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Abstract
Nonlinear partial differential equation (PDE) models are established approaches for image/signal
processing, data analysis and surface construction. Most previous geometric PDEs are utilized as
low-pass filters which give rise to image trend information. In an earlier work, we introduced
mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are
able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their
tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called
a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into
trends, edges, textures, noise etc., which can be further utilized in the secondary processing for
various purposes. This work introduces the variational formulation, performs the Fourier analysis,
and conducts biomedical and biological applications of the proposed PDE transform. The
variational formulation offers an algorithm to incorporate two image functions and two sets of
low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different
signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image
functions, is introduced to reduce the disparity of two energy components. We construct
variational PDE transforms by using Euler-Lagrange equation and artificial time propagation.
Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of
high order PDE transforms. Such an analysis also offers insight on the parameter selection of the
PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark
tests. In one selected challenging example, we illustrate the ability of PDE transform to separate
two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s
controllable frequency localization obtained by adjusting the order of PDEs. The frequency
selection is achieved either by diffusion coefficients or by propagation time. Finally, we explore a
large number of practical applications to further demonstrate the utility of proposed PDE
transform.
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I Introduction
Processing and analysis of signal, sound, data, image, surface or video frame have been an
important issue in a general category of subjects, including computer vision, face
recognition, feature detection, medical diagnosis, remote sensing, machine vision, and
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artificial intelligence.13,20,47,51 Signal, image, surface and data processing are realized via a
family of operations and algorithms, such as filtering, smoothing, denoising (or deblurring),
enhancement, segmentation, reconstruction, pattern recognition, surface analysis and
construction. The advance in signal, image, surface and data analysis also benefits many
related fields, such as optical sorting, automatic control, augmented reality, robotics, sonar,
radar, communication, navigation, biomolecular modeling and a variety of imaging
modalities. There are a variety of algorithms for signal, image, surface and data processing.
The essential idea is the use of filters, such as linear, nonlinear, active, passive, low-pass,
high-pass, Fourier, wavelet, Chebyshev, Gaussian, Kalman, Wiener and conjugate
filters.27,52,53,69 Decomposition of the original signal, image, surface and data into various
modes according to their mathematical features and frequency distributions is a key
procedure in all the aforementioned applications. Usually, the subsequent analysis, also
called secondary processing, on individual mode components enables us to achieve our goal
of signal, image, surface and data analysis. Therefore, mode decomposition is a fundamental
process in information processing and data analysis.

Fourier or spectral analysis is a classical technique for mode decomposition and remains to
be a powerful tool in signal, image and data processing.13,36,42,51,55 However, Fourier
analysis is not suitable for studying data of non-stationary nature, and it may be difficult to
choose a suitable window size to satisfy the conflicting requirements of localizing an event
in time and resolving its frequency distribution. Moreover, the method is not data adaptive.
In many applications in signal processing, one usually desires the information of detailed
position and momentum relation, which is also lack in Fourier spectral analysis. Besides,
Fourier analysis is less ideal for applications in image processing when localized visual
features like edges need to be detected. Most importantly, when the signal or image involves
abundantly many modes, the subsequent analysis or secondary processing becomes
awkward if it is not fully automatic.

Wavelet transform is another popular technique for mode decomposition and shows a great
power in analyzing unsteady and non-stationary data.13,17,20,28,33,39,40,51,60 The
fundamental idea behind wavelet filters is to analyze data according to their scales. In this
sense, wavelets realize the locality by resorting to localized multiscale bases, which are
usually more appropriate than sines and cosines in the Fourier basis, and decomposing
signal into various sub-bands. Since individual wavelet functions can be localized in space
while Fourier sine and cosine functions are not, many functions become “sparse” in wavelet
bases. By dilation and translation, wavelet transform usually yields much fewer number of
non-trivial sub-bands than the number of Fourier modes, and thus results in many useful
applications such as data compression, detecting features in images, and removing noise
from time series. Wavelet methods thus provide an efficient approach for image mode
decomposition and secondary processing. Most modes separated by wavelet transform are
usually closely related to the edge information or global feature of the whole image.
Therefore, wavelets are efficient for image compression. Overall, the wavelet methods are
more adaptive than Fourier analysis. However, wavelet analysis is basically a linear analysis
and suffers from many limitations. The down sides include uniformly poor resolution,
sometimes counter-intuitive interpretation, and non-data adaptive nature as the same wavelet
basis is used to analyze all the data.30 Moreover, wavelet methods inherit many drawbacks
of the Fourier analysis since many commonly used wavelets were originated from Fourier
analysis.

Witkin introduced the diffusion equation for image denoising in 1983.63 The central idea is
that the evolution of an image under a diffusion operator is formally equivalent to the
standard Gaussian low-pass filter, which is commonly used for image denoising. In 1990,
Perona and Malik proposed an anisotropic diffusion equation44 which is able to remove
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noise without smearing the image edges too much. In the anisotropic diffusion equation, the
diffusion coefficient is replaced by a function of image gradients such that the diffusion
coefficient is small at the image edges.11,44,50,59,61 Therefore, the Perona-Malik equation is
nonlinear. Despite of better image edge protection, the nonlinear anisotropic diffusion
operator may break down when the gradient generated by noise is comparable to image
edges and features.8,41 Application of a pre-convolution with a smoothing function to the
image can practically alleviate the instability and reduce grey scale oscillation, but the image
quality is often degraded. One alternative solution introduced by Wei59 is to statistically
discriminate noise from image edges by a measure based on the local statistical variance of
the image. Such a local statistical variance based edge-stopping algorithm works very well
for image restoration. An advantage of this anisotropic diffusion approach is that geometric
properties, such as curvature, can be easily embedded in partial differential equation (PDE)
operators to achieve desirable effects in image and surface. The level set method devised by
Osher and Sethian is a typical example of using the mean curvature flow for image43,46,48

and surface analysis.3 For this reason, this class of nonlinear evolution equations is also
called geometric PDEs or geometric flows. Mathematically, the study of geometric PDEs
has enormous impact on geometry analysis, manifold theory, topology, geometric measure
theory, and certainly PDEs. In the past two decades, PDE based image processing
approaches have raised a strong interest in the mathematical community and have opened
new approaches for image de-noising, enhancement, edge detection, restoration,
segmentation, etc.1,3,4,7,25,32,35,45,47,49,64 Recently, geometric PDEs have been utilized as a
means for the molecular surface construction of macromolecules3 and the multiscale
modeling of nano-bio systems.15,16,58

