Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):m1528. doi: 10.1107/S1600536811041286

catena-Poly[[aqua­copper(II)]-μ2-imino­diacetato-κ4 O,N,O′:O′]

Qin Zhong a, Yu-Hong Wang a,*, Xue-Ting Zhang a
PMCID: PMC3246954  PMID: 22219774

Abstract

In the title compound, [Cu(C4H5O4)(H2O)]n, the imino­diacetate (ida) ligands link the CuII atoms into polymeric zigzag chains running along [010]. Each CuII ion is five-coordinated in a distorted square-pyramidal geometry by one N and two O atoms from an ida ligand, one O atom from the neighbouring ida ligand and one water O atom. In the crystal, the polymeric chains are held together via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For applications of coordination polymers containing bridging carboxyl­ate groups, see: Dey et al. (2003); Wu et al. (2009); Zhang et al. (2008). For coordination polymers with imino­diacetic acid, see: Bresciani-Pahor et al. (1984); Ren et al. (2003); Song et al. (2011).graphic file with name e-67-m1528-scheme1.jpg

Experimental

Crystal data

  • [Cu(C4H5O4)(H2O)]

  • M r = 212.65

  • Monoclinic, Inline graphic

  • a = 6.563 (3) Å

  • b = 9.870 (4) Å

  • c = 10.876 (4) Å

  • β = 99.802 (8)°

  • V = 694.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 223 K

  • 0.40 × 0.25 × 0.15 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.369, T max = 0.652

  • 3854 measured reflections

  • 1571 independent reflections

  • 1358 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.082

  • S = 1.02

  • 1571 reflections

  • 110 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041286/cv5163sup1.cif

e-67-m1528-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041286/cv5163Isup2.hkl

e-67-m1528-Isup2.hkl (77.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.87 (1) 2.08 (1) 2.936 (4) 168 (4)
O5—H5B⋯O2ii 0.87 (1) 1.99 (1) 2.860 (4) 171 (4)
N1—H11A⋯O2i 0.86 (1) 2.13 (1) 2.992 (3) 173 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Suzhou University of Science and Technology for financial support.

supplementary crystallographic information

Comment

The syntheses of coordination polymers containing bridging carboxylate groups are of current interest due to potential applications in the areas of magnetism, ion exchange and photochemistry (Dey et al., 2003; Wu et al., 2009; Zhang et al., 2008). The iminodiacetic acid has been found to be useful ligand, and a lot of transition metal polymers of iminodiacetic acid have been reported (Bresciani-Pahor et al., 1984; Ren et al., 2003; Song et al., 2011). Here, we report the crystal structure of the title compound, (I), a one-dimensional Cu(II) coordination polymer obtained by the hydrothermal synthesis reaction of iminodiacetic acid and copper(II) chlorine.

The title complex (I) is a one-dimensional zigzag chain coordination polymer, which results from the fact that the copper(II) ions are bridged sequentially by syn-anti carboxylate groups. A perspective view of the mononuclear fragment of (I) is given in Fig. 1. Each copper(II) ion is in a distorted square pyramidal geometry with three donor atoms (O1, N1, O3) of the ida ligand, one oxygen atoms O4A (A -x + 2, y - 1/2, -z + 3/2) belonging to the carboxylate group of one adjacent ida ligand and one terminal O (O5) atom of H2O molecule. Two five-membered chelate rings [–Cu1—O3—C4—C3—N1- and –Cu1—O1—C2—C1—N1-] are formed with the metal atoms, and the two fused ring systems are folded along the common Cu1—N1 axis by 101.5 (1)°. In (I), each ida ligand is tetradentate when the bridge involving atom O4A is considered. One of carboxylate groups of each ida ligand is in an syn-anti conformation with respect to the two copper centres. Thus, the carboxylate groups act as bridges and connect the copper(II) centers to form a 1-D zigzag chain coordination polymer.

