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Abstract
Background and purpose—Cerebral preconditioning provides insights into endogenous
mechanisms that protect the brain from ischemic injury. Hypoxia and the anesthetic isoflurane are
powerful preconditioning agents. Recent data show that sphingosine 1-phosphate (S1P) receptor
stimulation improves outcome in rodent models of stroke. Endogenous S1P levels are controlled
by the expression and activity of sphingosine kinases (SPK). We hypothesize that SPK up-
regulation mediates preconditioning induced by isoflurane and hypoxia and reduces ischemic
injury.

Methods—Male wild-type C57BL/J, SPK1−/− and SPK2−/− mice were exposed to isoflurane
(IsoPC) or hypoxia preconditioning (HPC) before transient middle cerebral artery occlusion.
Infarct volume and neurological outcome were measured 24 hours later. SPK inhibitors (SKI-II
and ABC294640) were used to test the involvement of SPK2. Expressions of SPK1, SPK2 and
HIF1α were determined. Primary cultures of mouse cortical neurons were exposed to isoflurane
before glutamate- or hydrogen peroxide-induced cell death.

Results—IsoPC and HPC significantly reduced infarct volume and improved neurological
outcome in wild-type and SPK1−/− mice, but not in SPK2−/− mice. Pretreatment with SKI-II or
ABC294640 abolished the IsoPC-induced tolerance. Western blot showed a rapid and sustained
increase in SPK2 level, whereas SPK1 level was similar between preconditioned mice and
controls. HIF1α was up-regulated in wild-type IsoPC mice, but not in SPK2−/−. IsoPC protected
primary neurons against cell death, which was abolished in ABC294640-treated cells.

Conclusions—Applying genetic and pharmacological approaches, we demonstrate that neuronal
SPK2 isoform plays an important role in cerebral preconditioning.
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Introduction
Cerebral preconditioning is a procedure by which a noxious stimulus is applied to a tissue or
organ below the threshold of damage. After a recovery period, organs such as brain develop
a tolerance to the same or even different noxious stimuli given above the threshold of
damage1, 2. Studying cerebral preconditioning may provide insight into endogenous
protective mechanisms that could be exploited therapeutically. Known preconditioning
stimuli include isoflurane3–5, hypoxia6–8, cortical spreading depression9, 10, and pro-
inflammatory agents (such as lipopolysaccharide)11, 12. Isoflurane, an inhalational anesthetic
used widely and safely in surgical procedures, induces tolerance to ischemia in many organs,
including brain5, 13, 14, heart15 and kidney16, 17.

Stroke is the leading cause of death and disability in developed countries. Despite the
accumulating knowledge on the cellular and molecular mechanisms underlying ischemia/
reperfusion injury, there is still a lack of effective treatment for stroke18. The sphingosine 1-
phosphate (S1P) receptor agonist Fingolimod (FTY720) has been shown to be protective in
several animal models of cerebral ischemia19–21. FTY720 is phosphorylated by sphingosine
kinase (SPK) into the active compound phospho-FTY720, which then acts on four of the
five known S1P receptor subtypes22. In the central nervous system, S1P regulates multiple
cellular processes, including proliferation, survival and migration of neurons23. Intracellular
S1P is tightly regulated by the expression and activity of SPK. Previous reports suggested
that SPK plays a role in heart24, 25, kidney16, 17 and brain preconditioning8. We previously
showed that SPK2 is the predominant isoform in brain26. The aim of this study was to test
the hypothesis that SPK2 is a universal mediator of both isoflurane- and hypoxia-induced
preconditioning. In order to test the hypothesis that neuronal SPK2 accounted for
preconditioning, we used primary cultures of mouse cortical neurons to examine whether
pre-treatment with specific SPK2 inhibitor could block IsoPC-induced protection against
cell death in vitro.

Materials and methods
Animals

Male C57BL/J mice (23–25 g, Charles River) and age-matched wild-type, SPK1−/−27 and
SPK2−/−28 mice were maintained on a 12/12 hours light/dark cycle and fed ad libitum.
Experiments were conducted according to protocols approved by the Animal Research
Committee of Massachusetts General Hospital and NIH guide for the Care and Use of
Laboratory Animals. Mice were randomly allocated; after preconditioning or drug
treatments, their identity and genotype were coded with tail marks in order to blind the
investigators to the treatment groups; cerebral ischemia, infarct volumes measurement and
neurological deficit evaluations were performed in a blinded fashion. Total number of mice
included and mortality during surgery are summarized in supplementary tables 1 and 2.