Variational method is a most powerful mathematical tool. Total variation based edge-
preserving image restoration models were pioneered by Rudin, Osher, and Fatemi.46 The
variational PDE technique has been widely used in numerous applications such as image
segmentation,6,12,67 restoration,46 compression,19 and image inpainting.10 The growing
impact of variational PDE techniques in image processing is mainly due to their capability
of controlling the geometrical features of images and data. The essential idea is that signals
and images with extra and possibly spurious components have a relatively large variation or
gradient. As such, image processing can be formulated as a problem of minimizing the total
energy defined as a functional of the gradient of the image, while preserving important
image contents such as edges. The minimization of the total energy by the Euler-Lagrange
equation leads to a mean curvature term which helps retain sharp edges in image restoration.
Central to most variational PDE methods, the goal of the total energy variation is to
reconstruct an image with the best fidelity and the least noise. Regularization procedures and
PDE analysis are usually employed in total variation models.9

Both the Perona-Malik equation44 and earlier total variation models employ second order
nonlinear PDEs for image or surface analysis. The Willmore flow, proposed in 1920s, is a
fourth order geometric PDE and has also been used for surface analysis. In 1999, Wei
introduced the first family of arbitrarily high order nonlinear PDEs to more efficiently
remove image noise in edge-preserving image restoration.59 The same research group also
proposed an arbitrarily high order geometric PDE for the surface formation and evolution of
protein and other molecules.2 In the past decade, high order nonlinear PDEs, particularly
fourth order nonlinear PDEs, have attracted much attention in image
analysis.2,9,11,23,24,38,54,59,68 Compared with second order PDEs, the higher order PDEs are
able to suppress high frequency components, including noise, at fast rates. Mathematical
analysis of fourth order nonlinear PDEs in Sobolev space was carried out by Bertozzi and
Greer,5,23,24 who proved the existence and uniqueness of the solution to a case with H1

initial data and a regularized operator. Xu and Zhou65 performed similar analysis. Recently,
Jin and Yang have proved the existence of the strong solution of Wei’s fourth order
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equation, which is in fact mathematically different from other fourth order PDEs.34 In
general, however, high order PDEs are subject to strict stability constraints in their
numerical solutions. Witelski and Bowen designed alternating-direction implicit (ADI)
schemes for high order nonlinear PDEs.62 ADI and other implicit approaches are
particularly necessary in signal processing.

Image processing PDEs of both low order type and high order type are mostly designed to
function as nonlinear low-pass filters. In 2002, Wei and Jia61 introduced PDE based band-
pass or high-pass filters for image edge detection. Two evolution PDEs are coupled via
relative fidelity terms and the difference of the solutions provides image edges. PDE based
high-pass filters work because when two PDE low-pass filters evolve at dramatically
different speeds, the difference of two low-pass PDE operators gives rise to a band-pass
filter. The speeds of evolution in the coupled PDEs are controlled by the appropriate
selection of their diffusion coefficients. In the extreme case, one can set one of the PDE
operator to an identity operator, i.e., setting the diffusion and fidelity coefficients to zero.
Consequently, one has a PDE based all-pass filter. The difference between an all-pass filter
and a low-pass filter is a high-pass filter.61 Nonlinear PDE-based edge detection operators
have been shown to work extremely well for images with large amount of textures,
compared to classical Sobel, Prewitt, and Canny operators.52,61

Although nonlinear PDE based edge detector operators have been introduced for near a
decade, it was not clear whether PDEs can be utilized to perform all tasks in the image
processing for a long time. More specifically, it was not clear whether one can devise PDEs
to perform a full-scale mode decomposition. For all practical purposes, the secondary
processing becomes easy when all the mode components are available. Therefore, mode
decomposition is the real fundamental issue. This question was not answered until our recent
introduction of a family of mode decomposition evolution equations (MoDEE),56 which are
able to generate various mode components for secondary processing. Similar to wavelets,
MoDEEs have controllable time-frequency localization and allow perfect reconstruction,
and are thus also called a PDE transform.56 All of the important building blocks for the PDE
transform were developed in our earlier work, i.e., arbitrarily high order PDE filters59 and
PDE based band-pass or high-pass filters.61 The PDE transform requires the re-
initializaztion of the initial value in subsequent applications of the PDE operator during the
mode decomposition, a procedure inspired by our mode decomposition via iterative
filtering.37,57 The PDE transform is able to generate physically meaningful modes, also
referred to as functional modes. By functional modes, we mean the components which share
same band of frequency as well as same category, i.e., trend, edge, texture, noise etc.
Obviously, functional modes differ from the pure frequency modes obtained by the Fourier
analysis. Based on the functional modes obtained by the PDE transform, secondary
processing, or post-processing, can be carried out to achieve desirable processing tasks, such
as trend estimation, edge detection, feature extraction, enhancement and denoising, texture
analysis, segmentation, pattern recognition, etc. In fact, the primary and secondary
processing are unified in the sense that the same set of PDE transform operators are used
with different parameter settings.56

The objective of the present work is to explore the variational formulation of PDE
transforms, to analyze their spectral features and to consider their biomedical applications.
There is no doubt that variational approaches are essential to fundamental sciences, such as
physics, mechanics, electrodynamics, chemistry, and biology. As a mathematical tool,
variational methods play crucial roles in differential geometry, topology, algebra, PDE, etc.
Total variation models46 are the most important ones in image analysis. Therefore, it is
useful to investigate the variation formulation of our PDE transform. The present variational
PDE transform has to incorporate two unique aspects, namely, high order nonlinear PDE
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operators and dynamical coupling of two evolution PDEs. Indeed, the proposed variational
formulation of the PDE transform is different from our earlier PDE transforms.56