The one-dimensional polymeric chains are packed through intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) to form three-dimensional structure (Fig. 2).

Experimental

CuCl2.2H2O (0.0171 g, 0.1 mmol), iminodiacetic acid (0.0133 g, 0.1 mmol), NaOH (0.0084 g, 0.2 mmol), H2O (0.5 mL) and ethanol (3 mL) were placed in a thick Pyrex tube and heated at 120°C for 3 days. After cooling at a rate of 5°C/h to the ambient temperature, blue block crystals were collected, washed with anhydrous ethanol, and then dried at room temperature. The yield is 76% based on iminodiacetic acid. Analysis found: C, 22.98; H, 3.36; N, 6.56%. Calculated for C4H7CuNO5: C, 22.59; H, 3.32; N, 6.59%.

Refinement

C-bound H atoms were geometrically positioned and refinded using a riding model, with Uiso(H) = 1.2 Ueq(C) [d(C—H) = 0.98Å (for CH2)]. H atoms attached to N and O were located on difference maps and refined with N—H distances restrained to 0.87 (1)Å (Uiso(H) = 1.2 Ueq(N)), and with O—H distances retsrained to 0.86 (1) Å (Uiso(H) = 1.2 Ueq(O)).

Figures

Fig. 1.

Fig. 1.

A portion of the crystal structure of (I), showing the atomic numbering and 30% probabilty displacement ellipsoids [symmetry codes: (A) -x + 2, y - 1/2, -z + 3/2; (B) -x + 2, y + 1/2, -z + 3/2]

Fig. 2.

Fig. 2.

A portion of the crystal packing viewed approximately down the a axis. Dashed lines denote hydrogen bonds. H atoms with no hydrogen bond interactions have been omitted for clarity.

Crystal data

[Cu(C4H5O4)(H2O)] F(000) = 428
Mr = 212.65 Dx = 2.035 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybc Cell parameters from 3372 reflections
a = 6.563 (3) Å θ = 3.1–27.5°
b = 9.870 (4) Å µ = 3.12 mm1
c = 10.876 (4) Å T = 223 K
β = 99.802 (8)° Block, blue
V = 694.2 (5) Å3 0.40 × 0.25 × 0.15 mm
Z = 4

