiagen) and eluted
in 11 ml of EB buffer. The concentrations of the
amplification products were quantified on a Bio-
analyzer using the DNA 1000 LabChip kit (Agilent
Technologies, Santa Clara, CA, USA). The barcoded
products of the S1V6 and S2V6 primer sets were
combined in equimolar amounts, re-purified with
the MinElute kit, eluted in 30 ml of EB buffer and
submitted for 2� 75-nt paired-end sequencing at the
Yale Center for Genomic Analysis. Similarly, the
LV6 products were mixed in equimolar amounts, but
these longer amplicons were subjected to 2� 100-nt
paired-end Illumina sequencing.

Processing and assembly of sequencing reads
Initial base-calling using Bustard (v 1.7) and quality
filtering of paired-end reads were performed by the
Yale Center for Genomic Analysis. Upon receipt,
these reads were evaluated for quality (mean quality
scores; presence of sites denoted as ‘N’), and
identifiable primers and barcode sequences. Read
pairs with perfectly matching primer and barcodes
were extracted and binned by barcode. The resulting
Illumina fastq files, containing quality values
equivalent to Phred scores, were converted to Sanger
fastq files using Maq (‘maq ill2sanger’, v 0.7.1)
(Li et al., 2008). Individual read pairs were converted
to fasta and qual files, and then assembled using
Phrap (v 1.080812) using the following parameters:
‘-vector_bound 0 -trim_start 0 -forcelevel 3 -preas-
semble -bandwidth 10 -repeat_stringency 0.98 -ace -
minmatch 5 -maxmatch 20 -minscore 10’.

To investigate the effect of quality scores on
estimates of diversity, the assembled reads for each
barcoded sample were further filtered by consensus
quality scores. Barcodes were pruned from se-
quences and the data sets were aligned in the RDP
pyrosequence aligner (Cole et al., 2009), which
implements the Infernal algorithm (Nawrocki and
Eddy, 2007). The resulting alignments were edited
to remove primer sequences and clustered to
generate operational taxonomic units (OTUs) using
the RDP clustering algorithm. The taxonomic assign-
ments of OTUs were derived from the RDP Classifier
using a 50% bootstrap cutoff, as recommended for
reads less than 100 bp. Custom PERL scripts were

written to generate a pipeline to analyze, organize
and format these data. The PERL scripts and raw
sequence data presented and analyzed here are
available at www.yale.edu/ochman/data.

Results

High read recovery, low read usability
Over 30 million paired-reads were collected from
each of the two multiplexed Illumina sequencing
runs. Initial filtering removed 85% of the reads
from run1 and 54% from run2 owing to errors
stemming from several sources (Table 1), which is
comparable to other studies that report filtering
40–70% of their initial reads (Gloor et al., 2010;
Caporaso et al., 2011). We secured a total of 4.5
and 16.0 million paired-end reads for the two runs
in spite of the high number of reads that were
discarded because they did not meet our thresholds
for accuracy; this, in turn yielded tens of thous-
ands to millions of raw read-pairs per multi-
plexed sample (run1 x̄¼ 380 253±176 319; run2
x̄¼ 3 936 966±2 299 439) (Table 2). Because the runs
were founded with equimolar concentrations of
amplicons, some of the variation in the number of
reads returned per sample is most likely attributable
to amplification biases that occurred during the
synthesis of the Illumina sequencing library. Future
experiments might avoid this bias by implementing
an amplification-free library approach (Kozarewa
et al., 2009).

We used a strict set of quality filters to minimize
the impact of erroneous reads on measures of
microbial diversity (Kunin et al., 2010). Errors in
the barcode/primer sequence of either of the paired-
end reads necessitates the removal of both reads in
the pair; and in the majority of read-pairs that were
culled, either only one of the reads perfectly
matched the primer sequence or the paired reads
lacked identical barcodes. The primer and barcodes
are not informative for sequence classification
and together constitute over 20% of the sequencing
read, but the inclusion of both sequences provide a
useful filter for removing erroneous reads and
estimating sequencing error rates.