Additionally, the Fourier analysis is a valuable approach for the in-depth understanding of
the proposed PDE transform. In particular, due to the generality, the proposed PDE
transforms appear quite complicated with many parameters. The selection of appropriate
PDE transform parameters is nontrivial. Fortunately, the present Fourier analysis sheds light
on the behavior of the present PDE transform and thus simplifies the parameter selection. By
adjusting the highest order of the PDEs, the proposed PDE transform admits controllable
frequency locations, which is desirable in extracting functional modes and closely adjacent
frequencies. Finally, the need of technological innovation in biomedical and biological
sciences is one of the original motivations for us to design PDE transforms. It is always
worthwhile to demonstrate the utility and illustrate the robustness of our new method for
practical applications.

The rest of the present paper is organized as follows. Section II is devoted to the theory and
formulation of PDE transforms. We first review the essence of PDE based based low-pass
filters and PDE based band/high-pass filters. We then discuss one form of our earlier PDE
transforms. The variational formulation of PDE transforms is proposed in Section II.D. As
mentioned, these new variational PDE transforms have a different structure compared to that
of our earlier PDE transforms. The Fourier analysis is carried out in Section II.E. To
simplify our discussion, we consider a high order linear evolution PDE in one spatial
dimension so that the analytical solution can be obtained. Numerical tests and validations
are presented in Section III. High order PDE transforms are applied to separate two modes
with very close frequencies, which is regarded very difficult using other mode
decomposition methods. In Section IV, PDE transforms are applied to enhance images
obtained with various medical imaging modalities. Such applications include the detection
of early lung cancers, noise removing in optical image obtained by the retinal functioning
imager, screening of breast cancer using diffuse optical tomography, and image
enhancement on electron microscope photography of neuron cells. This paper ends with
some concluding remarks.

II Theory and formulation
This section discusses the rationale and variational formulation of PDE transforms. To
establish notation and illustrate concepts, we start by a brief review of arbitrarily high order
PDE based nonlinear low-pass filters introduced by Wei.59 The central idea is the
construction of PDE based nonlinear high-pass filters introduced by Wei and Jia.61 We
construct PDE transforms by the combination of arbitrarily high order PDEs and PDE based
high-pass filters. The performance of PDE transforms depends crucially on the use of high-
order PDEs in the high-pass filters, which gives rise to the desired frequency localization. In
this section, it is also shown that while the exact form of the PDE transform introduced in
Ref.56 can not be derived in a variational formalism, a similar family of PDE transforms can
be obtained. The Fourier analysis of a linearized high-order PDE sheds light on the
performance of the proposed PDE transform.

II.A High order PDE based low-pass filters
High order evolution PDEs are widely used in mathematical modeling of material, interface,
and curvature.2 For example, the Willmore flow is often used in the morphological
description of membrane. As a high order generalization of the Perona-Malik equation,44

Wei introduced the first family of arbitrarily high order nonlinear PDEs for image
processing in 1999.59
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(1)

which has since been applied to image denoising and restoration by many
researchers.21,22,38,59 In Eq. (1), u(r, t) is the image function, dq(u(r), |∇u(r)|, t) and e(u(r), |
∇u(r)|, t) are edge sensitive diffusion coefficients and enhancement operator respectively.
The Perona-Malik equation is recovered at q = 0 and e(u(r), |∇u(r)|, t) = 0. As in the original
Perona-Malik equation, the hyper-diffusion coefficients dq(u(r), |∇u(r)|, t) in Eq. (1) can be
chosen in many different ways. For instance, one can set

(2)

where the values of constants dq0 depend on the noise level, and σ0 and σ1 are chosen as the
local statistical variance of u and ∇u

(3)

The notation  above denotes the local average of Y (r) centered at position r. In this
algorithm, the statistical measure based on the variance is important for discriminating
image edges from noise. As such, one can bypass the image preprocessing, i.e., the
convolution of the noise image with a test function or smooth mask.

Recently, we have proposed arbitrarily high order geometric PDEs for surface formation and
evolution with application in the surface generation of proteins and other biomolecules,2

(4)

where S(r, t) is a hypersurface function, g(|∇∇2qS|) = 1 + |∇∇2qS|2 is the generalized Gram
determinant and P is a generalized force term, including the potential interactions which are
important to the biomolecular surface formation.2 When q = 0 and P = 0, Eq. (4) reduces to
the mean curvature flow equation used in our earlier formulation of minimal molecular
surfaces,2 while when q = 1 and P = 0, it is a surface diffusion flow.2 Equation (4) can also
be regarded as a variation of Wei’s earlier arbitrarily high order PDE (1). The molecular
surface generated by Eq. (4) has a distinct morphology.2

There has been considerable interest in the high order nonlinear PDE filtering in the past
decade.18,21,22,38 The well-posedness of Eq. (1) was analyzed in terms of the existence and
uniqueness of the solution by many researchers.5,23,24,34,65 In fact, unlike other high-order
nonlinear PDEs, Eq. (1) was not derived from a variation formulation. The mathematical
properties of the generalized Perona-Malik equation differ from those of other high order
PDEs.34

II.B Nonlinear PDE based band-pass and high-pass filters
Image edge detection and texture extraction require the use of high-pass filters. There are a
variety of high-pass filters, including the Sobel, Prewitt, Canny operators, and discrete
singular convolution edge detector.29 To construct PDE based edge detectors, Wei and Jia
introduced a pair of weakly coupled nonlinear evolution equations61
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(5)

(6)

where u(r, t) and v(r, t) are scalar fields, εu and εv are coupling strengths. In the equation F1
and F2 are general nonlinear diffusion operators, and can be chosen as the Perona-Malik
operator: F1 = ∇ · d1(|∇u|)∇ and F2 = ∇ · d2(|∇v|)∇.

