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Abstract
A novel dual-microphone speech enhancement technique is proposed in the present paper. The
technique utilizes the coherence between the target and noise signals as a criterion for noise
reduction and can be generally applied to arrays with closely-spaced microphones, where noise
captured by the sensors is highly correlated. The proposed algorithm is simple to implement and
requires no estimation of noise statistics. In addition, it offers the capability of coping with
multiple interfering sources that might be located at different azimuths. The proposed algorithm
was evaluated with normal hearing listeners using intelligibility listening tests and compared
against a well-established beamforming algorithm. Results indicated large gains in speech
intelligibility relative to the baseline (front microphone) algorithm in both single and multiple-
noise source scenarios. The proposed algorithm was found to yield substantially higher
intelligibility than that obtained by the beamforming algorithm, particularly when multiple noise
sources or competing talker(s) were present. Objective quality evaluation of the proposed
algorithm also indicated significant quality improvement over that obtained by the beamforming
algorithm. The intelligibility and quality benefits observed with the proposed coherence-based
algorithm make it a viable candidate for hearing aid and cochlear implant devices.
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I. INTRODUCTION
ONE of the most common complaints made by hearing impaired listeners is reduced speech
intelligibility in noisy environments. In realistic listening situations, speech is often
contaminated by various types of background noise. Noise reduction algorithms for digital
hearing aids have received growing interest in recent years. Although a lot of research has
been performed in this area, a limited number of techniques have been used in commercial
devices [1], [2]. One main reason for this limitation is that while many noise reduction
techniques are performing well in the laboratory, they lose their effectiveness in everyday
life listening conditions.

Generally, three types of noise fields are investigated in multi-microphones speech
enhancement studies: (1) incoherent noise caused by the microphone circuitry, (2) coherent
noise generated by a single well-defined directional noise source and characterized by high
correlation between noise signals (3) diffuse noise, which is characterized by uncorrelated
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noise signals of equal power propagating in all directions simultaneously [3]. Performance
of speech enhancement methods is strongly dependent on the characteristics of the
environmental noise they are tested in. Hence, the performance of methods such as [4], [5]
that work well in the diffuse field, starts to degrade when tested in coherent noise fields.

Traditionally, only one microphone is used in speech enhancement systems [6]. Recently,
microphone array-based speech enhancement techniques have been widely accepted as a
promising solution for noise suppression. Generally, by increasing the number of
microphones in a speech enhancement system, placed in a noisy environment, further noise
reduction is expected. But, the design of a microphone array for hearing aids faces serious
difficulties in terms of size, weight and power consumption. Therefore, dual microphone
speech enhancement systems can be considered as a trade-off. In the following, we present a
brief overview of some of the dual-microphone speech enhancement techniques proposed in
the literature.

Beamforming is one of the most well-known algorithms in this area. Fixed beamformers are
designed to concentrate the array to the target sound source by combining the delayed and
weighted versions of the input signal in each microphone. Two most common fixed
beamformers presented in the literature are the delay-and-sum and superdirective
beamformers [7]. Fixed beamformers utilize only information about the direction of the
desired signal, however, adaptive beamformers also use the properties of captured signals by
the array to further reject unwanted signals from other directions. An attractive realization of
adaptive beamformers is the generalized sidelobe canceller (GSC) structure [8]. In [9]–[12]
several variations of GSC have been investigated. The extension of GSC, suggested in [10]
was called a two-stage adaptive beamformer. In studies carried out in [13], [14] an average
speech reception threshold (SRT) (the signal-to-noise ratio at which 50% of the target
speech is intelligible) improvement of 7-8 dB was achieved using this technique, with a
single noise source at 90°, for both normal hearing listeners and cochlear implant (CI)
patients. Although this extension of GSC outperforms the use of fixed directional
microphones in scenarios with one simple jammer, in more complex scenarios its
performance degrades significantly [2], [12]. Adaptive beamformers are very effective in
suppressing coherent noise. The authors in [15] have shown that the noise reduction
performance of GSC theoretically reaches infinity for coherent noises. In [16], an extension
of beamforming with post-filtering, which gives beamformers the ability of suppressing
noises that are uncorrelated has been investigated. Due to the small microphone spacing in
hearing aids, noise signals captured by the microphones are highly correlated, and therefore
GSC-based algorithms are preferred in these applications.