Table 1 Summary statistics of Illumina paired-end runs

run1 2�75 run2 2� 100

Number (%) Number (%)

Total reads 30 024 020 35 372 083
Reads with N’s 85 581 (0.3) 1 776 183 (5.0)
Only one primer 8 595 494 (28.6) 5 825 314 (16.5)
No primers 146 399 (0.5) 451 498 (1.3)
Mismatched barcodes 16 654 891 (55.5) 8 734 300 (24.7)
Low read quality 58 421 (0.2) 2 582 009 (7.3)
Incorrect barcode 2267 (0.01) 16 474 (0.05)
Binned, barcoded 4 480 967 (14.9) 15 986 305 (45.2)
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Error frequencies were estimated for the barcode/
primer regions of all reads with high sequence
quality (Xq30) for the first 25 nt and with single-
nucleotide differences from the expected sequence.
This included reads initially filtered out for not
containing a perfect primer or barcode sequence (see
above). Across the 14 barcode/primer combinations
analyzed from run1, the error rates per nucleotide
varied over three-fold (1.6� 10�4 to 5.6� 10�4), and
rates varied only two-fold (4.1� 10�4 to 8.4� 10�4)
among the four barcode/primer combinations from
run2 (Supplementary Table 1). For two reasons, we
ascribe these variants to errors generated during
sequencing rather than to artifacts that arose during
PCR amplification: (1) Oligonucleotide synthesis is
typically very accurate, such that errors in primer
regions are more likely generated during the sequen-
cing step; (2) we performed independent experi-
ments using two different Taq polymerases each
having unique error rates, but obtained approxi-
mately the same rate (analysis of covariance;
F1,15¼ 1.07, P¼ 0.317) and spectrum of mutations
with each. The fact that error rates were indepen-
dent of the source of Taq polymerase further
suggests that errors are introduced during DNA
sequencing.

There were large numbers of paired-end reads
with mismatched barcodes, but owing to our use of

barcodes that require at least two mutations to
convert one barcode into another, not many of these
mismatched read-pairs were attributable to sequen-
cing errors. In fact, many read-pairs contained
recognizable barcodes that differed between the
corresponding reads, which could result from
(1) over-clustering during the sequencing run;
(2) the production of chimeric amplicons during
the amplification step of the Illumina library or
(3) primer contamination, the likelihood of each of
which is discussed below.

Over-clustering can result from low nucleotide
diversity in the first four sequenced nucleotides and
high cluster density on the flow cell. Although the
first four bases of our barcodes and primers did not
contain equal frequencies of each of the four
nucleotides, over-clustering is an unlikely cause of
the mismatched barcodes detected. An analysis of
the run showed that read signal intensities and the
percentage of clusters passing filter were both above
normal expectations (intensity 4200 for first cycle,
480% clusters passing filter). Alternatively, chi-
meric amplicons are a common by-product of 16S
rDNA amplifications (Qiu et al., 2001); however, our
protocols used a low number of amplification cycles
(10–12) and the high-fidelity Taq polymerase for
library construction, both of which reduce the
frequency of chimeric amplicons. This leaves primer

Table 2 Binning, assembly and quality filtering of iTags for the analyzed samples

