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Cell adhesion to extracellular matrix (ECM) participates in various biological processes, such as cell survival, proliferation, differ-
entiation, and migration. Since these processes are essential for keeping homeostasis, aberration of these processes leads to a variety
of diseases including cancer. Previously, we found that a peptide derived from tenascin- (TN-) C, termed TNIIIA2, stimulates
cell adhesion to ECM through activation of β1-integrin. It has been shown that TNIIIA2 can modulate cell proliferation and
differentiation. Interestingly, TNIIIA2 could not only enhance cell proliferation but also induce apoptotic cell death, depending on
cellular context. In this review, we show the function of the peptide TNIIIA2 in cell survival, proliferation, and differentiation and
refer to the possibility of new strategy for tumor suppression by regulating cell adhesion status using the ECM-derived functional
peptides.

1. Introduction

Tenascin- (TN-) C, one of extracellular matrix (ECM) pro-
teins, is expressed predominantly during embryogenesis,
wound healing, and neoplastic processes. Since TN-C mRNA
is alternatively spliced within the fibronectin type III-like
(FN-III) repeats (Figure 1), various isoforms of TN-C
could be generated. It has been identified that TN-C shows
multifunctional properties including effects on cell adhesion,
migration, proliferation, survival, and differentiation. Since
this ECM protein works as a modulator of cell-matrix
interaction but does not seem to contribute directly to
the structural elements formation, TN-C is classified as a
member of the matricellular protein family. Matricellular
proteins regulate cellular function and matrix production
through multiple interactions with their cellular recep-
tors, and through modulating expression and activity of
cytokines, growth factors, and proteinase [1, 2]. For cell

adhesion, the functions of TN-C are particularly complex;
the TN-C substrate supports attachment of some cell types
but is nonadhesive or even repulsive for other cell types.
Various domains of TN-C molecule, including alternative
splicing domains, have been implicated in its multifunctional
properties. However, the details of their contribution to the
adhesion modulatory effects of TN-C are still unclear.

The ECM proteins often harbor functionally active sites
within their own molecules. Since these cryptic active sites
(matricryptic sites) are disclosed by proteolytic degradation
with inflammatory proteinases, the relations between the
exposure of matricryptic sites and the development of
various diseases have been investigated. We previously found
a 22-mer peptide termed FNIII14 from fibronectin (FN),
which plays an important role in promoting cell adhesion.
FNIII14 strongly suppresses FN-mediated cell adhesion by
inhibiting the activation of α4β1 (VLA-4) and α5β1 (VLA-5)
integrin [3, 4]. It has been determined that the antiadhesive
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Figure 1: Schematic illustration of tenascin-C domain structure. Sequences analogous to antiadhesive peptide, FNIII14 (YTIYVIAL), are
presented in alternative splicing region of TN-C.

activity of FNIII14 depends on its C-terminal amino acid
sequence, YTIYVIAL [3]. We thought that this matricryptic
antiadhesive site should be exposed by either FN degradation
with matrix metalloproteinase- (MMP-) 2, or FN interaction
[5]. Subsequently, we found several sequences similar to
the YTIYVIAL sequence of FN in TN-C. Two analogous
sequences, YTITIRGV and YTIYLNGD, are present in the
FN-III repeat A2 of the alternative splicing region and the C-
terminus fibrinogen-globe, respectively (Figure 1). Surpris-
ingly, we observed that a 22-mer TN-C peptide containing
YTITIRGV, termed TNIIIA2, stimulates cell adhesion to FN
by inducing conformational and functional activation of β1-
integrin. We also observed that the active site of TNIIIA2,
which is also cryptic and exposed by MMP-2 processing,
may induce a lateral interaction of β1-integrin with the cell
surface heparan sulfate proteoglycans (HSPGs), including
syndecan-4 ectodomein. Additionally, it has been reported
that cytokine-stimulated adhesion via VLA-4 and VLA-5 to
FN is rapid (reaching a max within 30 minutes) but transient
(returning to basal levels after several hours) [6]. In sharp
contrast, TNIIIA2 has the ability to strongly activate β1-
integrins and to sustain this activated status, probably due
to stabilization of the active β1-conformation through lateral
association with syndecan-4 [7]. Moreover, we observed that
TNIIIA2 has a potential to induce apoptotic cell death in
nonadherent tumor cells, whereas this peptide also induces
aggressive cell growth in nontransformed adherent cells. The
evidence from the series of studies with TNIIIA2 shows the
possibility that the effect of TN-C in tumor progression has
close relation with the behavior of TNIIIA2. In this review,
we describe in detail about current knowledge of the effect of
TNIIIA2 on various tumor cell phenotypes.