Over the past two decades, a few microphone array-based noise reduction algorithms have
been applied to commercial CIs and hearing aids. In 1997, the Audallion BEAMformer™
was marketed by Cochlear Ltd. for the Nucleus 22-channel CI system. This beamformer
uses two directional microphones, one at each ear, and based on the differences in amplitude
and phase of the received signals, decides whether input signals come from front (desired
range) or back (undesired range) hemisphere. This bilateral noise reduction system was
tested in a mildly reverberant environment and showed an average SRT improvement of 2.5
dB over a fixed beamformer, but no improvement was reported in highly reverberant
conditions [17]. In 2005, the beamformer suggested in [18] was implemented in the behind
the ear (BTE) speech processor used in Cochlear's Nucleus Freedom CI system. This
monaural adaptive beamformer is referred as BEAM™, and has been extensively evaluated
in [2]. It has been shown in [2] that BEAM can yield substantial improvements in speech
intelligibility for cochlear implant users, when a single interfering source is present.
However, the presence of multiple noise sources reduces the overall performance of the
BEAM considerably.
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Another distinguished class of microphone array speech enhancement techniques are the
coherence-based algorithms. The idea of using coherence function for speech enhancement
was first proposed in [19]. The premise behind coherence-based techniques is that the
speech signals in the two channels are correlated, while the noise signals are uncorrelated.
Indeed, if the magnitude of the coherence function between the noisy signals at the two
channels is one (or close to one), the speech signal is predominant and thus should be passed
without attenuation, and if the magnitude is close to zero speech is absent, and thus the input
signals should be suppressed. The main drawback of coherence-based methods is their
weakness in suppressing coherent noise. In this case, noise signals at the two channels
become highly correlated and will pass (with no attenuation) through the filter. In [20] the
authors have suggested modifications to the coherence filter to address this issue. When
dealing with correlated noise, this method estimates the cross-power spectral density (CSD)
of noise signals in the two microphones and includes this parameter in the coherence filter.
The fluctuations in the filter estimates introduce a high variance in the filter value, which in
turn introduces musical noise in the output [21].

In this paper, we introduce a new coherence-based technique capable of dealing with
coherent noise and applicable for hearing aids and cochlear implant devices. Similar to other
studies in this area, we assume that the noise and target speech signals are spatially
separated. The target speech signal originates from the front (0°), while noise source(s) can
be placed at either the right or left hemispheres. In [22], we proposed a dual-microphone
speech enhancement technique, which is based on the magnitude of coherence between
input signals. The technique has the ability of suppressing coherent noise, emanating from a
single interfering source. We tested the method with a single noise source at 90°, and
obtained promising results in terms of speech intelligibility. This work generalizes that
technique and is tested in more complex noise scenarios.

II. PROPOSED COHERENCE-BASED ALGORITHM
In this section, we start with a theoretical description of the coherence function and show
how this function can be used as a criterion for noise reduction. Following that, the proposed
coherence-based method is described in detail.

A. Definition of Coherence Function
The coherence takes values between zero and one and is an indicator of how well two
signals correlate to each other at a particular frequency. Let us assume two microphones
placed in a noisy environment in which the noise and target speech signals are spatially
separated. In this case, the noisy speech signals, after delay compensation, can be defined as

(1)

where i denotes the microphone index, m is the the sample-index and xi(m) and ni(m)
represent the (clean) speech and noise components in each microphone, respectively. After
applying a short-time discrete Fourier transform (DFT) on both sides of (1), it can be
expressed in the frequency domain as

(2)

where k is the frame index, ωl = 2πl/L and l = 0, 1, 2, ..., L − 1, where L is the frame length
in samples. In the following equations we omit the subscript l for better clarity and call ω the
angular frequency. In this paper, we consider the angular frequency in the range of [−π, π)
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rather than [0, 2π). The complex coherence function between the two input signals is defined
as

(3)

where Φuv(ω, k) denotes the cross-power spectral density (CSD) defined as Φuv(ω, k) =
E[U(ω, k)V*(ω, k)], and Φuu(ω, k) denotes power spectral density (PSD) defined as Φuu(ω,
k) = E[|U(ω, k)|2]. The magnitude of the coherence function has been used in several studies
as an objective metric to determine whether the target speech signal is present or absent at a
specific frequency bin [19]–[21], [23]. The idea is that when the magnitude is close to one,
the speech signal is present and dominant and when it is close to zero, the interfering signal
is dominant. It should be noted that this assumption is typically valid for near-field sound
sources in a diffuse noise field, where noise signals are not strongly correlated at the two
channels. In general, decreasing the distance between two microphones increases the
correlation of noise signals received by the microphones. In this case, even in a diffuse noise
filed, noise signals become highly correlated especially at lower frequencies [24]. In a
diffuse noise field, the coherence function is real-valued and can be analytically modeled by:

(4)

where sinc γ = (sin γ)/γ, fs is the sampling frequency, c ≃ 340 m/s the speed of sound and d
the microphone spacing. Clearly, by decreasing inter-microphone distance, the correlation
increases, i.e, Γu1u2 (ω) → 1.