Sample Run Barcode
and primer

Initially binned Assembled Quality filtered

No. % of
runa

No. % of
binned

Threshold No. % of
assembled

No. of
100% OTUs

E. coli K-12 1 ATG–S1V6 487 169 2% 486 958 100% q00 486 939 100% 8322
q20 464 022 95% 6189
q30 405 413 83% 5252

1 AGC–S2V6 317 746 1% 317 746 100% q00 312 277 98% 5072
q20 293 527 92% 3849
q30 225 505 71% 3081

1 CCAT–S2V6 300 261 1% 300 128 100% q00 299 660 100% 4090
q20 278 748 93% 2983
q30 229 091 76% 2467

2 GTC–LV6 2 311 017 7% 2 262 281 98% q00 2 035 748 90% 159 224
q20 684 897 30% 4075
q30 72 955 3% 775

19 Strains 1 CAG–S1V6 721 809 2% 721 367 100% q00 721 066 100% 16 598
q20 675 333 94% 12 501
q30 556 184 77% 10 120

1 ATT–S2V6 226 600 1% 226 510 100% q00 226 505 100% 6177
q20 210 797 93% 4930
q30 162 125 72% 3869

2 AAC–LV6 5 562 915 17% 5 472 113 98% q00 5 422 964 99% 516 427
q20 2 378 803 43% 27 347
q30 407 771 7% 6658

M. domesticus 1 GCA-S1V6 384 480 1% 384 096 100% q00 384 040 100% 15 623
WSB q20 354 604 92% 12 272

q30 277 670 72% 9549
1 TCC–S2V6 223 708 1% 223 610 100% q00 223 488 100% 7082

q20 210 455 94% 5748
q30 163 335 73% 4398

Abbreviation: OTU, operational taxonomic unit.
aPercentage based on the fraction of total paired-end reads not containing an ‘N’ run1¼29 938 439; run2¼33 595 900.
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contamination during the initial PCR amplifications
as the principal contributor of mismatched bar-
codes. Although we implemented precautionary

measures intended to minimize contamination
(using screw cap tubes; removing primers and
templates individually; setting up the reactions in
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a laminar flow hood), contamination occurred in
these samples. With current interest in multiplexing
scores (or even hundreds) of samples, we let these
results serve to forewarn investigators that highly
stringent procedures are necessary to prevent cross-
contamination.

Recapitulation of E. coli OTUs
We first evaluated the efficacy and accuracy of the
iTag approach by sequencing a single template,
E. coli K-12 (MG1655). The E. coli genome contains
seven rRNA operons, six of which have identical
alleles at V6 and the seventh encoding a V6 allele
with nine nucleotide differences (Figure 1a). At both
100% and 97% identity thresholds only two OTUs
are expected.

The V6 loop of E. coli was amplified using three
primer pairs (S1V6, S2V6 and LV6), and we
performed a technical replicate of S2V6 (Table 2).
Nearly all reads assembled with well-supported
overlaps of their distal 30 regions (S1V6 and S2V6,
E50 bp; LV6, E30 bp). Alignment and clustering
of the assembled iTag sequences showed that each
of the E. coli samples contained much more than
the two predicted phylotypes (n¼ 4090–159 224;
Table 2).

Previous work has shown that quality trimming
of pyrotags is essential for accurate prediction of
community composition (Kunin et al., 2010);
therefore, we filtered the assembled reads according
to consensus quality scores estimated by Phrap.
We compared two quality filters, requiring that all
sites had error probabilities of either p10�2 or
p10�3 (corresponding to Phred scores of Xq20 or
Xq30). These measures reduced the number of
unique phylotypes (aka 100% OTUs), but failed to
remove all of the spurious OTUs (Table 2).

Among these confounding OTUs, we found that
3–7% of high-quality reads (Xq30) differed by only
1 nt from the expected E. coli alleles (Figures 1b–e).
Variants occurred at every nucleotide position
regardless of the primer pair or the source of Taq
polymerase. Given the numbers of variants, it is not
likely that each represents a new mutation that
occurred during growth in culture. Therefore, these
phylotypes are attributable to errors that occurred
during sequencing.

The very large number of sequence variants made
them impossible to cluster into the two expected
OTUs, even when applying very relaxed thresholds

(for example, 90% OTUs). Most of the remaining
OTUs (Figure 1) represent phylotypes that were
detected in other samples and are best explained
by primer contamination (discussed above). In
addition, some of the contaminants in the LV6
samples were because of nonspecific amplification
of other chromosomal loci; for example, we recov-
ered a 123-bp fragment of uridylyltransferase (glnD)
from E. coli and a 78-bp fragment of an ATP trans-
port permease from Streptococcus sp.

