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Abstract
This paper presents an approach for joint segmentation and deformable registration of brain scans
of glioma patients to a normal atlas. The proposed method is based on the Expectation
Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a
process which modifies the normal atlas into one with a tumor and edema. The modified atlas is
registered into the patient space and utilized for the posterior probability estimation of various
tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior
probabilities of tissue labels and the tumor growth model parameters. We have applied this
approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-
CE, T2 and FLAIR ) and validated the result by comparing them to manual segmentations by
clinical experts. The resulting segmentations look promising and quantitatively match well with
the expert provided ground truth.
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1 Introduction
Statistical atlases constructed from MR scans are powerful tools for aiding the analysis and
understanding of brain tumor development. The atlases are used for tasks such as learning
the relative location of tumors with respect to healthy tissue [4] or guiding the automatic
segmentation of brain tumor scans [13]. An important component in the construction and
application of the atlases is the registration of brain tumor MR scans to the a common
coordinate system. This coordinate system is often represented by a MR scan of a healthy
subject due to the subject specific nature of brain tumors. Although a plethora of methods
for image registration exists [2], this registration task is generally considered very
challenging as there is no correspondence for the pathology in the healthy scans. In addition,
the healthy tissue in the brain scan is often severely deformed by the mass-effect of the
tumor so that its shape is very different from that in the healthy brain scan. In this paper, we
address this issue by developing a new approach for brain tumor registration that explicitly
models the mass effect of the pathology.

A popular approach for registering brain images to an atlas coordinate system is to mask out
the pathology and then perform the registration to the healthy tissue [11, 13, 14]. Alternative
methods use atlas seeding, in which a tumor is seeded in the healthy (atlas) scan [10]. Both
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of these frameworks essential ignore edema as they fail to explicitly model the diffusion of
the tumor cells into the neighboring healthy tissue. This limitation was addressed by [1],
whose registration incorporated a biophysical (diffusion-reaction) tumor growth model
simulating the mass-effect and diffusion caused by the pathology. However, the approach
requires accurate segmentations of the pathology which are difficult to produce
automatically. We now derive a joint atlas registration and segmentation framework to
circumvent this problem.

Similar to joint segmentation and registration methods targeted towards healthy brains [6,
8], our method iteratively estimates the posterior probabilities of tissue classes and registers
the atlas via the EM algorithm. However, our approach also computes the diffusion-reaction
parameters of the tumor growth model and the coordinates for atlas seeding. These
additional parameters greatly increase the complexity of the optimization problem compared
to [6,8] which required us to carefully adopt the EM model to this specific application. The
remainder of this paper is organized as follows: In Section 2 we review the diffusion-
reaction model and describe the construction of the atlas. The atlas is then used in Section 3
to guide our joint registration and segmentation framework. In Section 4 we present our
quantitative evaluation and results of the application to sample patients, and conclude the
paper in Section 5.

2 Atlas Generation
In this section, we use a glioma growth model to embed a tumor in an originally healthy
atlas. We define the atlas as a set of probability maps that specify the spatial distribution of
brain tissues (see Fig.1.(a)-(c)). This modified atlas then guides the EM algorithm in
registering and segmenting of subjects with glioma.

As in [1], a model of the glioma is implanted into the healthy brain scan by artificially
seeding a tumor in the healthy atlas and growing it using the biophysical model proposed in
[3]. Let ΩA and [0, T] denote the space of atlas and a time interval for growing the tumor.
The evolution of tumor probability πTU (x, t) in ΩA × [0, T] is determined by the following
diffusion-reaction model:

(1)

where Δ is the differential operator, u is the mass effect displacement field caused by the
presence of the tumor, v = ∂u/∂t is the relevant velocity field, p is a scalar which determines
the strength of the tumor mass effect, D is a spatially variable function capturing diffusion
coefficient within white (DWM) and gray matters (DGM), and ρ is proliferation coefficient.
We fix ρ = 0.025 and DGM = 1e−10 (the default values of [3]) as the method is relatively
insensitive to these parameters. Now, if we denote with x0 the initial seed location of the
tumor and with d the voxel size of the ΩA, then our tumor growth model is completely
defined by the parameters q ≡ {x0, p, DWM, T} given the initial conditions for the u(x|q, t =
0) = 0 and πTU (x|q, t = 0) = exp(−(x − x0)2/d2).

Once we solve the above equation for u and πTU, we combine those results at t = T with the
original atlas of healthy brains  to infer tissue probability πX(·|q) for tissue X. To
simplify notation, we omit t = T from u and πTU and simply denote with πTU(x|q) the spatial
probability map of glioma being present at location x ∈ ΩA at time T and u(x|q) the
corresponding mass effect at that location and time. We then construct πX(·|q) for GM and
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CSF by deforming the corresponding spatial probabilities  of the healthy population via
the mass-effect u and weighing them with (1 − πTU):

(2)

We construct the spatial probability map of edema πED based on the assumption that edema
is in close proximity of the tumor, which we model via the Heaviside function H(πTU(x))
(H(a) = 0 for a ≤ 0 and H(a) = 1 otherwise), and be confined to the mass deformed white
matter of the healthy brain, which we model with . Thus:

(3)

We define the subject specific spatial probability map of the white matter as:

(4)

A sample set of the generated probability maps πTU(·|q), πED(·|q) and πGM(·|q) is shown in
Fig.1, illustrating the impact of the mass effect and tumor invasion in originally healthy
atlas.

Finally, we note that we use the same probability map for enhancing tumor and necrosis as
our tumor growth model does not distinguish between these two tissue types. In addition, we
simplify notation by denoting the probability maps generated in this section with πk(·|q), 1 ≤
k ≤ K = 6.

3 Joint Segmentation-Registration
We now describe the framework for joint segmentation-registration which is guided by the
atlas defined in the previous section. We assume that a set of J co-registered,
inhomogeneity-corrected, and skull stripped MR images is given in the reference (fixed)
domain ΩF so that for any sample voxel x ∈ ΩF, y(x) ≡ [y1(x), ⋯ , yJ(x)]T is an independent
observation vector that corresponds to the J image intensities. We then define observation
set as: Y = {y(x)|x ∈ ΩF}. The goal of this section is to derive an algorithm for estimating
the intensity distributions of each structure Φ, the atlas coefficient q, and the deformation
between the atlas and the reference domain h.

We further specify Φ by assuming the conditional probability distribution function (pdf) of
each y(x) is a weighted mixture of K Gaussians:

 where fk ~ N(mk, Σk) is a multivariate
Gaussian distribution with mean mk and the covariance matrix Σk, and Φ ≡ {m1, ⋯ , mK,
Σ1, ⋯ , ΣK). The mixture weights are determined by πk(h(x)|q) which are originally defined
in the atlas space ΩA (see Section 2) and registered to the patient space through h : ΩF →
ΩA, a vector field mapping the atlas into the patient space. Based upon these assumptions,
we write the conditional likelihood of Y as: f(Y|Φ, h, q) = Πx∈ΩF f(Y|Φ, h, q, x).

Our problem of joint segmentation registration and atlas parameter estimation can be
defined as the solution of the following:
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(5)

One way of computing the solution to this problem is via Expectation-Maximization
algorithm [8]. EM is an iterative algorithm which in stead of directly solving (5), maximizes
a lower bound on logf(Y|Φ, h, q). At every iteration, given the current estimate of the
unknown parameters Φ’, h’ and q’, the lower bound of the log-likelihood in (5) is written
as:

(6)

where pk(x) stands for the posterior probability of class k at voxel x (see equ.(7)) The
structure of the proposed EM algorithm consists of iterations between the E-Step and M-
Step, during which the posteriors and parameters {Φ, h, q} are respectively updated. Further
detail is as follows:

E-Step
In this step, label estimation is achieved by updating the computed posterior probabilities
given the current estimate of the parameter:

(7)

M-Step
The update of the distribution parameters, (i.e. means and covariance matrices) in Φ have
closed form solutions which can be found in the literature [9] and are not mentioned here.
We optimize h by the following variational framework which computes the differential of
(6) with respect to an infinitely small test function v:

(8)

In this equation, the gradient vector r(x) and the matrix W(x) are defined as:

(9)

(10)
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where H is the Hessian matrix. The detailed derivations are omitted due to space limitations.
Equation (8) leads to r(x) + W(x).v(x) = 0, hence v can be found as: v(x) = W−1(x) · r(x).
For further numerical stability, we add an identity matrix component to W, therefore the
update of h(x) can be written as:

(11)

where I is the identity matrix and c is a constant. In this paper, we found c = 0.1 to produce a
robust and reasonable deformation field. Notice the update equation is computed
independently at every voxel, which in general results in a non-smooth deformation field. In
order to apply the smoothness constraint, similar to Thirions’ demons framework [7] we di
use the estimated deformation vectors by a Gaussian convolution filter with a band width of
2.

To update the atlas parameters q, since no analytical expression for the derivatives of Q(Φ’,
h’, q|Φ’, h’, q’) w.r.t q exists, we follow a numerical scheme. We maximize (6) using a
derivative free pattern search library [5]. Subsequently, each process returns its
corresponding Q value to the library and the procedure is iterated until a maximum is found.
Since this operation is computationally expensive it is performed only after having an
adequate convergence on estimated deformation field otherwise we keep it fixed.

4 RESULTS
We applied our proposed joint segmentation-registration method to 10 glioma patients. Our
preprocessing pipeline starts with skull stripping of all modalities (FLAIR,T2,T1, and
T1CE) and MR field inhomogeneity correction [15]. These images are co-registered to the
atlas using an affine registration based on mutual information [12]. We solved (1) on a
lattice of 64 × 64 × 64 nodes for efficiency reasons. We numerically compared our EM
based segmentation results to the expert provided references for edema and tumor labels
using Dice volume overlap ratio. For the S1-S5 cases (see the first five columns in Table.1)
total volumes of pathology were delineated and for the S6-S10 cases every third slice was
segmented by our specialist. We also computed the dice scores with respect to every third
slice in S1-S5. The average difference between these scores and those obtained based on
entire volume was less than 0.75%.

Sample results of seven patients in Fig.2 show a high visual correspondence with patients
anatomies. Moreover, it is interesting to observe that the registered atlas probability maps
closely match the patient segmented labels, which indicates good registration as well.

This observation is further verified by our numerical evaluations in Table.1 which shows
that the segmentations using our method have reasonable matches with the reference
volumes. Also, the Dice scores favorably compare to the values reported in [13], though the
data sets are different. Regarding the observed discrepancy between the expert provided
segmentations and our results, we believe that it is due to the fact that the proposed method
takes a voxel-based classification approach, while a human rater considers other complex
feature such as the shape and appearance.

Moreover, in order to investigate the sensitivity of the results w.r.t. optimality of parameters
of model, two different sets of experiments were performed. In the first case, all model
parameters in q were optimized (denoted by Fully), and in the second case only DWM was
optimized and the expert chosen parameters such as seed location and tumor growth length
were not refined (denoted by Partly). As shown in Table.1, the Dice coefficients in fully
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optimized mode are in general higher and imply better overlaps compared to partly
optimized model.

5 CONCLUSION
We developed a joint segmentation registration tool for glioma images. Our proposed
method utilizes multi-channel MR images as the patient feature images, and an originally
healthy atlas as the spatial probability maps for various tissue labels. We utilized a tumor
growth model to modify the probability maps of the original atlas. The model impacts the
atlas original probability maps by both deforming and masking them the due to tumor mass-
effect and diffusion. We employed an EM algorithm to iteratively refine the estimates of
posterior probabilities of various tissue labels, registration field and tumor growth
parameters. Validation using 10 data sets reveals that the method can handle large mass
effects and tumor sizes with various tissue types such as necrosis, edema and tumor
infiltration. Quantitative evaluations of segmentations of our method were based on Dice
overlap ratios with expert provided reference volumes, and in general are higher than values
reported in the state-of-the-art literature.
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Fig. 1.
(a)-(c) Healthy white matter (WM), gray matter (GM) and cerebro spinal fluid (CSF)
probability maps, (d) sample glioma scan, (e) corresponding estimated tumor (TU), (f)
edema (ED), and (g) gray matter probability maps before registration to the patient.
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Fig. 2.
Segmentation and registration results for seven sample patients. Each row corresponds to a
single patient and represents the results in the slice with largest tumor section. (a)-(b)
FLAIR,T1-CE images,(c) segmentation results indicating enhancing tumor, necrosis, edema,
CSF, gray and white matters in light and dark yellows, purple, red, gray and white colors
respectively, (d) overlay of the tumor and CSF probability maps registered to the patient
scans, (e) probability map of GM registered to the patient scans.
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