Before we start describing the proposed coherence-based method, we should point out that a
coherent noise field is generated from a single well-defined directional sound source and in
our case the omnidirectional microphones outputs are perfectly coherent except for a time
delay. Fig. 1 depicts the configuration of two omnidirectional microphones with 20 mm
inter-microphone distance on a dummy head. The target speech source is at 0° azimuth and a
single noise source is placed at θ. Both sources are at a distance of 1.2 m from the
microphones. In this case, the coherence function of the two input signals is obtained by
[24]:

(5)

where θ is the angle of incidence. It should be pointed out that for our hearing aid
application at hand, where the distance between the two microphones is fairly small (~ 20
mm), the aforementioned class of coherence-based algorithms [19]–[21], [23] are not
suitable for suppressing coherent noise.

B. Proposed Method Based on Coherence Function
We first show that the coherence function between noisy signals in the two microphones can
be computed from those of clean speech and noise signals. Assuming that the noise and
speech components are uncorrelated, the CSD of the input signals, can be written as

(6)
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After dividing both sides of the last equation by  and omitting the ω and k
indices for sake of clarity, we obtain:

(7)

Using the fact that the PSD of input signal in each channel is equal to sum of the PSDs of
speech and noise signals on that channel, we can rewrite the last equation as follows:

(8)

Now let SNRi be the true local signal-to-noise ratio at the i-th channel, i.e.,

(9)

Substituting the above expression in (8), the following equation is obtained

(10)

Assuming the small microphone spacing in our application, we can suppose that the local
SNR values at the two channels are nearly identical, such that SNR1 ≃ SNR2. Therefore, the
last equation can be modified as follows

(11)

where SN ̂R is a an approximation to both SNR1 and SNR2. Clearly, at higher SNR values
the coherence of the noisy signals is affected primarily by the coherence of the speech
signals, while at lower SNR values it is affected by the coherence of the noise signals. Based
on the configuration shown in Fig. 1 and after applying (5) the last equation can be rewritten
as follows:

(12)

where τ = fs (d/c). To verify the validity of the above equation, Fig. 2 shows a comparison
between the coherence function of the noisy signals computed by (3) (true coherence), and
the prediction (approximation) obtained using (12). For this comparison, we assume that we
know the true SNR at the front microphone. Coherence values are shown in Fig. 2 for a
sentence (produced by a male speaker) corrupted by speech-weighted noise. As it is evident
from the figure, the predicted coherence values (magnitude and phase) follow the true
coherence values quite well. To quantify the errors in the approximation of the magnitude of
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the coherence function, we used the reconstruction SNR measure [25], commonly employed
in waveform coder applications to assess how close is the reconstructed waveform
(following quantization) from the true input waveform. The reconstruction SNR measure,
denoted as SNR∊, assesses the normalized distance between the true and predicted
magnitudes of the coherence and is defined as follows:

(13)

Higher values of the SNR∊ measure indicate higher accuracy of the approximation
(prediction). To quantify the errors in the prediction of the phase of true coherence, we used
a phase distortion measure [26], defined, at frequency ω, as follows:

(14)

where  is the phase operator and the expected value is taken over all frames. Small
values of DM indicate better approximation. Table I shows results of the above measures
averaged over 10 sentences. For this evaluation, speech-weighted noise was used at 75°. As
can be seen, Eq. (12) provides a good estimate (prediction) of the true coherence values, at
least for the low frequencies (f < 4 kHz).

Next, we introduce the proposed suppression filter (gain function). We start by describing
scenarios in which the noise source is located in the listener's right hemisphere (i.e. θ ≤ 180).
The overall filter consists of two different filters, each designed to operate within a defined
range of θ values. One filter is used for suppressing the interfering signals coming from the
vicinity of 90°, and the other for dealing with situations, where 90° < θ ≤ 180°. It should be
noted here that we do not make any assumptions about the position of the noise source being
in the right hemisphere and we tackle the problem in its general form.