To rid samples of artifactual phylotypes generated
by sequencing errors and PCR contamination, we
used a sequence abundance threshold in a manner
similar to that of Caporaso et al. (2011). We based this
threshold on the representation of a unique phylo-
type (100% OTU) given the number of q30 reads for
that barcode. Through stepwise increments in the
abundance threshold, we followed the degree to
which spurious reads were eliminated (Figures 1 and 2).
Eventually, by applying a 1.0% abundance thresh-
old (that is, removing all OTUs occurring at
frequencies less than 1.0%) we were able to recapi-
tulate the two phylotypes expected to occur in the
E. coli genome.

Diversity in a defined community
Having addressed the sequence variation detected
within a single species by the iTag approach, we
analyzed the data generated for a synthetic commu-
nity of 19 strains of bacteria (Table 3). This sample
was amplified using each of the three primer sets,
which should yield 19 100% OTUs, and 16 (S1V6,
S2V6) or 15 (LV6) 97% OTUs. A similar pattern
showing an excess of erroneous and contaminating
high-quality OTUs emerged even after stringent
quality filtering (Table 3). Although the application
of a 1% abundance threshold removed artifactual
reads, it also removed several of the expected OTUs
that occurred below this threshold (Figure 2). The
initial template DNA concentrations of 12 of the 19
strains represented less than 1% of the total DNA
mass, so this result was anticipated (Table 3);
however, we also found that the actual read
abundances for the 19 100% OTUs departed from
the expected values (Figure 3). The likely cause of
the deviation between the relative amount of in
put DNA and the relative number of reads could
be primer specificity. For example, the Strepto-
coccus cristatus OTU was similarly abundant in the
CAG–S1V6 (1.7%¼ 2754/162 125) and ATT–S2V6

Figure 1 iTag design and diversity in E. coli. (a) Three primer combinations were tested mapping to E100- or E160-bp regions
spanning the V6 loop of bacterial 16S rRNA. The schematic representation illustrates the two alleles (black bars differing at nine
positions) in the 16S rRNA genes of E. coli MG1655 (rrsA-H) that are differentiated by the resulting amplicons (LV6, S1V6 and S2V6, with
forward and reverse primer positions designated). In panels (b–e), the location and count of high-quality, 100% OTUs with single
sequencing errors relative to the expected E. coli reference alleles are plotted for each of four E. coli iTag samples. The dashed and solid
lines indicate the numbers of mutations after application of increasingly stringent sequence abundance thresholds (10�4, 10�3, 10�2) used
to remove erroneous OTUs. The pie charts indicate the relative abundance of iTags corresponding to expected E. coli OTUs (white), tags
with 1-bp errors (gray) and putative contaminants (black) without the application of an abundance threshold.
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(1.8%¼ 10 207/556 184) data sets, but nearly absent
from the AAC–LV6 data set (0.0022%¼ 9/407 785).

Short 16S tags can be difficult to assign taxo-
nomically and alone provide limited phylogenetic
resolution (Liu et al., 2007). We found that
the RDP Classifier accurately identified all of the
19 expected OTUs to taxonomic Class, but its
success rate progressively decreased for lower
taxonomic divisions, with only about 60–90%
assigned correctly. Alternative BLAST-based classi-
fication approaches can increase accuracy provided
related full-length 16S rRNA sequences are available
(Huse et al., 2008). Of course, neither of these

approaches are able to distinguish among species
that have identical V6 loop sequences (for example,
E. coli, Escherichia fergusonii and Salmonella
enterica; Figure 3).