The initial values for both scalar fields are chosen to be the same image of interest, i.e., u(r,
0) = v(r, 0) = X(r). In the theory of nonlinear dynamics, Eqs. (5) and (6) constitute a
synchronization system. In terms of image processing, Eqs. (5) and (6) are both nonlinear
PDE based low-pass filters. The coupling terms play the role of relative fidelities. To obtain
good image edges, two dynamical systems must evolve on the (dramatically) different time
scales, i.e., d20 >> d10. Therefore, when we choose d10 ~ 0, we have u(r, t) ~ X(r). As such,
the coupling terms become the conventional fidelity. In general, low coupling strengths are
used so that u or v is mostly modified by the diffusion process during the time evolution and
image contrast can be maintained. The image edge was defined as the difference of two
diffusion systems61

(7)

Eq. (7) behaves like a band-pass filter when d20 >> d10 ~ 0. Without loss of generality, one
can set d10 = 052 and let

(8)

where v(r, t) is the solution of

(9)

Equation (8) works as a PDE based high-pass filter. The nonlinear PDE based edge detector
described here has been shown to outperform many other classical edge detectors such as
Sobel, Prewitt and Canny operators.61 An additional important feature of the nonlinear PDE
based edge detector is the ability to extract image texture with high frequency details.52,61

II.C Partial differential equation transform (PDE transform)
The band-pass and high-pass filters described in the previous section do not automatically
serve as mode decomposition filters. It takes two more components to perform the mode
decomposition. First, commonly used second order PDE low-pass filters do not have a good
frequency localization. Consequently, they cannot be directly used for mode decomposition,
although they may be utilized in the IFD algorithm as shown in our earlier work.57 To
achieve frequency localization, we have introduced the use of the high order nonlinear PDEs
in our PDE transforms.56 In general, we can define two nonlinear PDE filters by using the
high order nonlinear PDE operator introduced by Wei59

(10)
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where εum(|∇um|) and εun(|∇vn|) are made edge sensitive. As low-pass filters, both duj(|∇um|)
≥ 0 and dvj(|∇vn|) ≥ 0 when j is even. Similarly, both duj(|∇um|) ≤ 0 and dvj(|∇um|) ≤ 0 when j
is odd. We can define a general edge function as

(11)

where Hmn (r, t) is a coupled nonlinear PDE operator. For Eq. (11) to work properly, we
choose |dvj (|∇vn|)| >> |duj(|∇um|)|. As shown in our earlier work, by increasing the order of
the highest derivative, one can increase frequency localization and accuracy of the PDE
transform for mode decomposition.56 The frequency selection of wm,n(r, t) also depends on
the evolution time. This aspect is investigated in a later section.

In the PDE transform algorithm, intrinsic mode functions are systematically extracted from
residues, i.e.,

(12)

where  is the kth mode function. Here the residue function is given by

and

(13)

Therefore,  is a perfect reconstruction of X in terms of all the mode
functions and the last residue. The mode decomposition algorithm given in Eq. (12) is
essentially nonlinear, even if a linear PDE operator might be used.

II.D Variational formulation of PDE transforms
Variational models have been extremely successful for a wide variety of science and
engineering problems3,14– 16,18,46,58,66 and have been an active area of research in applied
mathematics. In the field of image analysis, Rudin, Osher, and Fatemi pioneered the total
variation based image restoration models for edge preserving image denoising.46 In the
present work, we derive a set of high order nonlinear PDE transforms by variational
approach for mode decomposition. Similar variation formulation of high order nonlinear
PDE has been discussed by Didas et al.18 Let us denote r = (x1, x2, x3) ∈ ℝ3 and define a
derivative operator

where the summation is over all possible nontrivial combinations of j1 + j2 + j3 = j. We
define the energy functional as
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(14)

where Λu(·) and Λv(·) are appropriate penalty functions.18,38 Minimizing the energy
functional (14) by the Euler-Lagrange equation, we have

(15)

(16)

where Λuj(·) = (−1)j+1∂Λuj/∂Dju and Λvj(·) = (−1)j+1∂Λvj/∂Djv.

The energy functional is minimized when Eqs. (15) and (16) are satisfied. To this end, we
make use of the steepest descent algorithm with an artificial time and convert Eqs. (15) and
(16) into two time dependent PDE transforms

(17)

(18)

Although the mathematical properties of these high-order PDE transforms may differ from
those in Eq. (10), Eqs. (17) and (18) are essentially equivalent to the earlier PDE transforms.
Specifically, the magnitudes and signs of Λuj and Λvj should be chosen in the same manner
as for duj and dvj, respectively. It is convenient, though not necessary, to set ε ~ 0 for mode
decomposition. To construct intrinsic mode functions, Eq. (12) is used with the PDE
transform operator Hmn being replaced by Eqs. (17) and (18).

II.E Fourier analysis of PDE transforms
To analyze the behavior of high order PDE transforms, let us consider a high order linear
PDE in one spatial dimension

(19)

where dj > 0, ε ~ 0 and X is the initial signal. Equation (19) is subject to initial value v(x, 0)
= X. The exact solution of Eq. (19) in the Fourier representation is

(20)

where v̂ and X̂ are the Fourier transforms of v and X, respectively. Here L̂ is a frequency
response function
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(21)

As expected, L ̂ is a low-pass filter. The Fourier representation of the IMF can be given as

(22)

where Ĥ is another frequency response function

(23)

Obviously, Ĥ = 1 − L̂ is a high-pass filter. The effects of highest order 2n, propagation time t
and coupling strength ε on the frequency response behavior of high-pass filter Ĥ is given in
Figures 1 and 2. Qualitatively, the behavior of L̂ and Ĥ can be analyzed as

. In particular, the impact of higher order, i.e., large 2m and 2n values, should be examined
separately.

It is also interesting to investigate a band-pass filter given by the difference of solutions of
two high-order PDEs. To this end, one can simply set ε = 0 and define

(24)

where we choose d2j >> d1j ~ 0 and t2 ≥ t1. Qualitatively, the behavior of B̂ can be analyzed

as  .