Data collection

Rigaku Saturn diffractometer 1571 independent reflections
Radiation source: fine-focus sealed tube 1358 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 14.63 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −8→8
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −12→12
Tmin = 0.369, Tmax = 0.652 l = −9→14
3854 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.046P)2 + 0.157P] where P = (Fo2 + 2Fc2)/3
1571 reflections (Δ/σ)max < 0.001
110 parameters Δρmax = 0.45 e Å3
3 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.85030 (5) 0.23532 (3) 0.75251 (3) 0.02015 (14)
O1 0.6802 (4) 0.2321 (2) 0.5873 (2) 0.0312 (5)
O2 0.4101 (3) 0.3228 (3) 0.4674 (2) 0.0378 (6)
O3 0.9803 (3) 0.4446 (2) 0.7449 (2) 0.0312 (5)
O4 0.9274 (3) 0.64968 (19) 0.8186 (2) 0.0265 (5)
O5 0.9679 (4) 0.1781 (3) 0.9246 (2) 0.0454 (6)
H5A 0.897 (6) 0.212 (4) 0.978 (3) 0.054*
H5B 1.1022 (18) 0.184 (5) 0.945 (4) 0.054*
N1 0.6164 (4) 0.3497 (2) 0.7986 (2) 0.0200 (5)
H11A 0.546 (4) 0.303 (3) 0.844 (3) 0.024*
C1 0.4669 (4) 0.3788 (3) 0.6828 (3) 0.0263 (6)
H1A 0.4639 0.4767 0.6674 0.032*
H1B 0.3282 0.3511 0.6949 0.032*
C2 0.5202 (5) 0.3069 (3) 0.5707 (3) 0.0256 (6)
C3 0.7073 (4) 0.4735 (3) 0.8622 (3) 0.0226 (6)
H3A 0.7568 0.4537 0.9505 0.027*
H3B 0.6011 0.5440 0.8571 0.027*
C4 0.8864 (4) 0.5246 (3) 0.8023 (3) 0.0208 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0235 (2) 0.0177 (2) 0.0204 (2) 0.00209 (13) 0.00672 (14) 0.00000 (13)
O1 0.0320 (12) 0.0387 (12) 0.0226 (12) 0.0087 (10) 0.0042 (9) −0.0061 (9)
O2 0.0342 (12) 0.0540 (14) 0.0233 (13) 0.0085 (11) −0.0003 (10) −0.0008 (11)
O3 0.0306 (12) 0.0195 (10) 0.0491 (15) −0.0004 (9) 0.0229 (10) −0.0010 (9)
O4 0.0341 (11) 0.0187 (9) 0.0297 (12) −0.0081 (9) 0.0138 (9) −0.0055 (8)
O5 0.0394 (14) 0.0669 (18) 0.0307 (15) 0.0129 (14) 0.0085 (11) 0.0028 (12)
N1 0.0231 (12) 0.0185 (11) 0.0202 (13) −0.0033 (10) 0.0085 (9) −0.0004 (9)
C1 0.0233 (14) 0.0289 (15) 0.0263 (17) 0.0006 (13) 0.0030 (12) −0.0012 (12)
C2 0.0284 (16) 0.0253 (14) 0.0235 (16) −0.0030 (13) 0.0055 (12) 0.0000 (12)
C3 0.0265 (15) 0.0171 (12) 0.0263 (16) −0.0019 (11) 0.0101 (12) −0.0053 (11)
C4 0.0203 (14) 0.0199 (13) 0.0215 (15) −0.0032 (11) 0.0016 (11) 0.0019 (11)

Geometric parameters (Å, °)

Cu1—O1 1.948 (2) O5—H5B 0.873 (10)
Cu1—O4i 1.955 (2) N1—C3 1.478 (3)
Cu1—O5 1.981 (3) N1—C1 1.486 (4)
Cu1—N1 2.036 (2) N1—H11A 0.863 (10)
Cu1—O3 2.241 (2) C1—C2 1.503 (4)
O1—C2 1.271 (4) C1—H1A 0.9800
O2—C2 1.238 (4) C1—H1B 0.9800
O3—C4 1.234 (3) C3—C4 1.523 (4)
O4—C4 1.270 (3) C3—H3A 0.9800
O4—Cu1ii 1.955 (2) C3—H3B 0.9800
O5—H5A 0.873 (10)
O1—Cu1—O4i 88.70 (10) C1—N1—H11A 104 (2)
O1—Cu1—O5 159.50 (11) Cu1—N1—H11A 110 (2)
O4i—Cu1—O5 93.05 (10) N1—C1—C2 112.6 (2)
O1—Cu1—N1 84.15 (10) N1—C1—H1A 109.1
O4i—Cu1—N1 168.97 (9) C2—C1—H1A 109.1
O5—Cu1—N1 96.58 (10) N1—C1—H1B 109.1
O1—Cu1—O3 98.23 (9) C2—C1—H1B 109.1
O4i—Cu1—O3 93.97 (8) H1A—C1—H1B 107.8
O5—Cu1—O3 102.01 (11) O2—C2—O1 122.9 (3)
N1—Cu1—O3 78.80 (8) O2—C2—C1 119.7 (3)
C2—O1—Cu1 116.8 (2) O1—C2—C1 117.4 (3)
C4—O3—Cu1 110.15 (17) N1—C3—C4 110.7 (2)
C4—O4—Cu1ii 121.34 (19) N1—C3—H3A 109.5
Cu1—O5—H5A 111 (3) C4—C3—H3A 109.5
Cu1—O5—H5B 116 (3) N1—C3—H3B 109.5
H5A—O5—H5B 116 (4) C4—C3—H3B 109.5
C3—N1—C1 113.1 (2) H3A—C3—H3B 108.1
C3—N1—Cu1 108.17 (17) O3—C4—O4 125.4 (3)
C1—N1—Cu1 108.40 (17) O3—C4—C3 119.5 (2)
C3—N1—H11A 113 (2) O4—C4—C3 115.0 (2)
O4i—Cu1—O1—C2 −164.3 (2) O3—Cu1—N1—C1 93.24 (18)
O5—Cu1—O1—C2 100.5 (3) C3—N1—C1—C2 125.0 (3)
N1—Cu1—O1—C2 7.3 (2) Cu1—N1—C1—C2 5.1 (3)
O3—Cu1—O1—C2 −70.5 (2) Cu1—O1—C2—O2 173.5 (2)
O1—Cu1—O3—C4 100.6 (2) Cu1—O1—C2—C1 −6.1 (3)
O4i—Cu1—O3—C4 −170.2 (2) N1—C1—C2—O2 −179.3 (3)
O5—Cu1—O3—C4 −76.2 (2) N1—C1—C2—O1 0.3 (4)
N1—Cu1—O3—C4 18.2 (2) C1—N1—C3—C4 −82.1 (3)
O1—Cu1—N1—C3 −129.37 (18) Cu1—N1—C3—C4 38.0 (3)
O4i—Cu1—N1—C3 −79.5 (5) Cu1—O3—C4—O4 177.6 (2)
O5—Cu1—N1—C3 71.24 (19) Cu1—O3—C4—C3 −1.3 (3)
O3—Cu1—N1—C3 −29.75 (17) Cu1ii—O4—C4—O3 1.8 (4)
O1—Cu1—N1—C1 −6.38 (17) Cu1ii—O4—C4—C3 −179.27 (19)
O4i—Cu1—N1—C1 43.5 (5) N1—C3—C4—O3 −24.3 (4)
O5—Cu1—N1—C1 −165.77 (18) N1—C3—C4—O4 156.6 (2)