Microbial diversity in a mammalian host
By way of analyzing a complex microbial community
whose composition and constituents are uncharac-
terized, we assessed the V6 sequence diversity within
a fecal sample from the house mouse M. domesticus
strain WSB/EiJ. This sample was amplified with
GCA–S1V6 and TCC–S2V6, generating, respectively,
384 480 and 223 708 binned reads. As before, even
with rigorous quality filtering, a large number of low-
frequency 100% OTUs remained (Table 2). We
applied similar abundance thresholds (10�5 to
10�2), which resulted in a dramatic reduction in
phylotypes (Figure 4). The utilization of the same
threshold as that applied to the E. coli samples (that
is, 10�2) leaves only 12 OTUs, which represent 67%
(GCA–S1V6) and 74% (TCC–S2V6) of the high-quality
reads. Thus, it appears that application of a 1.0%
threshold is too stringent for actual biological
samples and probably removes many tags that are
likely to represent the actual microbial constituents
of these communities. The two amplified samples
show an extensive overlap in 100% OTUs (Sørensen
distance, 0.010; Jaccard distance, 0.020), which
results in a highly similar taxonomic distribution
regardless of the abundance threshold applied
(Figure 4).

Discussion

Massively parallel sequencing platforms supply an
efficient and sensitive means of characterizing
microbial communities, but the sequencing depths
offer by these methods are accompanied by artifacts
that can affect the interpretation of community

Figure 2 The thresholds required to attain the actual rRNA diversity in a sample. Observed species estimates (OTUs) at 100% (filled)
and 97% (open) levels are plotted at a series of sequence abundance thresholds for (a) E. coli and (b) 19 Strain samples. The solid and
dashed lines represent the expected numbers of OTUs at 100% and 97% identity thresholds, respectively. An identical pattern emerges
when the numbers of estimated species (Chao1) are used (data not shown).

1.0

Figure 3 Frequencies of OTUs from defined communities. The
stacked bar (left) indicates the expected frequencies of each of the
19 species based on input DNA, followed by the frequencies
obtained in each of three iTag analyses. The abbreviations are as
follows: X., Xylella; S., Salmonella; E., Escherichia; A., Agrobacterium;
Strep., Streptococcus; Staph., Staphylococcus; B., Bacillus.
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diversity. We have identified and quantified several
sources of errors inherent to 16S amplicon sequen-
cing (iTags) on the Illumina platform (contamina-
tion, amplification and sequencing errors), thereby
enhancing the utility of these data for assessing

community diversity. Most recent efforts to inter-
rogate microbial communities have relied upon 16S
rRNA gene sequences generated by 454 pyrosequen-
cing (for example, Dethlefsen et al., 2008; Bowers
et al., 2009; Costello et al., 2009; Cardenas et al.,
2010; McLellan et al., 2010); however, Illumina
sequencing technologies currently produce much
larger numbers of much shorter reads for a fraction
of the cost and will likely supplant the use of 454
pyrotags.

Our experimental iTag design used barcoded
primers flanking the V6 segment of 16S rRNA, a
region commonly amplified in pyrotag experiments
(Sogin et al., 2006; Keijser et al., 2008; Galand et al.,
2009). Individual samples were amplified, mixed
and then used as templates to construct and
sequence two standard Illumina paired-end
libraries. Although Illumina sequence quality de-
cays along the length of reads, our motivation for
assembling paired-end reads was to increase the
quality and confidence of the overlapping region
(Gloor et al., 2010; Rodrigue et al., 2010; Zhou et al.,
2011). Therefore the amplified V6 region was
restricted to 100–160 bp to ensure an adequate
overlap of the forward and reverse paired-end reads.
We subsequently filtered out low-quality tags,
leaving only assembled reads that contained bar-
code and primer sequences at each end, which
bounded a phylogenetically informative amplified
region. This design allowed the simultaneous
estimation of sequencing error rates and microbial
diversity.