1) θ = 90°: Using (5), the coherence of the noise signals in this case is real-valued and equal
to 1, since cos 90° = 0. Therefore, based on (12), the coherence function of the noisy signals
has an imaginary part only when the speech signal is present. This fact suggests the use of a
suppression function, which at low SNR levels (where the coherence of the noisy signals is
affected primarily by the coherence of the noise - see (11)) attenuates frequency components
whose real part of the coherence function is close to 1, while allowing for the remaining
frequency components (dominated presumably by the target speech) to pass. It should be
pointed that in low frequencies, even when speech is present, the imaginary part of the
coherence function is very close to zero, since sin (ωτ) is very small. Based on this
discussion, we propose the following filter for suppressing the noise signals emanating from
around 90°

(15)

where  is the real part operator and P(ω) is defined in two frequency bands as

(16)
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where αlow and αhigh are two positive integer constants such that αlow > αhigh > 1. Assuming
a sampling rate of 16 kHz, the threshold (π/8) in the last equation corresponds to 1 kHz,
below which much of the energy in the speech spectrum is concentrated (see [27]). Within
this range of frequencies, ω τ attains a value close to zero and therefore cos (ωτ) is close to

one. Assuming high SNR in (12), we have . In this scenario, there exists
the risk of speech attenuation in the lower frequencies since G1(ω, k) ≈ 0 , but by raising

 to the power of αlow in (15), the risk can be reduced. In fact, with the above setting
of P(ω), the filter attenuates the lower frequency components, only when the real part of the
coherence function is extremely close to one.

2) 90° < θ ≤ 180°: The following equation can easily be derived from (12):

(17)

where  is the imaginary part operator. It is clear from the above equation that when SN̂R

→ 0 (−∞ dB), . When the noise source is located between 90° and
180°, sin (ω τ cos θ) is always negative. This conclusion is based on the assumptions that the
angular frequency lies in the positive frequency range (ω < π), d is about or less than 20
mm, fs is at least 16 kHz, and therefore τ is a constant (less than 1). Hence, at frequency
components where the noise is dominant, the likelihood that the imaginary part of the
coherence function is less than zero increases. For example, let us assume θ = 180°. Letting

 in the last equation leads to SN̂R < 1 (0 dB), suggesting that the noise dominates
the target signal. This example reveals that when the noise source is at 180° and the SNR is
lower than 1, the imaginary part of the coherence function between the input signals is

negative. When θ = 90°, in order to satisfy the condition , we require that SN̂R
< 0 , which is not possible since both PSDs of speech and noise signals are always positive.

By designing a filter, which attenuates the frequency components having the imaginary part
less than zero, we can suppress a significant amount of noise. However, zero is a strict
threshold and we may obtain a very aggressive filter. Instead, non-zero thresholds are used
in two frequency bands as follows

(18)

where βlow and βhigh are two negative constants such that βlow > βhigh > −1. Consequently,
the filter is defined as

(19)

where μ is a small positive spectral flooring constant close to zero. By decreasing the value
of μ we can increase the level of noise reduction at the expense of imposing extra speech
distortion to the output. By setting μ = 0, we may introduce spurious peaks in the spectrum
of the enhanced signals and subsequently musical noise in the output. For that reason, a
small positive constant was chosen for μ. In (18), the threshold for lower frequencies is set
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closer to zero in comparison to the threshold for higher frequencies, since sin(ω τ cos θ) has
a very small value at the lower frequencies. In this way, we prevent G2 from becoming
aggressive in the lower frequencies.

3) Final Filter: Following the above discussion, the final filter proposed in this work is
defined as follows:

(20)

From the definition of G2 in (19) and the discussion given earlier about the thresholds for
SN ̂R when 90° < θ ≤ 180°, it can be concluded that G2 takes value 1, when the noise is
located at about 90°. Furthermore, when the noise source is not at 90°, the real part of the
coherence function can not be very close to 1, since the coherence function of noise signals
has an imaginary part. Therefore, in this condition G1 ≈ 1. We can thus say that the two
filters G1 and G2 operate to some extent independent of one another, yet cover all possible
angles. For instance, when the filter G1 is active (i.e., θ ≈ 90°), G2 ≈ 1 and therefore does
not influence the overall (composite) suppression imparted by G(ω, k) in (20). Similarly,
when the filter G2 is active (i.e., 90° < θ ≤ 180°), G1 ≈ 1 and therefore does not influence
the overall suppression.