In Figures 1 and 2, Fourier analysis for the low-order PDE based low-pass filter in Eq. (21)
and high-pass filter in Eq. (23) is given. We illustrate the control of the frequency
localization by parameter 2n, the highest order of the PDE transform. The effects of
coupling strength ε (i.e., fidelity term) on the frequency response behavior of the low-pass
filter L̂ corresponding to the diffusion equation (with 2n = 2 being the highest order PDE)
are given by the plots in Figure 1(a). The black curve shows the frequency response of the
low-pass filter corresponding to the diffusion equation without fidelity term, i.e., ε = 0. The
blue dashed and red circled curves correspond to the same low-pass filter with different
values of ε=0.4 and 1, respectively. If the main purpose of the signal processing is to
separate modes with close frequencies, a small ε value is preferred. On the other hand, as
demonstrated in this paper, higher order PDEs provide much higher frequency localization
and are more efficient in separating modes with closely adjacent frequencies. In Figure 1(b),
the highest order of the PDE used is 2n = 80. The frequency responses approach to the ideal
shape of a step function which provides higher precision in separating modes with closely
adjacent frequencies.

The effect of ε, however, is different from that in the low order PDE case. The three curves
of black, blue, and red color are frequency responses of the same low-pass filters with
different values of ε = 0, 1, and 10. The large coupling strength (i.e., large value of ε) does
not sacrifice the accuracy of mode decomposition as it does for the low order PDE; rather,
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the larger the value of ε, the higher shift of the dividing line of the mode frequency
separation. In Figures 1(c) and 1(d), the symmetric plots of the high-pass filters are shown
corresponding to the low-pass filters in Figures 1(a) and 1(b), respectively.

In Figure 2, the control of the time-frequency localization by 2n and the frequency selection
by t of the highest order of the PDE, on the high-pass filter (23) are explored. The value of
2n in Figure 2(a) is equal to 2, 4 and 80 in the red circled, blue dashed, and black solid
curves, respectively. As the order increases, the frequency response function becomes
steeper and thus represents a better frequency localization, which is needed in the separation
of closely adjacent frequency modes. In Figure 2(b) effect of propagation time is examined
on the frequency response of the high order PDE filter in Eq. (23). All the three curves show
the frequency response functions corresponding to different values of t with the same PDE.
In the figure, black solid, blue dashed and red circled lines correspond to the numerical
results using t = 1, 10−30 and 10−60, respectively. Therefore, one can gradually propagate the
coupled high order PDEs in the PDE transform algorithm to systematically extract various
modes. The longer propagation time of PDE transforms, the lower frequency of the
decomposed mode. The PDE transform algorithm is truly robust and automatic in
decomposing signal into series of functional modes or intrinsic modes.

III Numerical tests and validations
Having analyzed the frequency response of a linear PDE transform, we validate the ability
of PDE transform to separate IMFs from signals, and demonstrate such an ability with
applications to signals containing closely adjacent frequency modes which have been
practically very challenging.

In Figure 3, the PDE transform is applied to the separation of the three modes (Figure 3(a))
from the signal cos(5x) + cos(1.1x) + cos(x). The highest order PDE used in the PDE
transform is 2n = 32. The three modes are sequentially separated from the original signal
using the same PDE transform algorithm with different values of propagation time t. This is
a challenging case due to the extreme closeness of modes cos(1.1x) and cos(x). Numerical
results for three modes are compared with exact values in Figures 3(b) through 3(d). In
Figure 3(b), results for Mode 1, cos(5x), is shown. Black solid line shows the exact value,
and red circles show the numerical values obtained by using the PDE transform algorithm
with the 32nd order PDE. The L∞ norm of the difference between the exact and numerical
curves is negligible (smaller than 10−6). Similarly in Figure 3(c), result of Mode 2,
cos(1.1x), is shown. The L∞ norm of the difference between the exact and numerical curves
is 0.06. In Figure 3(d), results of Mode 3, cos(x), is shown. The L∞ norms of the difference
between the exact and numerical curves is 0.07 such that two closely adjacent modes
cos(1.1x) and cos(x) are well separated. Additionally, higher order PDE can be easily
applied to achieve even better accuracy as illustrated in Figure 4.

In Figure 4, convergence is checked with respect to the value of 2n, which is the highest
order PDE used in the PDE transform. A series of signals are designed as composition of the
lower frequency mode sin(x) with the higher frequency one sin(mx), where m varies from
1.3 to 1.1 in the figure. In the main window of the figure, x-axis is the highest order of PDE
employed in the PDE transform algorithm, and y-axis is the L2 norm of the error of the high
frequency mode numerically extracted compared with the exact values of sin(mx). Three
different signals of sin(x) + sin(1.1x), sin(x) + sin(1.2x) and sin(x)+sin(1.3x) are
decomposed by the PDE transform algorithm. The numerical results are shown by black
square, blue triangle and red circled curves. The signal sin(x)+sin(1.1x) with two closest
adjacent modes requires much higher order of PDEs to be included in the PDE transform
algorithm in order to achieve the same level of accuracy (or error) as for the other two
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signals. For example, in order to achieve numerical accuracy with L2 error bounded below
0.1, a very high order PDE (2n=64) is required for mode decomposition of the signal with m
= 1.1 compared to (roughly) 36th and 24th order PDEs needed for signals with m = 1.2 and
m = 1.3, respectively. For better viewing and clearer quantitative comparison, numerical
errors are also plotted in log-scale in the embedded small window in Figure 4. It is clearly
observed that the PDE transform with higher order PDE achieves higher accuracy and better
resolution in mode decomposition.

More detailed exploration of the convergence of the numerical results shown in Figure 4 is
illustrated in Figure 5. The same PDE transform is used to decomposing three signals, sin(x)
+ sin(1.5x), sin(x) + sin(1.5x) and sin(x) + sin(1.5x) are shown in the 1st, 2nd and 3rd row in
Figure 5, respectively. In the 1st row, the figure on the left shows the numerical results
compared to the exact results for the higher frequency mode sin(1.5x) separated out from the
signal using high-pass filter designed for the high order PDE transform algorithm. Exact
results are shown by the black curve, while green squares, blue triangles and red circled
curves show the numerical results using highest order PDE with 2n =4, 8 and 16,
respectively. Similar results are shown in the 2nd row of Figure 5 where the PDE transform
is applied to decompose signal sin(x)+sin(1.3x). In the 3rd row, due to the closeness of the
two modes sin(x) and sin(1.1x), higher order PDEs are required to achieve accurate
decomposition. In Figures 5(e) and 5(f), green squares, blue triangles and red circled curves
show the numerical results using highest order PDE with 2n =8, 16 and 32, respectively. For
all signals, it is clearly demonstrated that the PDE transform with larger value of n
converges better to the exact results. In addition, the figures on the right of all the three rows
in Figure 5 show the shape of the frequency responses for the corresponding low-pass filters
(i.e. equivalently for the corresponding high-pass filters) designed by the PDE transform
algorithm. The larger value n, the steeper the rising of frequency response functions. In the
limit of n → ∞, the frequency response function would become a step function which
ideally divide the frequency domain into high frequency and low frequency regions.

Lastly, in Figure 6, the effect of total propagation time t as in Eq. (23) on the frequency
response functions is explored in details. The same PDE transform algorithm employing the
same highest order PDE with 2n = 48 is applied to separate out all the modes from the signal
sin(x) + sin(2x) + sin(3x) + sin(4x) + sin(5x) + sin(6x) + sin(7x) + sin(8x) + sin(9x) +
sin(10x). The 10 modes are separated out, in the order of decreasing frequency peak, by
varying propagation time t only. When the same set of PDEs composing the PDE transform
algorithm are propagated by t = 4.3 × 10−48, highest frequency mode sin(10x) is
decomposed; after another propagation time t = 9.4 × 10−46, next highest frequency mode
sin(9x) is decomposed, etc. It is worthwhile to point out that, though the propagation time
ranges from 10−50 to 1, no specific temporal discretization is needed in the current PDE
scheme since the time integral is numerically calculated using one time step. In Figure 6(b),
values of propagation time t are plotted as the function of the frequency peaks of the modes
being decomposed. The numerical values of t (labeled by the black circles) fits well into the
analytical estimation 1/w48 shown by the red solid curve, where the value of 48 corresponds
to the value 2n = 48 of the highest order PDE used herein.

The PDE transform algorithm has been designed for the mode decomposition of arbitrary
dimensional signals or images. In previous Figures, one-dimensional (1D) signals have been
used for illustration and validation purposes. In Figure 7, a two-dimensional (2D) signal
sin(4x) sin(2y) + sin(4.2x) sin(2.2y) is decomposed by the PDE transform algorithm into the
two modes sin(4x) sin(2y) and sin(4.2x) sin(2.2y). A relatively low value of 2n = 16 for the
highest order PDE is sufficient to achieve good enough numerical results of decomposed
signal. L2 norm error is 0.1 compared to the amplitude 2.0. By increasing value 2n of the
highest order PDEs employed in the PDE transform algorithm, similar convergence can be
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achieved as for 1D signals. The PDE transform algorithm has been designed to work
naturally and equally efficient for arbitrarily dimensional signals and images.

IV Applications to biomedical and biological images
In this section, we apply the PDE transform algorithm to several different types of medical
images for image denoising and enhancement.

IV.A Early cancer detection
In the initial period of the cancer development, the patient may not exhibit noticeable
symptoms such that it would be too late even if they quickly pick up alerting messages when
the cancer has developed for some time already. It is critical to detect cancer it its early state
in order to provide a successful cure or surgery. Various medical imaging techniques have
been developed to help diagnose and detect cancer. In addition to the hardware-type imaging
techniques, image postprocessing can be applied to render a clearer image showing the
important details of the cancer images. In this section, imaging techniques and processing
are discussed with application to lung cancer and breast cancer.

The general technique for early lung cancer is screening chest with X-ray or spiral computed
tomography scan. Such a technique is useful for detecting the lung cancer in its more
localized phase which implies it is more likely to be curable. One important goal of imaging
and image processing is to decide whether the tumor is resectable and whether it should be a
lobectomy or a pneumonectomy. Lobectomy means surgical excision of a lobe of the lung.
On the other hand, a pneumonectomy is a surgical procedure to remove the whole lung.
Clearly the lobectomy approach is a better and safer choice than pneumonectomy if the
former is possible. The restriction for performing a lobectomy of the lung is that the surgery
can not be performed on patients with lung cancers spreading to other parts of the tissue.
Details from the medical images are therefore helpful in making the decision. In medical
imaging or internal organs or brain, pictures are usually taken along one or many of the three
planes (see Figure 8): axial plane which refers to the slice parallel to the feet of the patient,
coronal plane which is the slice perpendicular to the feet and parallel to the shoulder line of
the patient, and sagittal plane which is the vertical plane passing from front to rear and
dividing the body into right and left sections. Images taken on the three planes together give
three dimensional information of the internal organ of the human body. In Figures 9(e) and
9(f), images of the patient’s lung taken along the axial and coronal planes are shown
respectively. To test the effect of the PDE transform algorithm, random (Gaussian-type)
noise are added in Figures 9(a) and 9(b). The PDE transform algorithm with up to 4th order
PDE is used to smooth and enhance the images, results of which are shown in 9(c) and 9(d).
In the axial image 9(c), one can see the shape of tumor near the fissure on the left. However,
this information alone is not enough for making decision whether the tumor is resectable and
whether it should be a lobectomy or a pneumonectomy. The image in 9(d) taken along the
coronal plane clearly shows there is no transfissural growth. As such, the tumor is localized
and does not cross the fissure which divides the superior lobe from the middle lobe.
Therefore lobectomy is a possibility. The lung of another patient is imaged along coronal
and sagittal planes as shown in Figure 10. Similarly, white noise is added to the images and
the PDE transform algorithm with up to 4th order PDE is performed to smooth the images.
Comparing Figure 9(c) with 10(c), transfissural growth is observed in the latter case. The
picture taken along the sagittal plane in Figure 10(d) further demonstrates that the tumor
crosses the horizontal fissure of the lung. Therefore, lobectomy is not possible according to
the images shown in these Figures.