Over half of 430 million paired-end reads from
each of Illumina runs were subsequently discarded
owing to either (1) sequencing errors in one or both
of the primer regions or (2) paired-end reads that
contained mismatched barcodes (Table 1). Other
Illumina-based 16S rRNA studies have encountered
similarly high sequencing error rates, making such
extreme read filtering necessary, but these studies
did not report a high incidence of mismatched
barcodes (Gloor et al., 2010; Caporaso et al., 2011).
After ruling out over-clustering and sequence
chimeras, primer contamination during the initial
sample amplifications was viewed as the most likely
cause of the mismatched barcodes (see above).
For example, 460% of the contaminants detected
in the E. coli libraries were present in one or more of
the other samples, and frequently these contami-
nants represented the more abundant phylotypes
in the other samples (data not shown). The sequen-
cing depth afforded by the Illumina platform greatly
increases the likelihood of detecting contaminants;
however, we stress the utility of barcoding and
sequencing both ends of multiplexed amplicons
in order to detect this source of errors. In the absence
of paired barcodes, removing reads that lack a
significant match to a reference database can be
implemented. Although this latter method is of
limited utility when examining novel or poorly
characterized communities.

Figure 4 iTag diversity and taxonomic representation in the
colon of house mouse. (a) The pie charts indicate the relative
abundances and taxonomic affiliation of the resultant OTUs based
on the RDP Classifier labeled according to the key. The plot shows
the numbers of OTUs after application of different abundance and
clustering thresholds on the 100% OTUs derived for the
M. domesticus WSB samples GCA–S1V6 and TCC–S2V6. (b) The
numbers of phylotypes common to the 100% OTUs predicted at
three increasingly stringent sequence abundance thresholds
(10�4, 10�3, 10�2).
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Analysis of contrived samples
To establish baseline levels of sensitivity of the iTag
approach, we performed several controls, including
the amplicons generated from a single bacterial
genome and from a defined mixture of DNA from 19
strains. In both cases, we found an excess of high-
quality, 100% phylotypes regardless of the primer
pair, Taq polymerase or sequencing run. However,
sequencing reads bearing a single mutation relative
to the two expected E. coli phylotypes, or to the 19
phylotypes from the mixture of strains, represented
2.2–8.2% of the reads. Based on these reads we
estimate a sequencing error rate of 1.3� 10�3 to
4.1� 10�4 per nucleotide (Supplementary Table 2),
which is slightly greater that the rate estimated from
errors confined to the primer regions (run1
x̄¼ 3.8� 10�4; run2 x̄¼ 6.4� 10�4). This difference
is in line with expectations as, in the Illumina
platform, error rates are known to increase with
distance from the priming site (Rodrigue et al., 2010;
Zhou et al., 2011). These errors impact taxonomic
identification using the RDP Classifier, particularly
reducing the ability to assign Order, Family and
Genus identities to the shorter S1V6 and S2V6 tags.

To account for the large number of spurious reads
in these samples, we applied strict abundance
thresholds to our samples. We came the closest to
recapitulating our expected diversity from these
samples when we applied an abundance threshold
at which all phylotypes at frequencies o1% were
removed. This cutoff is based on the total number
of high-quality reads for a given sample and more-
or-less corresponds to the 0.01% threshold applied
by Caporaso et al. (2011), whose threshold is based
on the total number of read-pairs recovered for their
entire experiment (10 000 out of 87 507 177 reads).
Application of such stringent thresholds is not
particularly satisfying, but will remain a necessary
measure until sequencing error rates are improved.