2. Host-Beneficial Effects of TNIIIA2 in
Hematopoietic Progenitor Cell Types

2.1. Induction of Apoptotic Cell Death in Leukemic Cell
by TNIIIA2. In ordinary proliferation and survival of
hematopoietic stem and progenitor cells, it has been reported
that FN plays an important role via the FN-receptors, such
as VLA-4 and VLA-5 [8]. Like their normal counterparts,
transformed hematopoietic progenitor cells need signals
from the FN for their survival and proliferation during
their malignant progression [9–11]. This survival effect of
FN/ECM interaction is due to prevention of apoptosis [12,

13]. Additionally, increasing evidence has demonstrated that
adhesion of hematopoietic tumor cells to FN via VLA-4 and
VLA-5 confers a multidrug resistance phenotype, commonly
referred as cell adhesion-mediated drug resistance (CAM-
DR) [14]. These facts indicate that integrin signal is impor-
tant for regulating tumor progression.

Constitutive expression of TN-C has been observed
on lymphoid tissues, such as adult bone marrow and
lymph nodes [15, 16]. It has also reported that the expres-
sion of TN-C is transiently upregulated in pathological
states, including inflammation and tumorigenesis [17, 18].
Therefore, lymphoid tissues of patients with hematopoietic
malignancy should show highly increased expression of TN-
C. Since TNIIIA2 can induce cell adhesion to FN also in
hematopoietic tumor cells (Figure 2(a)), it is easily presumed
that this peptide may induce enhancement of cell survival
and proliferation. However, when hematopoietic tumor cells
are forced to adhere to FN substrate by TNIIIA2, these cells
undergo apoptotic cell death (Figures 2 and 3). We found
that VLA-4 expression is essential for TNIIIA2-induced
apoptosis in hematopoietic tumor cell lines. For example,
U937 cells, expressing both VLA-4 and VLA-5, underwent
apoptosis only when adhered to FN fragments containing
the VLA-4-binding sites, and this apoptosis was specifically
abrogated by the VLA-4 antagonist, but not by VLA-5 agonist
[19]. These results suggest that TNIIIA2-induced forced
adhesion to FN via α4β1 integrin leads to apoptotic cell death
in hematopoietic tumor cells.

Our observation seems to be inconsistent with the theory
“CAM-DR”. However, there have been also several reports
demonstrating the negative effects of cell adhesion on cell
survival. Integrin-mediated adhesive interaction with FN was
shown to lead apoptosis in myeloid [20, 21] and erythroid
progenitor cell lines [22]. To explain this discrepancy, we
hypothesized that a moderate adhesion to FN may be favor-
able for continuous survival in hematopoietic tumor cells.
We previously demonstrated that leukemic cell adhesion to
bone marrow FN via VLA-4 generated CAM-DR, which
could be a major cause of recurrence in acute leukemia
patients [23, 24]. Additionally, we recently demonstrated
using in vitro and in vivo experiments that combination
therapy with an anticancer drug and antiadhesive peptide,
FNIII14, which is capable of inactivating β1-integrins, effec-
tively overwhelms the CAM-DR of AML [25]. In a series of
previous reports investigating CAM-DR demonstrated that
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Figure 2: Effect on cell growth of forced adhesion of Ramos cells to FN. (a) shows the results of cell adhesion assay. The percentage of adhere
cells are shown relative to the total number of cells seeded into the well. In (b), the effect of induced adhesion to FN on Ramos cell survival
was shown. CS-1: connecting segment 1 peptide. (figures were modified from Figure 1 of [19]). ∗P < 0.05 versus untreated control.