One major advantage of our algorithm is that, in contrast to many other methods proposed in
the area of speech enhancement, it does not require estimation of the noise statistics to
compute the gain function. In general, noise estimation is a challenging task particularly in
adverse environments with low SNR and highly non-stationary noise sources. Inaccurate
noise estimation can have a significant effect on the performance of speech enhancement
algorithms. Noise underestimation leads to unnatural residual noise in the output, while
noise overestimation can produce speech distortions [28]. As we will see in the next section,
our proposed method performs well at low SNR with highly non-stationary background
noise (e.g, multi-talker babble), since the filter does not rely on noise statistics or estimates.

In the above discussion, we assumed that the noise source is always on the right side of the
listener. We can easily expand the theory to situations in which the source is on the left side.
In this case, the filter G1 is used to suppress the noise signals coming from around 270°,
since similar to signals coming from 90° the coherence of noise signals has no imaginary
part (i.e., purely real). Furthermore, using the symmetric properties of cos, the explanation
given for 90° < θ ≤ 180° can be applied to 180° < θ < 270° as well. Hence, G2 is also
capable of suppressing interfering signals originating from this range of azimuth angles. So
far, we have considered (and assumed) that only one noise source is present in the
environment. However, we can easily generalize the above discussion to scenarios where
more noise sources are present in different azimuths. In the next section, we show that the
proposed method performs well in those situations as well.

C. Implementation
In this subsection, we provide the implementation details of the proposed coherence-based
method. The signals picked up by the two microphones are first processed in 20 ms frames
with a Hanning window and a 75% overlap between successive frames. After computing the
short-time Fourier transform of the two signals, the PSDs and CSD are computed based on
the following two first order recursive equations

(21)
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(22)

where (·)* denotes the complex conjugate operator and is a forgetting factor, set between 0
and 1. A more thorough discussion on optimal settings of this parameter can be found in
[21]. These estimates of power spectral densities are used in (3), to compute the coherence
function. We should mention that there exist other methods for computing the coherence
function such as [29], [30]. The suppression function defined in (20) is applied to Y1(ω, k),
corresponding to the Fourier transform of the input signal captured by the front microphone.
To reconstruct the enhanced signal in the time-domain, we apply an inverse FFT and
synthesize the signal using the overlap-add (OLA) method. Fig. 3 summarizes this
procedure in a block diagram. The complete list of parameters used in this work is given in
Table II. Although we have optimized the parameter values for our testing, we found that it
is not necessary to change these values when changing the system configuration.

III. EXPERIMENTAL RESULTS
This section is devoted to the evaluation of the proposed technique. To assess the
performance of the method, results of both listening tests and objective quality
measurements are provided.

A. Test Materials and Subjects
Sentences taken from the IEEE database corpus [31] (designed for assessment of
intelligibility) were used. These sentences (approximately 7-12 words) are phonetically
balanced with relatively low word-context predictability. The root-mean-square amplitude
of sentences in the database was equalized to the same root-mean-square value, which was
approximately 65 dBA. The sentences were originally recorded at a sampling rate of 25 kHz
and downsampled to 16 kHz. These recordings are available from [6]. Three types of noise
(speech-weighted, multi-talker babble and factory) were used as maskers. The speech-
weighted noise used, was adjusted to match the average long-term spectrum of the speech
materials. The babble and factory noises were taken from the NOISEX database [32].

Ten normal hearing listeners, all native speakers of American English, participated in the
listening tests. Their age ranged from 18 to 31 years (mean of 23 years). The listening tests
were conducted in a double-walled sound-proof booth via Sennheiser HD 485 headphones at
a comfortable level. All subjects were paid for their participation.

B. Methods and Noise Scenarios
The noisy stimuli captured at the two microphones were generated by convolving the target
and noise sources with a set of HRTFs measured inside a mildly reverberant room ( T60 ≃
220 ms) with dimensions 4.3 × 3.8 × 2.3 m3 (length × width × height). The HRTFs were
measured using identical microphones to those used in modern hearing aids. The noisy
sentence stimuli were processed using the following conditions: (1) the front
omnidirectional microphone, (2) an adaptive beamformer algorithm and (3) the proposed
coherence-based algorithm. The performance obtained with the use of the omnidirectional
microphone alone will be used as a baseline to assess relative improvements in performance
when no processing is taking place. In the following paragraph, we describe the adaptive
beamformer algorithm used in this work.