Measurements of mouse intestinal flora
Mammalian guts house a diverse array of resident
microbes and are numerically dominated by the
Firmicutes and Bacteriodetes (Ley et al., 2008). A
previous pyrosequencing effort identified 1000
bacterial phylotypes (97% OTUs) in healthy Mus
musculus individuals using the same S1V6 primers
(Antonopoulos et al., 2009); however, our sample
from a lab-reared, wild-derived inbred strain of
M. domesticus WSB yielded only 12 phylotypes
(97% OTUs) after application of the equivalent
quality and abundance filters derived from the
contrived samples (q30 and 10�2). Reducing the
stringency of the abundance threshold increased the
number of recovered iTag phylotypes, but did not
alter the taxonomic distribution of the iTags (Fig-
ure 4). (Lowering the abundance threshold from
10�2 to 10�4 yielded about 20% more iTags contain-
ing only a single-nucleotide difference relative to
the 12 high abundance OTUs.) The source of the

difference in the number of phylotypes detected in
the Mus fecal samples is unknown, and direct
comparisons between iTags and pyrotags can only
be assessed from the corresponding analyses of 16S
diversity within E. coli (Kunin et al., 2010; this
study). Therefore, we suggest the amplification and
sequencing of a control sample (for example, E. coli)
during each multiplex experiment to empirically
determine appropriate abundance thresholds and to
account for differences in sequencing error rates
between runs.

Alternative iTag implementations
Interest in leveraging the Illumina sequencing plat-
form to examine 16S rRNA gene diversity has led to
the recent development of several strategies and
observations about its implementation (Claesson
et al., 2010; Gloor et al., 2010; Caporaso et al.,
2011; Zhou et al., 2011). Until recently, the Illumina
sequence read length was limited to E100 nt. As a
result, paired-end sequencing of single, short vari-
able loops (V6) has been assembled (Gloor et al.,
2010; Zhou et al., 2011; this study), and longer
variable region(s) (255–465 bp) were artificially
merged or analyzed separately (Claesson et al.,
2010; Caporaso et al., 2011). Assembly of over-
lapping, paired-end reads results in phylotypes of
considerably better quality because it identifies and
rectifies problems that arise from the deterioration of
read quality as a function of read length (Claesson
et al., 2010; Gloor et al., 2010; Zhou et al., 2011).
But because PCR and sequencing errors persist,
application of abundance thresholds are still neces-
sary to avoid inflated estimates of species richness
(Gloor et al., 2010; Zhou et al., 2011). Moreover,
conservative estimates of error rates using contrived
DNA samples vary six-fold, from 2.4� 10�3 to
4.1� 10�4 per nucleotide (Zhou et al., 2011;
this study).

The iTag approach holds enormous promise as
means to investigate microbial diversity, but in its
current applications there are three major obstacles:
(1) contamination, (2) the utility and classification
of short read lengths, and (3) sequencing error rates.
Contamination can likely be mitigated by changes
in laboratory procedures, including use of liquid-
handling robots and sterile work environments.
Although not considered here, contamination
derived from reagents or consumables is also possi-
ble and would require alternative strategies for its
detection and elimination. Despite the prevalence of
studies using the V6 region and evidence that short
reads perform adequately for community analyses
(Liu et al., 2007), short V6 tags appear to system-
atically overestimate species richness (Youssef et al.,
2009). Current Illumina read lengths (E150 nt) will
allow the recovery and assembly of larger (V4) or
more (V6þV7) 16S variable regions that better
reflect the microbial diversity obtained when ana-
lyzing the entire 16S rRNA molecule. Additionally,
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longer read lengths will facilitate the use of addi-
tional barcodes that will allow multiplexing hun-
dreds of samples in a single run. Although the
observed error rates are of little consequence to
most genomic studies, as errors are resolved through
sequencing depth, amplicon tagging approaches
treat each unique sequence read as a novel OTU.
Until there are improvements to the Illumina
sequencing chemistry and analysis programs, erro-
neous reads will need to be filtered through the
application of abundance thresholds (Gloor et al.,
2010; Caporaso et al., 2011). The cost and capacity of
the Illumina sequencing make it the preeminent
platform for assessing microbial community diver-
sity, and we have called attention to the errors that
need to be resolved in its application and in the
interpretation of results.
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