hematopoietic tumor cells show chemoresistancy through
spontaneous adhesion to FN without addition of integrin
activators [14, 24, 26, 27]. It has been shown that spon-
taneous adhesion of hematopoietic tumor cells is induced
mainly by β1-integrin activation through the interaction
between cytokine and G protein-coupled receptor (GPCR)
[28]. Additionally, it has also been reported that cytokine-
stimulated adhesion through VLA-4 and VLA-5 to FN is
rapid (reaching a max within 30 minutes) but transient
(returning to basal levels after several hours) [6]. Therefore,
it appears likely that CAM-DR may be induced through weak
or moderate adhesion to FN. In sharp contrast, TNIIIA2 has
the ability to strongly activate β1-integrins and to sustain
this activated status. We suppose that this difference in the
state of β1-integrin activation should produce the difference
in adhesion-induced cellular responses.

How does TNIIIA2 transmit their signal into hematopoi-
etic tumor cells? We previously found that TNIIIA2 requires
syndecan-4 as a membrane receptor for activation of β1-
integrin [7]. Actually, syndecan-4 expression, besides VLA-4,
was essential for TNIIIA2-induced apoptosis [19]. Syndecan-
4 probably contributes to the sustained activation of VLA-
4 through a lateral association with it [7]. Interestingly,
TNIIIA2 exhibited no remarkable pro-apoptotic effects on
normal peripheral blood cells, such as neutrophils, mono-
cytes, and lymphocytes. It is well known that expression of
syndecans is highly regulated with respect to developmental
expression and cell-type specificity. Actually, it has been
reported that very little syndecan-4 is present on poly-
morphonuclear leukocytes and peripheral blood mononu-
clear cells (PBMCs) [29, 30]. Moreover, we tested several
hematopoietic tumor cell lines with various expression levels
of VLA-4 and syndecan-4 and suggest that syndecan-4 is

a key molecule in adhesion-regulated apoptosis induced by
TNIIIA2 administration (Table 1).

Although the molecular mechanisms underlying
TNIIIA2-induced apoptosis were not defined in detail,
these data clearly showed that integrin-mediated adhesion
plays a negative role in the survival of hematopoietic
progenitor/tumor cells. TNIIIA2 activity embedded in TN-C
molecule could contribute, once exposed, to preventing
prolonged survival of hematopoietic malignant progenitors.
Further study is needed to examine whether the TNIIIA2-
related matricryptic site is exposed at its functional level
in lymphoid tissues with hematopoietic malignancy.

2.2. Acceleration of Erythroid Differentiation by TNIIIA2.
Besides hyperproliferation, incomplete differentiation of
blood cells is the major phenomena observed in myeloid
leukemia. Similar to the proliferation, differentiation of
hematopoietic stem and progenitor cells occurs in the bone
marrow and fetal liver [8, 31–35]. Although cytokines and
growth factors are strong regulator of hematopoiesis, it is
generally accepted that the adhesive interactions between
hematopoietic stem/progenitor cells and the microenviron-
ment also influence hematopoiesis. Stromal cells of the bone
marrow and fetal liver form a hematopoietic microenvi-
ronment, called a “niche”. This microenvironment niche
plays a pivotal role in the regulation of proliferation and
differentiation of hematopoietic stem and progenitor cells.
In addition to stromal cells, ECM proteins in lymphoid
tissues, such as FN, TN, collagen, laminin, and proteoglycans
(PGs), have been implicated as essential components of
the microenvironment that regulates hematopoiesis. Among
these macromolecules, FN is known as the most important
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Figure 3: Apoptosis was induced on Ramos cells with TNIIIA2 administration. (a) Hoechst staining of Ramos cells treated with TNIIIA2.
(b) Effect of caspase inhibitors on Ramos cell survival, treated with TNIIIA2. (c) Cell surface exposure of phosphatidylserine on Ramos cell
treated with TNIIIA2 (figures were modified from Figure 2 of [19]). ∗P < 0.05 versus TNIIIA2 single treated sample, ∗∗P < 0.05 versus
untreated control.

protein of the microenvironment niche in the bone marrow
and fetal liver [36–40].