The two-stage adaptive beamformer is an extension of the GSC technique introduced in
[10]. In that paper, a 5 dB improvement in SRT was reported between a hardware directional
microphone and this beamformer. This technique includes two stages (spatial preprocessor
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and adaptive noise canceler), where each stage consists of an adaptive filter. The first filter
was adapted only during speech-and-noise periods and was used to track the direction of the
target signal. The second filter, similar to the adaptive filter used in conventional GSC, was
updated with the normalized least-mean-square algorithm [33] to minimize the power of the
output error. The authors in [11] modified the algorithm by replacing the first adaptive filter
with a fixed FIR filter. In fact, this FIR filter offers a trade-off solution between the first
adaptive filter in [9] and the fixed beamformer of the GSC [34]. The filter coefficients are
determined and optimized for each hearing aid, assuming the target signal comes from 0° in
an anechoic environment, in a way that the energy of the noise reference signal is
minimized. Clearly, this is not a straightforward procedure, so we replaced the filter with a
two-tap FIR filter, whose coefficients were optimized based on our experimental
observations. Fig. 4 shows the block diagram of this technique. As it is apparent from the
figure, before feeding the input signals into the first stage, a software directional microphone
is created by using a fixed beamformer technique. The software microphone parameter is
δ(ω) = a e−jωΔ0, and in this work we set a and Δ0 so as to give the microphone a cardioid
directional pattern in anechoic conditions (null at 180°). Based on the configuration of the
microphones, this can be done by providing one sample delay to the input signal of the rear
microphone. A thorough discussion on creating a software directional microphone by two
omnidirectional microphones can be found in [35]. In our implementation the adaptive filter
has 64 taps, Δ1 and Δ2 are additional delays set to half of the size of the filters.

The test was carried out in seven different noise scenarios. In four of them, a single noise
source generating speech-weighted noise was placed at either 75° ,90°, 120° or 180°. In the
two noise scenarios, we consider two noise sources, one at 90°/180° and one at 75°/120°.
The noise source at the lower azimuth angle generated speech-weighted noise and the other
source generated multi-talker babble. The last scenario consists of three noise sources at 60°/
90°/120°, with speech-weighted, babble and factory noises at the three sources respectively.
The use of multi-talker babble as a point noise source is admittedly not realistic, but it has
been used extensively in the speech enhancement literature focused on hearing-aid
applications [2], [12]. Multi-talker babble is used in our study to assess the algorithm's
performance in highly non-stationary environments.

C. Intelligibility Evaluation
For the listening test, two IEEE lists (20 sentences) were used for each condition. In the
single-noise source scenarios, algorithms were tested at two SNR levels (-5 dB and 0 dB).
We did not test the methods at SNRs above 0 dB as we were constrained by ceiling effects
(e.g., performance near 100% correct). However, informal listening tests showed that our
method does not distort the speech signals at high SNR levels. Testing involved a total of 24
different listening conditions (3 algorithms × 2 SNR levels × 4 noise scenarios). The mean
intelligibility scores of single noise scenarios, obtained as the percentage of total number of
words identified correctly, are shown in Fig. 5. A substantial improvement in intelligibility
was obtained with the proposed coherence-based algorithm relative to the baseline (front
microphone) in all conditions. The beamformer implemented in this work has a null at 180°,
and therefore shows expected performance improvement as the noise source gets closer to
this azimuth angle. However, in other conditions the scores of coherence-based method are
always higher than those of the beamformer.

In the multiple-noise sources scenarios, algorithms were tested only at 0 dB. In total, 9
different listening conditions (3 algorithms × 1 SNR level × 3 noise scenarios) were tested.
The mean intelligibility scores of these scenarios are shown in Fig. 6. As it is clear from the
figure, the coherence-based technique performed favorably in these scenarios. In contrast,
the results of the beamformer were inferior. This low performance is due to the fact that we
have replaced the optimum fixed FIR filter proposed in [11] by a two-tap fixed filter that
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was manually optimized. However, the decrease in the scores of this beamformer technique
in multiple-noise sources scenarios relative to those of single-noise scenarios is not
surprising and has been reported in [2], [12], [36], [37] as well. In [37], a 2.5 dB and 5 dB
decrease in speech-intelligibility weighted SNR (as defined in [38]) was reported after
processing with an adaptive beamformer when multiple noise sources were present, and T60
was equal to 210 ms and 610 ms, respectively.