Cerebral preconditioning
For isoflurane preconditioning (IsoPC), mice were exposed to 1% isoflurane (in 70%
nitrogen and 30% oxygen) for 3 hours in an air-tight chamber. Mice were allowed to recover
in an incubator (at 28°C) for ~30 minutes and then for 24 hours in their original cages5. For
hypoxic preconditioning (HPC), mice were kept in an air-tight chamber flushed with 8% O2
for 4 hours. Mice were allowed to recover for 72 hours7, 8, 29. Naïve mice were placed in the
air-tight chamber flushed with air for the same duration of time.
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Treatment with SPK inhibitors
Fifteen min before IsoPC, mice were administered a specific SPK inhibitor (SKI-II,
Chembridge30) or an isoform-selective SPK2 inhibitor (ABC294640, Apogee
Biotechnology Corporation31) at 100 mg/kg via oral gavage (dissolved in 100 μl of
polyethylene glycol 400). Dosage, solvent and route of administration were based on the
published pharmacokinetics17, 30, 31.

Transient middle cerebral artery occlusion (MCAo) model
MCA was occluded for 90 min using a commercially available coated monofilament
(Doccol Corporation) as reported previously8, 21, 26 (online supplement).

Expression studies
Mice were exposed to isoflurane (1% in 70% N2 + 30%O2, 3 hours) and sacrificed at the
following time points: immediately after isoflurane exposure (t = 0), or 1, 6, 24, 48 hours
after exposure. Mice were perfused transcardially with cold saline as described before26

(online supplement).

Primary culture of neurons and IsoPC
Primary cultures of neurons were exposed to IsoPC. The extent of glutamate-and hydrogen
peroxide-induced cell death in control and preconditioned neurons was compared (online
supplement).

Statistical analysis
Data are expressed as mean±SD. For infarct volumes and cell viability assay, statistical
difference between groups was calculated by ANOVA. Neurological deficit score was
compared using Mann-Whitney U test. Gene and protein expression levels were compared
to control by one-way ANOVA. p<0.05 was considered statistically significant.

Results
IsoPC reduced infarct volumes and improved neurological outcomes

IsoPC significantly protected brain from transient MCAo, as shown in a representative TTC
staining (Fig. 1A). Serial quantitative analysis of infarct volumes revealed that the induced
tolerance was observed at all rostro-caudal levels (Fig. 1B), resulting in a smaller total
infarct volumes in preconditioned mice (74.5±19.8 vs. 104.5±18.8 mm3, p<0.05, Fig. 1C).
IsoPC also improved neurological score (p<0.05) in mice at 24 hours after transient MCAo
(Fig. 1D). Median values of neurological deficit score of naïve and preconditioned mice
were 3 and 2 respectively.

Expression of SPK1 and SPK2
In isoflurane-preconditioned mice, cortical spk2 mRNA was up-regulated (peak level of
approximately 2.4 fold increase at t=0 and 1 hour) in preconditioned mice (Fig. 2A). SPK2
protein was rapidly up-regulated (about 1.7 fold increase at t=0, i.e. immediately after the 3-
hour isoflurane exposure) and the peak SPK2 level was found at 1 hour after isoflurane
exposure (2.7 fold increase). The up-regulated SPK2 expression was still 2.2 times higher
than control at 24 hours (the time at which MCAo was induced) (Fig. 2B). In contrast,
cerebral SPK1 mRNA (p=0.467) and protein (p=0.053) expression remained unchanged at
the different time points examined after IsoPC.
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Pharmacological approaches
We first established that infarct volumes were unaffected in naïve mice treated with a
specific SPK inhibitor (SKI-II at 100 mg/kg, oral gavage) or vehicle (PEG400) 24 hours
before cerebral ischemia (Fig. 3A). SKI-II treatment (15 min before isoflurane exposure)
abolished the protective effect of preconditioning, resulting in infarct volumes comparable
to those seen in naïve mice (111.9±22.6 vs. 107.2±12.8 mm3 in naïve, Fig. 3A). SKI-II
treatment also prevented IsoPC-induced improvement in neurological outcomes (Fig. 3B).

ABC294640 is a novel isoform-selective inhibitor for SPK231. In a preliminary study, we
investigated whether this compound was neuroprotective and found similar infarct volumes
in mice treated with 100 mg/kg ABC294640 either 24 hours before MCAo, or 30 min after
reperfusion (see supplementary figure 1).

Pretreatment with ABC294640 15 min before isoflurane exposure blocked the protective
effect of IsoPC; infarct volumes were similar in IsoPC mice treated with ABC294640 and
naïve mice (99.0±17.9 vs. 111.5±19.1 mm3, Fig 3C). ABC294640 also blocked the
improvement in neurological score in preconditioned mice (Fig. 3D).

Genetic tools
The circle of Willis did not show obvious differences in the three mouse strains investigated
and naïve wild-type. The change in relative cerebral blood flow during MCAo and
reperfusion were similar (supplementary table 3), and SPK1−/− and SPK2−/− mice had
similar infarct volumes (104.5±15.3, 98.5±18.2 and 91.9±15.5 mm3 respectively,
Supplementary figure 2). IsoPC reduced infarct volumes in SPK1−/− mice (69.4±10.9 vs.
98.5±18.2 mm3, p<0.005, Fig. 4B) by 30%, comparable to that observed in WT mice. In
contrast, infarct volumes in naïve and preconditioned SPK2−/− mice did not differ
(91.9±15.5 vs. 84.9±11.9 mm3, Fig. 4B).

In vitro IsoPC
The extent of cell death was measured by MTT assay. Glutamate (Fig. 5A) and H2O2 (Fig.
5B) induced cell death in primary culture of mouse cortical neurons, which were
significantly prevented by IsoPC. This protection was not observed when cells were
pretreated (30 min before IsoPC) with 1 μmol/L SKI-II or 10 μmol/L ABC294640.

The degree of cell death was also quantified by Hoechst 33342 staining (Supplementary Fig.
3). Neurons with condensed nuclei (i.e. undergoing apoptosis) were counted (Fig. 5C),
providing results similar to MTT measurements.

SPK2 – a general mediator for cerebral preconditioning
Hypoxic preconditioning significantly reduced infarct volumes in WT mice (64.8±26.7 vs.
104.5±15.3 mm3, p<0.01, Fig. 6A), whereas infarct volumes were similar in naïve and
preconditioned SPK2−/− mice (91.9±15.5 vs. 89.1±14.4 mm3, Fig. 6A). Neurological
outcome was significantly improved in hypoxia-preconditioned WT mice, but not in
SPK2−/− mice (Fig. 6B). Cerebral spk2 mRNA level was up-regulated (Fig. 6C). Western
blot revealed an elevated SPK2 protein expression starting at 2 hours, and maintained up to
72 hours after HPC (Fig 6D).

Discussion
Cerebral preconditioning elicited a global neuroprotective effect and reduced infarct
volumes. We observed up-regulated cerebral SPK2, but not SPK1 protein expression in
preconditioned mice, suggesting that the former isoform may play a role in preconditioning.
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Indeed, we also show that the reduced infarct volumes and improved neurological outcomes
are absent in mice treated with a selective SPK2 inhibitor or in mice lacking SPK2. As SPK
inhibition blocked IsoPC-induced tolerance in primary neurons, we conclude that up-
regulation and activation of neuronal SPK2 is essential in cerebral preconditioning and
protects the brain against ischemic injury and cell death.

The two SPK isoforms share high sequence homology (80% amino acid homology), yet
differ in the central regions and N-termini32. SPK1 and SPK2 show different subcellular
localizations and enzymatic properties, as well as different expression in various tissues32.
We have previously observed that the SPK2 isoform predominates in different regions and
cell types in the mouse brain26. But SPK1 is the more abundant isoform in renal proximal
tubules and cardiomyocytes, and it was shown to be up-regulated and activated in
preconditioning in the kidney and heart16, 17, 25. In contrast, an effect of SPK2 activation in
preconditioning has been reported in one study of brain ischemia, which suggests a role of
cerebral microvessel SPK2 in hypoxia preconditioning8. This study reported that SPK
inhibition abolished the induced ischemic tolerance8. However the SPK inhibitor used in this
study, dimethylsphingosine, is known to inhibit the SPK1 isoform31, 33, and possibly other
enzymes, such as protein kinase C25. Following up on this study, we used knockout mice
lacking either one of the SPK isoforms and a new selective SPK2 inhibitor, ABC294640,
which dose-dependently inhibits SPK2 with an IC50 of approximately 60 μmol/L, without
affecting the activity of SPK1 at concentrations up to at least 100 μmol/L31. Taken together,
our study adds further support to the notion that SPK2 is a general mediator in cerebral
preconditioning in vivo and in vitro.

The present data reveal a rapid and sustained up-regulation of SPK2 protein expression in
cortical samples in preconditioned mice (~2.2-fold increase at 24 hours after IsoPC and
~2.5-fold increase at 72 hours after HPC). Taking into account that the published therapeutic
windows for IsoPC and HPC are 24 hours5, 13, 14 and 48–72 hours7, 29 respectively, our data
strongly suggest a functional role of SPK2 in mediating preconditioning. Interestingly,
Wacker et al., 2009 showed an elevated SPK2 protein expression (1.7-fold increase at 2
hours after HPC) in microvessel-enriched brain extracts, suggesting that the endothelium of
cerebral microvessels is the major cellular source for SPK during hypoxia preconditioning8.
However, this SPK2 up-regulation was transient, as it declined back to baseline in 24 hours
in hypoxia-preconditioned mice8. We previously observed an elevated spk2 mRNA
expression in neurons treated with oxygen-glucose deprivation26. We now show that
selective SPK2 inhibition (by ABC294640) suppresses the neuroprotective effect of IsoPC
in these cells, suggesting an autocrine effect of neuronal SPK2 in response to
preconditioning. Cerebral preconditioning requires gene and protein synthesis34. IsoPC up-
regulates anti-apoptotic protein (Bcl-2)13 and vascular endothelium growth factor (VEGF)35

in brain, while hypoxia inducible factor-1alpha (HIF1α) has been shown to mediate HPC36.
As a master regulator of transcription, HIF binds to hypoxia responsive elements of
hypoxia-inducible genes32. Hypoxia up-regulates spk1 in cancer37 and endothelial cells38.
However, less is known about the transcription regulation of spk2. In attempt to explore the
role of HIF1α in cerebral preconditioning, we find an up-regulated HIF1α in cerebral cortex
after IsoPC in wild-type mice, but not in SPK2−/− (Supplementary figures 4–5). This
supports the previous observations that SPK is activated by hypoxia and SPK stabilizes
HIF1α expression.39, 40 Taken together, our findings pinpoint the crucial role of neuronal
SPK as a universal regulator that mediates preconditioning and protects the brain against
ischemic injury.

Cerebral ischemia/reperfusion triggers acute cellular injury (for example neuronal cell death
took place within hours) and late phase tissue damage (such as inflammatory responses
progress and peak in days after ischemic insult)18. Although numerous reports support the

Yung et al. Page 5

Stroke. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



notion that preconditioning could protect brain cells (including neurons, endothelial cells
and astrocyte) from cell death, there is limited information regarding the role of SPK in
mediating the acute neuroprotection by preconditioning. To this end, we evaluate the effects
of cerebral preconditioning on stroke outcomes (infarct volumes and neurological deficit
score) at 24 hrs after transient MCAo. It will be interesting to follow-up on the potential
roles of SPK in mediating long-term neuroprotection (such as angiogenesis and
neurogenesis) that may lead to improved motor function and recovery.

A review of preconditioning literature finds that a large number of pathways seem to
mediate this phenomenon1, 2. This suggests that these pathways might act via common
mediators to induce tolerance. Interestingly, SPK is known to be activated by a wide array of
stimuli, including cell depolarization, G protein receptor agonists (muscarinic receptor
agonists, formyl peptide, nucleotides, bradykinin, cannabinoids, lysophosphatidic acid and
S1P), agonists at receptor tyrosine kinases (PDGF, EGF, NGF, VEGF), cross-linking of
immunoglobulin receptors, TNF-α, TGF-β, interleukins, Ca2+ increasing agents and phorbol
ester41. Furthermore, sphingolipids stimulate many signaling pathways (including HIF
signaling39, 40, see above) and modulate most cellular functions42. It is therefore tempting to
speculate that sphingolipid signaling plays a central role in the many pathways involved in
preconditioning.

In summary, the present data demonstrates that SPK2 is a universal mediator in isoflurane-
and hypoxia-induced preconditioning. Further investigation of the cross-talk between the
SPK/S1P axis and HIF is likely to provide insights into the endogenous signaling that could
protect the brain against ischemia/reperfusion injury.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Effect of isoflurane preconditioning on infarct volumes and neurological deficit scores in
mice that underwent a 90-min middle cerebral artery occlusion (MCAo). A, Representative
pictures of 2,3,5-triphenyltetrazolium chloride (TTC)-stained coronal brain slides (1 mm-
thick each) from naïve and preconditioned (IsoPC) mice. B, Infarct areas in consecutive
coronal slices. C, Cortical and subcortical infarct volumes in naïve and preconditioned mice
were measured and compared. Data are mean±SD (n=8). P value for cortical, subcortical
and total infarct volumes were 0.063, 0.041 and 0.026 respectively. D, Neurological deficit
was evaluated and scored based on four categories: grade 0: no observable neurological
deficit (normal); grade 1: failure to extend forepaw fully on lifting the whole body by the
tail (mild); grade 2: circling to the contralateral side (moderate); grade 3: falling to one side
(severe); grade 4: no spontaneous walking, depressed level of consciousness (very severe).
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Figure 2.
Expression of sphingosine kinase isoforms in mouse cortex extracts after isoflurane
exposure. A, spk1 and spk2 mRNA levels were normalized to 18S RNA (n=3). B, Protein
levels were normalized to loading control (β-actin) and fold changes compared to control
were calculated (n=4). Data are mean±SD. Expressions were compared to naïve control by
one-way ANOVA and p values as indicated.
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Figure 3.
Treatment with two SPK inhibitors abolished the protective effects of isoflurane
preconditioning. A specific SPK inhibitor (SKI-II, A and B) and an SPK2 isoform-selective
inhibitor (ABC294640, C and D) were used to verify the role of SPK2 in cerebral
preconditioning. Mice were treated with either inhibitor at 100 mg/kg or vehicle (PEG400)
by oral gavage at 15 min before preconditioning (IsoPC) and allowed to recover for 24 hours
before a 90 min-MCAo. Neurological scores were evaluated at 24 hours after reperfusion (B
and D). Data are mean±SD (n=8). *** indicates p<0.001 when compared to naïve mice. NS
indicates not statistically significant.
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Figure 4.
Effect of IsoPC on infarct volumes in SPK knockout mice. A, Representative pictures of
TTC-stained brain sections. B, Summarized data for infarct volumes from naïve and
preconditioned mice lacking either SPK isoforms. Data are mean±SD (n=7–8). ** indicates
p<0.01 compared to naïve SPK1−/− mice.
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Figure 5.
SPK2 mediates isoflurane preconditioning in primary culture of mouse cortical neurons.
Glutamate- (A) and hydrogen peroxide-induced (B) cell death in naïve and preconditioned
(IsoPC) neurons were measured by MTT assay. Neurons were pre-treated with SPK
inhibitors (0.3 and 1 μmol/L SKI-II or 3 and 10 μmol/L ABC294640) 30 min before IsoPC.
C, percentage of cell death was summarized. Bars are mean±SD (n=4). Statistical
significance among the groups was measured and calculated as shown. *p<0.05, **p<0.01,
***p<0.001 compared to corresponding naïve control. Glut, glutamate; H2O2, hydrogen
peroxide; ABC, ABC294640
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Figure 6.
SPK2 also mediates hypoxic preconditioning (HPC). A, Infarct volumes in naïve and
preconditioned wild-type (WT) and SPK2−/− mice (n=8, **p<0.01). B, Neurological score
was evaluated at 24 hours after MCAo. C, spk2 mRNA level were normalized to 18s (n=4).
D, SPK2 expression was quantified (n=3). Data are mean±SD. mRNA and protein levels
were compared to control by one-way ANOVA.
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