In the case of erythropoiesis, the importance of the cell
adhesion of erythroid progenitors to FN via the FN-receptors
VLA-4 and VLA-5 has been demonstrated [22, 40–44]. A
number of previous studies demonstrated direct adhesion of
erythroid progenitor cells to FN. FN functions as an adherent
substrate scaffolding erythroid progenitor cells to support
their survival and proliferation [22, 40]. Furthermore, it
has been postulated that adhesive interaction with FN via
FN receptors contributes to the regulation of erythroid
differentiation [22, 40–44]. In particular, the importance
of VLA-4-mediated adhesion to FN and/or VCAM-1 on
stroma cells has been implicated by in vitro and in vivo
studies using antagonist for VLA-4 and VLA-5 [22, 40–44].
However, the substantial role of these FN receptors and their
functional assignment in erythroid differentiation were not
fully understood.

We recently reported that hemin-induced erythroid
differentiation was greatly enhanced when K562 cells were
forced to adhere to FN by activating VLA-5 with TNIIIA2
(Figures 4 and 5). Since FN receptor antagonists abrogated
the acceleration of erythroid differentiation, the stimulatory
effect of TNIIIA2 on erythroid differentiation might be
dependent on adhesion of K562 cells to FN (Figures 4, 5(a)
and 5(b)). The adhesion-dependent acceleration of hemin-
induced erythroid differentiation may be responsible for
the VLA-5-mediated adhesion to FN, because K562 cells
reportedly express only VLA-5 as the FN receptor [45, 46].
Nevertheless, the stimulatory effect of TNIIIA2 on hemin-
induced erythroid differentiation was abrogated not only
by a VLA-5 antagonist (RGD peptide) but surprisingly also
by a VLA-4 antagonist (CS-1 peptide) (Figure 5(c)). This
conflicting result was explained by the observations that
forced adhesion to FN resulted in the induction of VLA-4
expression in K562 cells [45].
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Figure 4: Adhesion of K562 cells to FN through α5β1 integrin activation. (a) Dose dependency of TNIIIA2-induced adhesion of K562 cells.
(b) Effects of antagonist for VLA5 (α-α5 Ab and RGD) and VLA4 (α-α4 Ab and CS-1) on TNIIIA2-induced adhesion to FN in K562 cells
(figures were modified from Figure 1 of [45]). ∗P < 0.05 versus untreated control, ∗∗P < 0.05 versus TNIIIA2 single treated sample.

Table 1: Expression level of cell adhesion-relating molecules (VLA-4, 5, and syndecan-4) and induced cell adhesion or apoptosis by TNIIIA2
or Mg2+ administration in fresh AML cells from patients, peripheral blood cells from healthy adults, and hematopoietic tumor cell lines (the
table was modified from [19]).

Cells
Expression (%) Adhesion Apoptosis

VLA-4 VLA-5 Syndecan-4 +TNIIIA2 +Mg2+ +TNIIIA2 +Mg2+

“Fresh AML cells”

Patient A 98.2 88.8 48.8 ++ ++ + ++

Patient B 97.5 98.5 9.5 − + − ++

“Peripheral blood cells”

Neutrophil 6.7 N.D. 3.2 − − − −
Monocyte 48.6 N.D. 2.0 − ++ − ++

Lymphocyte 40.5 N.D. 4.4 − ++ − +

“Cell lines”

B cell

Ramos 96.5 3.2 92.1 +++ ++ +++ ++

Raji 94.3 65.3 2.3 − ++ − ++

T cell

Jurkat 92.8 96.6 42.4 +++ ++ +++ ++

Erythroid

K562 9.3 97.2 66.7 +++ ++ − −
Myeloid

U937 98.1 98.2 87.5 +++ ++ ++ +++

HL60 99.8 99.7 75.3 +++ ++ ++ +

THP1 68.5 20.7 30.1 ++ ++ ++ +

THP1 (+PMA) 10.5 18.7 99.2 ++ ++ − −
Expression of VLA-4, 5 and syndecan-4 was evaluated by flowcytometric analysis.
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Figure 5: Adhesion dependent acceleration of hemin-induced erythroid differentiation of K562 cells. (a, b) Effect of TNIIIA2 on erythroid
differentiation of K562 cells, induced by hemin. Typical image of erythroid differentiation was shown in (a). (c) Effects of antagonist for
VLA5 (RGD) and VLA4 (CS-1) on TNIIIA2-induced acceleration of erythroid differentiation (figures were modified from Figures 2(a),
3(a), and 3(c) of [45]). ∗P < 0.05 versus Hemin single treated sample, ∗∗P < 0.05 versus Hemin and TNIIIA2 treated sample.

Several studies demonstrated that activation of p38
and/or JNK but not ERK is required for erythroid dif-
ferentiation induced by butyrate [47], erythropoietin [48],
hydroxyurea [49], or hemin [50], although another study
reported the involvement of ERK in erythroid differentiation
induced by hemin [51]. We also observed that the phospho-
rylation of p38, which was shown to play a crucial role in
hemin-induced erythroid differentiation and its acceleration
by TNIIIA2, was suppressed by antagonists for VLA-4 and -5
[45]. From these observations, we supposed that prolonged
adhesion to FN, mediated through VLA-5, induced VLA-4
expression in K562 cells and the resulting adhesive inter-
action of FN with newly expressed VLA-4 participated in
differentiation via phosphorylation/activation of p38 MAP
kinase, which was shown to serve as a signaling molecule
crucial for hemin-induced erythroid differentiation. It has
also been demonstrated that TN-C on bone marrow stromal
cells may play an important role in erythropoiesis [52].
As mentioned above, our observations suggest that the
peptide derived from TN-C, TNIIIA2, can accelerate hemin-
induced erythroid differentiation. TN-C is known to be

abundantly expressed in the stromal cells of immune organs
including the bone marrow [15, 16] and is susceptible to
proteolytic modification [53]. Therefore, it might be possible
that inducing the exposure of TNIIIA2 region works as a
beneficial therapeutic treatment reducing one of symptoms
in tumor, “poor differentiation”.

3. Hyperstimulation of Nontransformed Cell
Proliferation by TNIIIA2

It is well known that normal adherent cell types, such as
fibroblastic and epithelial cells, undergo apoptosis like cell
death when the β1-integrins of these cells lose the interaction
with ECM. This process is termed “anoikis” [54, 55] and
plays a fundamental role preventing dissemination of the
cells to inappropriate site. It is also well accepted that tumor
cells develop anoikis-resistance, resulting in acquisition of
metastatic ability. Thus, understanding the mechanisms how
tumor cells evade anoikis is important.

Recently, we found that detachment-induced cell death,
which was repressible by Z-VAD, general caspase inhibitor,
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Figure 6: TNIIIA2 protects cells from anoikis by activating the β1-integrin. (a) Time-course study of the effect of cell-detachment in
survival/proliferation of NIH3T3 cells. (b) Effect of inhibition of apoptosis (Z-VAD) or α5β1 integrin signal (anti-α5 Ab and RGD peptide)
in detachment-induced cell death (our unpublished observation).

was completely blocked by TNIIIA2 administration (Figures
6(a) and 6(b)). This antianoikis effect of TNIIIA2 was abol-
ished by inhibition of α5β1 integrin (VLA-5) (Figure 6(b)).
Activation of Akt and upregulation of Bcl-2 were observed
in consistent with inhibition of the detachment-induced cell
death by TNIIIA2 (data not shown). These results suggest
that TNIIIA2 has a potential to render cells resistant to
anoikis.

Platelet-derived growth factor (PDGF) works as a potent
mitogen for both untransformed and transformed mes-
enchymal cells. The binding of PDGF to its receptor PDGFR
induces the activation of its intrinsic kinase, which infers
activate the Ras/MAP kinase pathway [56]. However, it has
also been established that cell proliferation does not occur
unless the cells are adhered to the extracellular matrix (ECM)
via integrins [57]. Thus, adhesion receptor integrins, as well
as growth factor receptors, play an indispensable role in
cell proliferation. The collaboration of signaling by integrin
ligation with signaling by growth factor receptors is known to
enable to amplify the magnitude and duration of activation
status in the MAP kinase/ERK pathway.

In our investigation, TNIIIA2 showed the ability to
accelerate PDGF-induced proliferation of NIH3T3 cell on
FN-coated culture dish (Figure 7). Similar to the effect of
TNIIIA2, 9EG7, an anti-β1 integrin monoclonal antibody,
which has the ability to activate β1-integrin, also enhanced

the PDGF-dependent cell proliferation. Inhibition of α5-
integrin mediated cell adhesion, but not of α4- and β3-
integrin, could attenuate the effect of TNIIIA2 (unpublished
observations), suggesting that stimulation of NIH3T3 cell
proliferation by TNIIIA2 is due to activation of β1-integrins.
In this condition, it was also observed that stimulation
of NIH3T3 cell proliferation by TNIIIA2 promotes the
autophosphorylation of PDGFR, in which both PDGFR and
β1-integrin were colocalized in caveolae (data not shown).
These observations suggest the existence of crosstalk between
ECM signaling and PDGF signaling in cell proliferation.
Therefore, the antagonistic drug targeting TNIIIA2-related
active site in TN-C molecule, such as anti-TNIIIA2 antibody,
might become a new therapeutic drug candidate for diseases
relating hyperstimulated cell growth, such as in tumor pro-
gression.

4. Summary and Future Perspectives

Besides the developing cancer, several researchers recently
reported the parallel relationship between TN-C expressions
and severity of various diseases, such as chronic liver disease,
cardiac infarction, and arthritic joint disease [58–60]. In fact,
it has been shown that the ECM proteins, such as TN-C,
harbor functional sites within their molecular structure, and
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Figure 7: TNIIIA2 accelerates PDGF-induced cell proliferation.
PDGF-induced cell growth was enhanced by addition of TNIIIA2,
as well as administration with integrin activators (anti-β1 and
MgCl2) (our unpublished observation).

these cryptic active sites are disclosed by proteolytic degra-
dation with inflammatory proteinases, including MMPs [5,
61, 62]. Thus, the peptide TNIIIA2 might become a powerful
tool for understanding these diseases through the concept
“signaling disorder by unusual cell adhesion”.

In the case of cancer progression, we mentioned in
this review that TNIIIA2 shows a host-beneficial effect in
leukemic situation by inducing apoptosis and/or differenti-
ation. Consistent with our results, it has been reported that
the loss of integrin-mediated adhesion resulted in decreased
sensitivity to chemotherapy in melanoma [63, 64]. On the
other hand, Stupack et al. have reported that unligated
integrins trigger apoptotic cell death without any death-
inducing signals [65]. Moreover, Ileć et al. have also been
reported that integirin-mediated adhesion can promote cell
survival although these cells are exposed to stress-associated
apoptotic signals [54]. From these facts, we presumed that
the ability of TNIIIA2 to induce strong and sustained
activation of β1-integrins is the key factor in modulating
cell survival. We already found a cryptic peptide, FNIII14
from FN, and reported that simultaneous administration of
this peptide itself with anticancer drug effectively overcomes
CAM-DR of AML [25]. In a series of observations using
TNIIIA2, this peptide might be capable for regulating cell
survival, growth, and differentiation via controlling cell
adhesion to ECM. Since tumor cell is characterized by its
immortality, hyper-proliferation, and poor differentiation,
there is a possibility that the peptide TNIIIA2 might become

a useful therapeutic target for cancer treatment. However, at
present, several questions still remain unclear. For example,
the regulatory mechanism of TNIIIA2 exposure is not fully
explored. Effect of TNIIIA2 or its antagonist in vivo should
also be tested using tumor transplantation model. Further
examinations are expected.
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