In this study, we tested our method inside a mildly reverberant environment (T60 = 220 ms).
Generally, in more reverberant conditions, the noise signals captured by the sensors will be
less correlated. In such scenarios, the environmental noise can be modeled by a diffuse noise
field rather than a coherent noise field. Considering a small microphone spacing, we can still
assume that the noise signals captured by the two microphones are highly correlated for a
wide range of frequencies. The impact of microphone spacing on the coherence function of
noisy signals in a diffuse noise filed was reported in [24]. In reverberant conditions, our
method will lose its ability to suppress the noise components that are not highly correlated.
This problem can be resolved, however, by passing the output of our algorithm through a
post-filter, such as a Wiener filter, and this warrants further investigation. Post-filtering
techniques have been investigated in [16] for dealing with uncorrelated noise components
that can not be easily suppressed by beamformers. A thorough review of post-filtering
techniques that can be used with beamformers can be found in [39].

Another limitation of the proposed method, along with other methods, is that for θ < 90° the
performance, in terms of noise suppression and intelligibility, starts to degrade as the masker
gets closer to the target source. This is to be expected, since the proposed filer has no effect
on the noise signals coming from an angle close to zero. In our experiments, we found that
the method offers no benefit over the baseline condition (no processing) for θ < 45°. This
limitation is also present in beamformers. In [11], for example, the improvement with the
beamformer over that obtained with the front omindirectional microphone was less than 1
dB when the noise source was located at an angle less than 45°.

D. Speech Quality Evaluation
In this subsection we assess the performance of the various methods in terms of quality. This
evaluation is done using an objective quality measure, and in particular, the Perceptual
Evaluation of Speech Quality (PESQ) measure [40]. PESQ scores model mean opinion
scores (MOS) and range from -0.5 (bad) to 4.5 (excellent). A high correlation between the
results of subjective listening tests and PESQ scores was reported in [41] [42]. Figures 7 and
8 show the PESQ scores for the single and multiple interference scenarios, respectively.
Clearly, the coherence-based method outperforms the beamformer in all noise
configurations. The proposed method yielded an average improvement of 0.7 relative to the
scores obtained using the front-microphone signals.

As mentioned earlier, our technique does not require estimation of the noise statistics to
compute the gain function. This gives the proposed method the advantage in coping with
highly non-stationary noise including competing talkers. Further tests indicated that our
algorithm was performing well even in competing-talker situations. In these tests, sentences
produced by a different speaker (female speaker) were used as maskers. Table III shows the
PESQ scores obtained by the proposed method and the beamformer in six different test
conditions involving competing talkers. As can be seen, the proposed method outperformed
the beamformer in all conditions. Performance obtained in the baseline OMNI condition was
comparable, and in some cases, slightly better, than performance obtained with the
beamformer. The reason the beamformer did not provide any benefit over the baseline
(OMNI) condition is because it relies on VAD decisions. When speech is detected,
adaptation is turned off (frozen) to prevent from suppressing the target speech signal. Hence,
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when the VAD detects speech presence (including that of the competing talker's), no
suppression is applied to the input signals.

E. Spectrograms
Speech spectrograms are a useful tool for observing the structure of the residual noise and
speech distortion in the outputs of speech enhancement algorithms. Example spectrograms
of clean and noisy speech and also those of the outputs of the beamformer and coherence-
based methods are presented in Fig. 9 and Fig. 10 for speech embedded in speech-weighted
noise and competing-talkers respectively. The figures shows that the background noise is
suppressed to a greater degree with the proposed method than with the beamformer. This
was done without introducing much distortion in the speech signal. The superiority of the
proposed method over the beamformer is more apparent by comparing the spectrograms at
low frequencies, where our method manages to recover the target speech signal components
more accurately. These evaluations suggest that speech enhanced with our method will be
more pleasant to human listeners than speech processed by the beamformer. This outcome is
in agreement with the improvement in speech quality shown in Figures 7 and 8 and Table
III.

IV. CONCLUSIONS
The proposed dual-microphone algorithm utilizes the coherence function between the input
signals and yields a filter, whose coefficients are computed based on the real and imaginary
parts of the coherence function. The proposed algorithm makes no assumptions about the
placement of the noise sources and addresses the problem in its general form. The suggested
technique was tested in a dual microphone application (e.g., hearing aids) wherein a small
microphone spacing exists. Intelligibility listening tests were carried out using normal-
hearing listeners, who were presented with speech processed by the proposed algorithm and
speech processed by a conventional beamforming algorithm. Results indicated large gains in
speech intelligibly and speech quality in both single and multiple-noise source scenarios
relative to the baseline (front microphone) condition in all target-noise configurations. The
proposed algorithm was also found to yield substantially higher intelligibility and quality
than that obtained by the beamformer, particularly in multiple noise-source scenarios and
competing talkers. The simplicity of the implementation and intelligibility benefits make
this method a potential candidate for future use in commercial hearing aids and cochlear
implant devices.
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Fig. 1.
Placement of the two omnidirectional microphones and sound sources.
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Fig. 2.
Comparison between the true coherence of the noisy signals and its predicted values, based
on (12), of the magnitude (left) and phase (right) at 1000 Hz. The noise source is located at
75° azimuth and SNR = 0 dB (speech-weighted noise).
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Fig. 3.
Block diagram of the proposed two-microphone speech enhancement technique.
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Fig. 4.
Block diagram of the two-microphone adaptive beamformer used for comparative purposes.
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Fig. 5.
Mean percent word recognition scores for ten normal-hearing listeners tested on IEEE
sentences in single-noise source scenarios. Error bars indicate standard deviations.
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Fig. 6.
Mean percent word recognition scores for ten normal-hearing listeners tested on IEEE
sentences in multiple-noise sources scenarios (SNR = 0 dB). Error bars indicate standard
deviations.
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Fig. 7.
PESQ scores obtained in single-noise source scenarios.
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Fig. 8.
PESQ scores obtained in multiple-noise sources scenarios (SNR = 0 dB).
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Fig. 9.
Spectrograms of the clean speech signal (top left) and noisy signal (top right) captured by
the front OMNI microphone. Speech is degraded by speech-weighted noise (SNR=0 dB)
located at 90° azimuth. Bottom left panel shows enhanced signal by the beamformer and
bottom right panel shows enhanced signal by the proposed coherence-based algorithm. The
IEEE sentence was “To reach the end he needs much courage” uttered by a male speaker.
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Fig. 10.
Spectrograms of the clean speech signal (top left) and noisy signal (top right) captured by
the front OMNI microphone. Speech is degraded by interfering speech (SNR=0 dB) located
at 120° azimuth. Bottom left panel shows enhanced signal by the beamformer and bottom
right panel shows enhanced signal by the proposed coherence-based algorithm. The IEEE
sentence was “A cloud of dust stung his tender eyes” uttered by a male speaker.
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TABLE I

Quantification of the predictions of the magnitude and phase coherence function based on the measures
defined in (13) and (14). Results are averaged for 10 sentences and mean and standard deviations of the
measures are given (mean (SD)).

Frequency Input SNR Magnitude Measure SNRε (dB) Phase Measure DM (Radians)

500Hz 0 dB 33.99 (2.84) 0.01 (0.00)

1kHz 0 dB 23.29 (1.55) 0.04 (0.01)

2kHz 0 dB 17.29 (1.47) 0.07 (0.01)

4kHz 0 dB 10.27 (1.19) 0.35 (0.03)

500Hz 5 dB 33.13 (1.98) 0.01 (0.00)

1kHz 5 dB 22.71 (1.84) 0.04 (0.01)

2kHz 5 dB 15.83 (1.10) 0.07 (0.01)

4kHz 5 dB 8.16 (1.02) 0.42 (0.03)
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TABLE II

Parameter values used in the implementation of the coherence algorithm.

Parameter Value Equation

α low 16 (16)

α high 2 (16)

β low -0.1 (18)

β high -0.3 (18)

μ 0.05 (19)

λ 0.6 (21)-(22)
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TABLE III

PESQ scores obtained by the various methods in competing-talker conditions.

Angle SNR OMNI Beamformer Coherence

90° -5 dB 1.23 1.19 2.34

180° -5 dB 1.47 1.49 2.25

(90°, 180°) -5 dB 1.17 1.20 1.82

90° 0 dB 1.62 1.31 2.62

180° 0 dB 1.84 1.60 2.54

(90°, 180°) 0 dB 1.43 1.38 2.15
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