Detection of breast cancer is another important application of medical imaging and image
processing. One of the widely used exams for early detection of breast cancer is
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mammogram, which take picture of breast with a safe, low-dose X-ray machine. Diffuse
optical tomography (DOT) has recently been used to create high-resolution images from a
scattering of infrared and visible light for the early detection of breast cancer. DOT is a
three-dimensional method where photon density waves are launched from a source and then
travel in a banana-shaped path due to multiple scattering, which is different from the straight
paths followed by X-rays in mammogram. Compared to the use of X-rays in mammogram
imaging, DOT is relatively less expensive, safer and more comfortable. However, the
photon density waves used in DOT are more difficult to track because of the scattering and
absorption. Image processing is usually performed to remove noise and enhance image
quality. In Figure 12(a), a high resolution image is shown created by the DOT technology.
The distorted region in the black circle in the image indicates the area of abnormalities
associated with the breast cancer. Image shown in Figure 12(b) contains combination of two
types of noises: highly oscillatory random noises (with up to 200 oscillations in each
direction of the 256×256-pixel image and with random amplitude in each oscillation) and
Gaussian-type random noise with standard deviation equal to 30 (see Figure 12(d)). The fine
lines of image are therefore distorted and contaminated. In Figure 12(c), an enhanced image
is generated from the Figure 12(b) by applying the PDE transform algorithm using up to 4th
order PDE. The fine details are well recovered. Such image enhancement can be combined
with other mathematical models in development by other groups to make the DOT a better
imaging techniques for detecting smaller breast cancer with lower cost and higher safety and
reliability.

IV.B Optical images from retinal functioning imager
Besides the important biological function of vision, eyes are also helpful for the diagnosis of
diseases such as diabetes as well as for the assessment and identification of various
neurological effects. A number of technological progresses has advanced the retinal imaging
for research and clinical applications, e.g. Many imaging techniques including retinal
function imager (RFI), positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI) have been developed to provide high resolution images. In
particular, RFI is an adaptive noninvasive approach to study the single red blood cells
moving through capillaries26,31 and it enables direct visualization of retinal blood dynamics
without the injection of contrast agents. The motion of individual red blood cells and blood
cell clusters can be revealed with much clarity which is important towards the quantitative
detection of abnormal blood flow velocity in capillaries and arterioles. Like many other
medical imaging techniques, poor signal-to-noise ratio in in-vivo applications is always a
concern. Various post image processing techniques are generally applied to render enhanced
images. In Figure 11, qualitative oximetry with the RFI is applied to detect the perfusion
deficits and abnormalities in a patient with sickle cell retinopathy. The area with
abnormalities appear as regions of grey scale distinct from their surroundings. Figure 11(a)
shows a high resolution image with good resolution. In Figure 11(b), noise is added which is
composed of both a highly oscillatory noise (with up to 30 oscillations in each direction of
the 256×256-pixel image) with random amplitudes and Gaussian-type random noise (with
standard deviation equal to 30). The PDE transform algorithm using up to 4th order PDE is
applied for denoising the image. Result is shown in Figure 11(c). Such image enhancement
technique would be useful in further improving the image quality of high resolution RFI.

IV.C Electron microscope photography of neuron systems
With an intricately elaborate dendritic arbor, Purkinje neurons are characterized by a large
number of dendritic spines. Purkinje neurons are some of the largest of the 100 billion
neurons in human brain. Neuron cells are the masters of motor coordination in the cerebellar
cortex. These large dendritic arbors form nearly two-dimensional layers through which
parallel fibers from the deeper-layers pass. Toxic exposure to such as alcohol and lithium
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and various immune or neurodegenerative diseases such as autism and Alzheimer’s disease
can negatively affect human Purkinje cells and their shape and structure. Therefore, a clear
visualization of the detailed shape of Purkinje neurons would be useful in the study and
diagnosis of various diseases. In Figure 13, electron microscope photography of Purkinje
neurons is shown. Electron microscope is a type of microscope that uses a particle beam of
electrons to illuminate the sample and to generate a magnified image. Electron microscopes
usually have a greater resolving power than a light-powered optical microscope due to the
much smaller wavelength of electrons. Using electron microscope imaging technique, the
details of vast amount of dendrites on the neuron cells. Noise removal using image
processing can further provide a better quality image. The PDE transform using up to 4th
order PDE is used to denoise the image 13(b) to generate a better resolved one in 13(c) in
which the details of cell structure and geometry of the dendrites are better rendered
compared to the original high resolution picture 13(a).

V Concluding remarks
Geometric partial differential equations (PDEs) are of tremendous importance in signal and
image processing, data analysis and surface construction. Mode decomposition is an
elementary process in a variety of signal/image processing tasks. However, despite the great
progresses made in geometric PDEs accompanying the broad interests in the past two
decades, the use of geometric PDEs for mode decomposition was not realized until a recent
advance in the field. The resulting models, called PDE transform, has been introduced in our
earlier work56 based on arbitrarily high order nonlinear PDE introduced by Wei59 and PDE
based image edge operator introduced by Wei and Jia.61 The present work introduces the
variational formulation, provides the Fourier analysis and carries out the biomedical and
biological applications of the PDE transform.

In the variational formulation of PDE transform, we construct a total energy functional
consisting of two image functions and two sets of geometric operators. Due to the dynamical
coupling of two operators, the relative signs of two operators are different, which contributes
to the energy disparity. The dynamical coupling of two image functions reduces the energy
disparity. The energy minimization by using the Euler-Lagrange equation and the
introduction of artificial propagation time by the steepest descent algorithm leads to a
system of two coupled nonlinear PDE transforms. As discussed in our earlier work,59 these
two equations have to evolve at dramatically different time scales to generate sufficient
disparity in the two image functions. Their difference corresponds to the desirable intrinsic
mode functions when appropriate model parameters and initial values are provided. To aid
the parameter selection, we carried out detailed Fourier analysis on a prototype linear PDE
transform, which admits an analytical solution in the Fourier domain. As such, we analyze
the filter properties of arbitrarily high order PDE transforms. This analysis provides a
guidance for the parameter selection of the proposed PDE transforms. For instance, the order
of the highest PDE can be selected to control the frequency localization, while the
propagation time or the amplitude of diffusion coefficients of the PDE transform can be
adjusted to control the frequency location or precision. Many challenging test examples are
explored to validate the proposed PDE transforms for decomposing intrinsic mode
functions. We demonstrate usefulness of the proposed PDE transforms by biomedical and
biological applications. Image denoising, enhancement and restoration are considered in the
present work for early lung cancer detection, optical image, diffuse optical tomography, and
electron microscope photography. Numerical experiments indicate that the proposed PDE
transform works well.
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Figure 1.
Fourier analysis of the high-order PDE based low- and high-pass filters in Eqs. (21) and
(23). Obviously, the time-frequency localization is controlled by parameter 2n, the highest
order of the PDE transform. The effects of coupling strength ε (i.e. fidelity term) on the
frequency responses L̂ and Ĥ are given. The values of the parameters in Eqs. (21) and (23)
are given in the caption below each subfigures.
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Figure 2.
The control of the time-frequency localization by 2n and the frequency location (precision)
by t of the high-order PDE high-pass filter in Eq. (23).
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Figure 3.
Separation of the three modes from the signal cos(5x) + cos(1.1x) + cos(x) using the PDE
transform algorithm with the PDE of the highest order of 2n = 32. The three modes are
sequentially separated from the original signal using the same PDE transform algorithm with
different propagation time t, respectively.
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Figure 4.
Extraction of higher frequency mode sin(mx) from the original signal sin(x) + sin(mx). In
the main window of the figure, x-axis is the highest order of PDE employed in the PDE
transform algorithm, and y-axis is the L2 norm error of the high frequency mode numerically
extracted compared with the exact values of sin(mx). Three different signals of sin(x) +
sin(1.1x), sin(x)+sin(1.2x) and sin(x)+sin(1.3x) are decomposed by the PDE transform
algorithm, and their numerical results are shown by black square, blue triangle and red
circled curves. The first signal of sin(x)+sin(1.1x) with closest overlapping modes requires
much higher order of PDEs to be included in the PDE transform algorithm in order to
achieve the same level of accuracy (or error) as for the other two signals. For the purpose of
alternative viewing and better understanding, numerical errors are also plotted in log-scale
as in the embedded smaller subfigure in the main window above. It is clearly observed that
the PDE transform algorithm with higher order PDE achieves higher accuracy and better
resolution in differentiating two modes with closely adjacent frequencies.
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Figure 5.
Separation of the two modes sin(x) and sin(mx), where m ≈ 1, from the same signal.
Convergence of the PDE transform algorithm with various highest order PDEs are studied.
A higher order PDE transform is needed to differentiate modes with closer frequencies.
Propagation time t = 5 in all the plots.
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Figure 6.
Mode decomposition of the signal sin(x) + sin(2x) + sin(3x) + sin(4x) + sin(5x) + sin(6x) +
sin(7x) + sin(8x) + sin(9x)+sin(10x) using the PDE transform algorithm including PDE
terms up to 48th order with d24 = 1. The figure indicates that separation of lower frequency
mode requires larger effective propagation time τ, or equivalently speaking larger effective
diffusion constant.
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Figure 7.
Mode decomposition of the signal sin(4x) sin(2y) + sin(4.2x) sin(2.2y) using the PDE
transform algorithm including PDE terms up to 8th order. Results of two modes sin(4.2x)
sin(2.2y) and sin(4x) sin(2y) are shown in subfigures 7(b) and 7(c), respectively.
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Figure 8.
The axial plane is an imaginary plane that divides the body into superior and inferior parts.
A coronal plane divides the body into back and front portions. A sagittal plane is a vertical
plane which passes from front to rear dividing the body into right and left sections. The three
planes are perpendicular to each others.
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Figure 9.
PDE transform algorithm using up to 4th order PDE is used to denoise and enhance the
images for lung diagnosis. The tumor is detected in the axial image, and the details shown in
the coronal image demonstrates that there was no transfissural growth of the tumor such that
lobectomy surgical excision of a lobe only is possible.
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Figure 10.
PDE transform algorithm using up to 4th order PDE is used to denoise and enhance the
images for lung diagnosis. The coronal image shows that there was transfissural growth of
the tumor, and sagittal image reveals more details supporting the diagnosis that lobectomy
surgical excision of a lobe only is not possible and pneumonectomy is a surgical procedure
might be needed to remove the whole lung.
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Figure 11.
Using qualitative oximetry with optical images from RFI, perfusion deficits and
abnormalities in a patient with sickle cell retinopathy is detected. The PDE transform
algorithm using up to 4th order PDE is used to denoise and enhance the RFI images.
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Figure 12.
Diffuse optical tomography is used to create extremely high-resolution images from a
scattering of infrared and visible light. Such technology can be used for the early detection
of breast cancer. As light travels from the source, once it hits the black circle where the
tumor is located, the lightwaves become distorted. One practical challenge is that the high
resolution imaging is subject to noises, especially highly oscillatory noise which would
distort the fine details in the image. The PDE transform can be used to smooth the image
and is particularly good for removing high frequency noise and/or oscillatory noises.
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Figure 13.
Electron microscope photography of Purkinje neurons showing the details of vast amount of
dendrites on the neuron cells. The PDE transform using up to 4th order PDE is used to
denoise the image and enhance the details of cell structure and geometry details of the
dendrites.
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