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O1iii 0.87 (1) 2.08 (1) 2.936 (4) 168 (4)
O5—H5B···O2iv 0.87 (1) 1.99 (1) 2.860 (4) 171 (4)
N1—H11A···O2iii 0.86 (1) 2.13 (1) 2.992 (3) 173 (3)

Symmetry codes: (iii) x, −y+1/2, z+1/2; (iv) x+1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5163).

References

  1. Bresciani-Pahor, N., Nardin, G., Bonomo, R. P. & Rizzarelli, E. (1984). J. Chem. Soc. Dalton Trans. pp. 2625–2630.
  2. Dey, S. K., Bag, B., Abdul Malik, K. M., El Fallah, M. S., Ribas, J. & Mitra, S. (2003). Inorg. Chem. 42, 4029–4035. [DOI] [PubMed]
  3. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  4. Ren, Y. P., Long, L. S., Mao, B. W., Yuan, Y. Z., Huang, R. B. & Zheng, L. S. (2003). Angew. Chem. Int. Ed. Engl. 42, 532–535. [DOI] [PubMed]
  5. Rigaku (2001). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Song, R.-F., Yang, J., Zhong, Q. & Sun, M.-Y. (2011). Chin. J. Struct. Chem. 30, 1127–1131.
  8. Wu, J.-Y., Ding, M.-T., Wen, Y.-S., Liu, Y.-H. & Lu, K.-L. (2009). Chem. Eur. J. 15, 3604–3614. [DOI] [PubMed]
  9. Zhang, L., Qin, Y.-Y., Li, Z.-J., Lin, Q.-P., Cheng, J.-K., Zhang, J. & Yao, Y.-G. (2008). Inorg. Chem. 47, 8286–8293. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041286/cv5163sup1.cif

e-67-m1528-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041286/cv5163Isup2.hkl

e-67-m1528-Isup2.hkl (77.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES