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Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production, complement activation,
and immune complex deposition, resulting in tissue and organ damage. An understanding of the mechanisms responsible for
homeostatic control of inflammation, which involve both innate and adoptive immune responses, will enable the development of
novel therapies for SLE. Regulatory T cells (Treg) play critical roles in the induction of peripheral tolerance to self- and foreign
antigens. Naturally occurring CD4+CD25+ Treg, which characteristically express the transcription factor forkhead box protein P3
(Foxp3), have been intensively studied because their deficiency abrogates self-tolerance and causes autoimmune disease. Moreover,
regulatory cytokines such as interleukin-10 (IL-10) also play a central role in controlling inflammatory processes. This paper
focuses on Tregs and Treg-associated cytokines which might regulate the pathogenesis of SLE and, hence, have clinical applications.

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune
disease characterized by autoantibody production, immune
complex deposition, and various clinical systemic manifes-
tations that affect various organs. The pathogenesis of SLE
involves complex interactions between genetic and environ-
mental factors and the adaptive and innate immune systems.
The breakdown of immunologic self-tolerance, that is, the
control of self- and non-self-discrimination, results in the
development of autoimmune diseases. Therefore, elucidating
the mechanisms that regulate self-tolerance is important
for protecting against self-directed immune responses and
autoimmune diseases. On the other hand, proinflammatory
cytokines are involved in the generalized immune dysregula-
tion of SLE, as well as the local inflammatory response, which
leads to tissue injury. The regulation of the proinflammatory
activity of these cytokines is perceived to be mediated by
anti-inflammatory and immunosuppressive cytokines such
as interleukin- (IL-) 10, transforming growth factor- (TGF-)
β, IL-27, or IL-35.

Treatment for SLE, as well as other autoimmune diseases,
relies on the use of corticosteroids and immunosuppressive
drugs, which are nonspecific and can cause adverse effects.

Improved diagnosis and management of the disease have
contributed to an improvement in its prognosis. However,
patients with SLE still display increased mortality compared
with the general population. Thus, there is a need for novel
therapies that are specific and display improved efficacy and
lower toxicity than the current therapies for SLE. Knowledge
about Tregs and regulatory cytokines would not only provide
new insights into the pathogenesis of SLE but could be also
used to develop various clinical applications.

2. Role of Tregs in Autoimmune Diseases

The regulation of lymphocyte survival is required for
the maintenance of lymphoid homeostasis, which prevents
the development of autoimmune diseases. The existence
of autoreactive T cells in healthy individuals suggests
that peripheral tolerance mechanisms exist to control the
responses of these cells. Accumulating evidence has indicated
that clonal deletion and anergy, as well as T-cell-mediated
control of self-reactive T cells contribute to the maintenance
of self-tolerance. Tregs are now recognized as the mediators
of peripheral tolerance and potent suppressors of excessive
immune responses. Several Treg subtypes with distinct
phenotypes, cytokine production profiles, and modes of
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action have been described. In the CD4+ regulatory T-cell
compartment, CD4+CD25+ T cells (CD4+CD25+ Treg) and
IL-10-producing type 1 T-regulatory cells (Tr1) have been
described [1, 2]. Knowledge about the various developmental
pathways and mechanisms of action of Treg-associated
cytokines is required to develop novel specific therapies for
SLE.

3. Role of CD4+CD25+ Treg in SLE

Extensive studies in mice and humans have indicated
that CD4+CD25+ Treg belong to an important subset of
Tregs. CD4+CD25+ Treg, which is naturally occurring and
expresses forkhead-winged helix protein-3 (Foxp3), is a
potent inhibitor of various immune responses [3]. Depletion
or functional defect of CD4+CD25+ Treg leads to the
development of autoimmune diseases in normal animals.
CD4+CD25+ Treg are produced by the thymus as a distinct
and mature subpopulation of T cells. Genetic alterations
that affect the development or function of CD4+CD25+

Treg result in the development of autoimmune disease
like IPEX syndrome and other inflammatory disorders in
humans. In addition, decreased numbers of CD4+CD25+

Treg were found in some studies of SLE patients, espe-
cially during active disease. On the other hand, several
investigators have reported that defective CD4+CD25+ Treg
activity is correlated with the downregulated expression of
Foxp3 [4–6]. Miyara et al. reported that CD4+CD25+ Treg
isolated from SLE patients exhibited the same phenotypic
and functional characteristics as corresponding cells in
healthy controls [7]. However, lupus CD4+CD25+ Treg
do not accumulate in either the lymph nodes or the
inflamed kidneys and are more susceptible to Fas-induced
apoptosis than those of healthy control. The accumulated
data suggest that strategies for enhancing the function of
CD4+CD25+ Treg might be beneficial for patients with SLE.
The differences between the results of the various studies
of CD4+CD25+ Treg in SLE patients might have been due
to differences in the stage and activity of disease, disease
manifestations, and the confounding influence of medical
therapies. In addition, the use of different surface markers
for defining CD4+CD25+ Treg might also have affected the
results of these studies. Recently, Miyara et al. identified
three subpopulations among human Foxp3 expressing cells,
CD45RA+Foxp3low resting Treg, CD45RA−Foxp3high acti-
vated Treg, and CD45RA−Foxp3low cytokine-secreting cells.
They reported that CD45RA−Foxp3low non-Treg fraction
increased to form a distinct population in active SLE [8].

Lupus-prone mouse models, which are more homoge-
neous than SLE patients and can be left untreated, might
give us more precise information about CD4+CD25+ Treg.
(NZB × NZW) F1 (BWF1) and (SWR × NZB) F1 (SNF1)
mice, which spontaneously develop lupus-like disease, had a
lower percentage of CD4+CD25+ Treg than non-SLE-prone
mice [9]. Reduced numbers of CD4+CD25+ Treg were also
detected in mice that were congenic for the NZM2410 sle1
locus [10], and the reduced number of CD4+CD25+ Treg
was associated with downregulated Foxp3 expression. Other
lupus-prone MRL/lpr mice exhibited a normal percentage

of CD4+CD25+ Treg, and their Foxp3 mRNA and pro-
tein expression levels were not altered. However, MRL/lpr
CD4+CD25+ Treg exhibited a reduced capacity to suppress
the proliferation and secretion of proinflammatory cytokines
in effector cells [11]. In BWF1 mice, the number and
frequency of CD4+CD25+ Treg were increased, and in vitro
suppressive activity in lymphoid organs was intact [12].
However, the adoptive transfer of exogenously expanded
CD4+CD25+ Treg to BWF1 mice reduced renal pathology
and improved survival in BWF1 mice, supporting the
protective role of these cells in lupus pathogenesis [13], and
the induction of mucosal tolerance via the administration
of the histone peptide H471 restored the lower numbers of
CD4+CD25+ Treg in BWF1 mice to the levels of normal mice
[9]. Kang et al. showed that administration of low doses
of the nucleosomal histone peptide H471–94 for tolerance
induction in SNF1 mice ameliorates the manifestations of
the disease, prolongs survival, and increases the number
of CD4+CD25+ Treg. Low-dose H471–94 therapy suppressed
interferon- (IFN-) γ production by pathogenic T cells,
autoantibody production, and lupus-associated responses
upon their adoptive transfer in vivo [14]. High intravenous
doses of a synthetic peptide (pConsensus [pCons]) based
on a shared CDR1/framework 2 epitope encoded within
the variable heavy chain regions of several murine anti-
dsDNA immunoglobulins also exhibited therapeutic activity
in BWF1 mice to prolong survival [15]. The administration
of the tolerogenic peptide led to the expansion of peptide-
reactive CD4+CD25+ Treg that inhibited the production of
anti-dsDNA antibody-producing cells in vitro [16, 17].

Thus, Treg cell therapy could be a rational approach
for the treatment of lupus, and investigators are currently
attempting to expand its use to include the treatment
of other autoimmune diseases. The specific activities of
CD4+CD25+ Treg have been demonstrated in different
animal models of autoimmune diseases (e.g., autoimmune
diabetes, autoimmune thyroiditis, and experimental autoim-
mune encephalomyelitis (EAE)). For instance, CD4+CD25+

Treg expressing the T-cell receptor (TCR) specific to an islet
antigen were reported to efficiently suppress and even reverse
early onset of diabetes in nonobese diabetic (NOD) mice,
whereas polyclonal CD4+CD25+ Treg were considerably less
effective [18, 19]. This suggests that regulatory T-cell func-
tion depends on the antigen specificity. Therefore, expanding
antigen-specific CD4+CD25+ Treg may be a promising
approach in treating autoimmune diseases including SLE
[20].

4. Role of IL-10 in SLE

IL-10 impedes the activation/expansion of autoreactive lym-
phocytes via various mechanisms. It is produced mainly
by monocytes/macrophages and T-cell subsets including
Tr1, CD4+CD25+ Treg, and T-helper (Th) 1 cells. IL-10
regulates immune cell function through a transmembrane
receptor complex, composed of IL-10 receptor α (Rα) and
IL-10Rβ. In monocytes/macrophages, IL-10 diminishes the
production of inflammatory mediators, inhibits antigen
presentation, and prevents specific and nonspecific immune
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reactions that cause tissue damage. At the same time, mono-
cytes/macrophages increase antigen uptake and function
as scavengers. IL-10 prevents the activation of antigen-
presenting cells (APC) and downregulates the expression of
costimulatory molecules. Recent studies have also revealed
that IL-10 regulates autoreactive T cells in NOD mice [21,
22]. T cells that were generated in vitro and produced high
levels of IL-10 inhibited the development of EAE [23]. The
generation of antigen-specific T cells that produce IL-10 at
sites of inflammation would be a promising strategy to the
treatment of autoimmunity. Furthermore, IL-10 appears to
play a role in Treg commitment and function [24] and so
might be beneficial in SLE.

On the other hand, IL-10 boosts B-cell proliferation
and immunoglobulin class switching, resulting in enhanced
antibody production and increased inflammation. Several
stimuli, including anti-dsDNA antibodies and immune
complexes containing FcγRII, trigger IL-10 production [25,
26]. IL-10 has also immunostimulatory effects on CD8+ T
cells and NK cells, especially in combination with other
cytokines, such as IL-18 [27, 28]. In patients with SLE, an
elevated IFN-γ/IL-10 ratio was observed in active class IV
lupus nephritis and vice versa in class V nephritis [29]. IL-
10 is overproduced by the B cells and monocytes of SLE
patients [30–32], displays increased serum levels in SLE
patients [32, 33], and is associated with disease activity
[34]. Interestingly, continuous therapy from young age with
IL-10 antibodies ameliorated autoimmunity in BWF1 mice
[35]. In accordance with the therapeutic effect of anti-IL-10
antibodies, the continuous administration of recombinant
IL-10 increased disease activity [35]. Interestingly, coadmin-
istration of blocking anti-tumor necrosis factor (TNF) anti-
bodies cancelled the protective effect of anti-IL-10 antibodies
[35], suggesting some unknown immunoregulatory balance
between these two cytokines in BWF1 mice. Moreover, IL-
10 blockade limited the renal damage in animal models of
lupus nephritis [36]. The observed downregulation of T-
cell activation in peripheral blood mononuclear cells from
SLE patients was consistent with these effects [37]. In a
small, uncontrolled, open-label study involving patients with
mild disease, anti-IL-10 monoclonal antibody improved
cutaneous lesions, joint symptoms, and the SLE disease
activity index [38]. B-cell secretion of IL-10 might regulate
dendritic cell (DC) and T-cell function, promoting Th2
deviation of the immune response [39]. In turn, IL-10 might
contribute to a number of the earlier peripheral B-cell abnor-
malities observed in SLE, including plasma cell expansion
[40]. These findings suggest that anti-IL-10 therapy with an
agent that is suitable for use in humans might benefit some
patients with SLE. However, increased numbers of IL-10-
producing cells were also reported in first-degree relatives
as well as healthy spouses [41, 42]. The contribution of IL-
10 genotypes and IL-10 promoter polymorphisms to IL-
10 overproduction has not been confirmed yet [42, 43].
In addition to environmental factors, both genetic and
disease-induced events are required for the pathogenesis of
lupus. Some of the proinflammatory effects of IL-10 might
be displayed in the presence of other cytokines, such as
IL-18 [28, 44], and the cytokines produced endogenously

at inflammatory sites during various disease stages might
modify the effect of IL-10. The modified development and
characterization of IL-10 should be investigated further to
aid the development of novel immunosuppressive therapies.

We recently reported on IL-10-secreting CD4+CD25−

Foxp3− Treg that characteristically express both the lympho-
cyte activation gene-3 (LAG-3) and early growth response
gene-2 (Egr-2), and the ectopic expression of Egr-2 conferred
suppressive functions on naı̈ve CD4+ cells [45]. The adoptive
transfer of CD4+CD25−LAG3+ Treg from MRL/+ mice
suppressed the progression of nephritis and autoantibody
production in MRL/lpr mice (unpublished observation). In
consistency with previous report [11], CD4+CD25+ Treg
from MRL/+ mice revealed no significant therapeutic effect
upon being transferred to MRL/lpr mice. These results
indicate that IL-10-producing CD4+CD25−LAG3+ Treg play
a critical role in preventing the development of autoimmune
diseases characterized with autoantibody production.

Interestingly, Huber et al. reported that both Foxp3−

and Foxp3+ regulatory CD4+ T cells control Th17 cells
in an IL-10-dependent manner [46]. Th17 is a distinct
helper T-cell subset that produces IL-17. Accumulated data
suggest that IL-17 contributes to the pathogenesis of SLE.
In lupus-prone BXD2 mice, IL-17 increases the number of
IL-17-producing T cells, which help B cells, and accelerates
germinal center formation in the spleen [47]. The frequency
of IL-17-producing T cells also showed an increase in
the peripheral blood of SLE patients. Patients with SLE
display higher plasma levels of IL-17 and IL-23 than healthy
controls, and their plasma IL-17 levels exhibit a positive
correlation with disease activity [48]. CD3+CD4−CD8−

double-negative (DN) T cells that produce IL-17 and IFN-
γ expand in the peripheral blood of SLE patients, but not
in healthy individuals [49]. In addition, DN T cells and IL-
17-producing T cells are observed in the kidneys of patients
with lupus nephritis. IL-17, IFN-γ, and IL-13 are the main
cytokines produced by T cells that infiltrate in the kidneys of
nephritic MRL/lpr mice [50]. IL-17-producing CD4+ T cells
express IL-10Rα in vivo, and T cell-specific blockade of IL-
10 signaling leads to a selective increase in the numbers of
IL-17 and IFN-γ-producing CD4+ T cells during intestinal
inflammation [46]. Both CD4+Foxp3− IL-10-producing cells
and CD4+ Foxp3+ regulatory (Foxp3+ Treg) cells were found
to control the numbers of Th17 cells and IL-17- and IFN-
γ-producing cells in an IL-10-dependent manner in vivo.
In addition, IL-10 treatment of mice with established colitis
decreased the numbers of Th17 cells and IL-17 and IFN-γ-
producing CD4+ T-cell frequencies through direct signaling
in T cells. Consistent with our results, CD4+Foxp3− IL-10-
producing cells expressed LAG-3, in contrast to Foxp3+ Treg.
Therefore, investigating the functions of CD4+CD25−LAG3+

Treg might lead to the development of novel treatments for
SLE.

5. Role of TGF-β in SLE

TGF-β functions to suppress inflammation and is important
for the tolerance induced by oral antigen administration
and for protecting against lymphopenia-induced colitis
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and thyroiditis mediated by the transfer of CD4+ T cells
[51]. TGF-β can regulate autoaggressive T-cell responses
by prevention of the APC maturation and can inhibit the
differentiation of naı̈ve CD4+ T cells into Th1 or Th2 effector
cells by inhibiting T-bet, a Th1-specific transcription factor,
and GATA-3, a transcription factor for Th2 differentiation
[52–54]. In contrast to the development of naturally occur-
ring CD4+CD25+ Treg [55], the peripheral induction of
CD4+CD25+ Treg [56] depends on the effect of TGF-β. TGF-
β signaling via TGF-β receptor is also required for the de
novo expression of Foxp3 [57]. TGF-β signaling is required
for the suppressive ability and the in vivo expansion of
Tregs [58]. The TGF-β-induced transcription factor mother
against decapentaplegic homologue 3 (SMAD3) have been
shown to control the activity of a Foxp3 intronic enhancer
element in cooperation with NFAT [59]. Recently, it has
been shown that TGF-β increases the amount of acetylated
Foxp3 protein bound to active chromatin sites, suggesting
that TGF-β prolongs the half-life of Foxp3 RNA species
and/or phosphorylates the chromatin-bound Foxp3, which
might enable other transcription factors to undergo cellular
compartment transitions for other transcription factors [60].
The suppressive effects of TGF-β can be transmitted to
effector T cells through the soluble forms of this cytokine,
or direct contact with Tregs, which display TGF-β on their
surface [61]. When cell-to-cell contact takes place, TGF-β
molecules on the surfaces of Tregs are triggered to aggregate
by signals originating from CTLA-4 upon cell-to-cell contact
[61]. T cells that cannot respond to TGF-β, thus, escape
control by Tregs [62] to result in generalized autoimmunity
in vivo [63].

Interestingly, the serum concentration of TGF-β1 is
decreased in patients with active SLE, and urinary TGF-β1
levels are increased in patients with lupus nephritis [64, 65].
Patients with decreased numbers of CD4+CD25+ Treg tend
to display lower serum TGF-β1 levels and higher urinary
TGF-β1 levels. TGF-β1 might even play dual roles in murine
lupus, immune regulation, and promotion of chronic end
organ damage [66]. BWF1 mice have reduced expression of
TGF-β1 in the spleen, and TGF-β1 or TGF-β1-producing
T cells suppress autoantibody production. In contrast, the
expression of TGF-β1 protein and TGF-β-signaling proteins
increased in the kidneys. The levels of TGF-β1 in the
kidneys and urine correlate with the extent of chronic
lesions that represent local fibrosis. TGF-β1 blockade by
treatment of these mice with an anti-TGF-β antibody in vivo
selectively inhibits chronic fibrotic lesions without affecting
autoantibody production and tissue inflammation. The use
of TGF-β1 in association with CD4+CD25+ Treg might have
potential as a novel therapeutic approach for autoimmune
disease. However, we should be aware of chronic organ
damage by TGF-β1.

6. Roles of IL-27 in SLE

IL-27 is a member of the IL-12 family cytokines composed
of Epstein-Barr virus-induced gene 3 (EBI-3) and p28
subunits [67, 68]. IL-27 is mainly produced by activated
monocytes/macrophages and DCs but is also expressed by

other cell types including the parenchymal cells [69–71].
The murine p28 subunit can be secreted by itself, but the
human p28 subunit has to be bound to EBI-3 for secretion.
Therefore, the expression of both the EBI-3 subunit and
p28 subunit within the same cell appears to be necessary
for IL-27 production in humans [72]. While the expression
of each subunit is differentially regulated, toll-like receptor
(TLR) signaling is an important trigger of the expression of
the EBI-3 and p28 subunits [72]. It was reported that TLR4
mediates the upregulation of IL-27 expression via MyD88-
dependent and independent mechanisms. In addition, NF-
κB signaling has also contributed to the induction of IL-27
expression [73, 74]. The administration of IL-27 suppressed
the cytokine production of activated T cells in vitro [75]. IL-
27 and its receptor, IL-27R, play an immunosuppressive role
and suppress the production of proinflammatory cytokines.
IL-27R consists of WSX-1 and gp130. WSX-1 is expressed in
T cells, B cells, NK cells, monocytes, mast cells, dendritic cells
(DCs), and endothelial cells [76]. Similar to other cytokine
receptors, IL-27R signaling activates the Janus kinase/signal
transducer and activator of transcription (JAK/STAT) sig-
naling pathways in a cell-type-dependent manner [77–79].
Collectively, these findings revealed a novel role for IL-
27/WSX-1 as an attenuator of proinflammatory cytokine
production, which is important for preventing excessive
inflammation.

IL-27 is a pleiotropic cytokine that has both offensive
and defensive properties. IL-27 is unique in that although
it suppresses immune responses, it also plays a proinflam-
matory role by inducing Th1 differentiation [80]. The role
of WSX-1 in Th1 differentiation has also been examined in
WSX-1−/− mice. WSX-1−/− mice exhibited impaired IFN-
γ production compared with wild-type mice [81, 82]. IL-
27/WSX-1 signaling induces STAT1 or STAT3 activation,
followed by the induction and activation of T-bet. Though
naive CD4+ T cells do not produce IFN-γ in response
to IL-27 stimulation, additional stimulation with IL-12
induces IFN-γ production by naive CD4+ T cells. IL-
27/WSX-1 suppresses the expression of GATA-3 in a STAT1-
dependent or independent manner, thereby, contributing to
Th1 differentiation [83].

Experimental inflammatory responses were also en-
hanced in WSX-1−/− mice [84]. Recent studies have demon-
strated that IL-27 promotes IL-10 production by CD4+ T
cells [85, 86] and inhibits Th17 cells in mice and humans [87,
88]. These results suggest a dual regulatory mechanism of IL-
27 for controlling autoimmunity and tissue inflammation.
The IL-10-producing CD4+ T cells elicited by IL-27 are T-
bet+FoxP3−IFN-γ+ [85, 86, 89–91], and STAT1 and STAT3
activities are involved in the induction of IL-10 by IL-27
[85]. The induction of c-Maf, IL-21, and ICOS expression
seems to be required to IL-27-mediated, Tr1-like cell differ-
entiation [92]. Whereas IL-10 induction is critical for IL-
27-mediated immune suppression, IL-10-independent anti-
inflammatory mechanisms have been indicated [85, 89]. For
instance, IL-27 demonstrated suppressive effects in an IL-
10-deficient milieu, and it even suppressed IL-10 production
in some conditions [75]. In addition, IL-27 also suppresses
inflammation by inhibiting Th17 cell differentiation in vitro
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[71]. IL-27 was reported to suppress the expression of the
Th17-specific transcription factor RORγt [88].

Recently, the effects of IL-27 signaling on autoimmune
responses in MRL/lpr mice were investigated. Deficiency of
the WSX-1 gene resulted in the development of a disease
resembling human membranous glomerulonephritis (WHO
class V), and sera levels of IgG1 and IgE were increased.
WSX-1−/− MRL/lpr T cells exhibited significantly decreased
IFN-γ production along with elevated IL-4 expression [93],
and EBI-3 deficiency in MRL/lpr mice resulted in a disease
resembling human membranous glomerulonephritis and
sialadenitis [94]. On the other hand, transgenic overexpres-
sion of the WSX-1 gene in the T cells of MRL/lpr mice
strongly suppressed the development of glomerulonephritis
and improved survival, suggesting protective role of high-
dose IL-27 in lupus [95]. Microarray analysis of glomerular
gene expression in murine lupus nephritis revealed increased
Ebi3 expression [96]. In addition, decreased serum IL-27
levels were observed in patients with SLE, especially those
with nephritis. These findings suggest a protective role
for IL-27 in SLE [97]. However, both the regulatory and
proinflammatory functions of IL-27 should be investigated
further, especially in humans. Recently, it was reported that
the WSX-1 is required to support IL-21 production and
follicular helper T-cell survival in a T-cell intrinsic manner
[98]. Recombinant IL-27 molecules that have a long-lasting
effect in vivo, small chemical compounds that promote

IL-27/WSX-1 signaling, and antagonistic or agonistic anti-
IL-27R antibodies would be useful as novel therapies for SLE.

7. Role of IL-35 in SLE

IL-35 is a newly identified inhibitory cytokine that belongs
to the IL-12 cytokine family [99, 100]. It is composed of
the IL-12α (p35) and EBI-3, which is considered to be a
downstream target of Foxp3. IL-35 is preferentially expressed
in CD4+CD25+ Treg, and ectopic expression of IL-35 confers
regulatory activity on naı̈ve T cells, whereas recombinant IL-
35 suppresses T-cell proliferation [101]. IL-35 is required for
maximal regulatory function in vivo as CD4+CD25+ Treg
deficient in either subunit fail to control homeostatic T-cell
expansion or inflammatory bowel disease [101]. Given that
IL-35 was discovered relatively recently, our understanding
of its biological activity is still limited. Compared with IL-
12 and IL-27, generation and purification of recombinant
IL-35 are challenging due to its instability. It is tempting
to speculate that the apparent poor stability of IL-35 might
underlie its important physiological roles and limit potency
over short range. On the other hand, DC that secretes IL-12
or IL-27 might be precluded from generating IL-35, because
of preferential pairing of IL-12 and IL-27.

IL-35 fusion protein was suggested to inhibit the differ-
entiation of Th17 cells in vitro and to ameliorate collagen-
induced arthritis (CIA) and suppress IL-17 secretion in
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vivo [102]. To precisely characterize the function of IL-35,
the determination of the IL-35 receptor and its expression
pattern is required. Its receptor will also be composed of a
new combination of known family receptor chains [101], or
the receptor might be composed of novel subunits. Lastly, it
is unknown whether IL-35 can induce the formation of Tregs.
This is a shared feature of the other two inhibitory cytokines
IL-10 and TGF-β, and; thus, it remains plausible that IL-
35 has a similar ability. Since TGF-β-induced Treg (Th3)
and IL-10-induced Tr1 cells have very distinct transcriptional
and functional profiles [103, 104], IL-35-induced regulatory
populations may also exhibit quite distinct phenotype. The
linkage between the regulatory role of IL-35 and lupus
pathogenesis remains to be investigated.

8. Conclusions

Accumulating data have revealed that the numbers and
the function of CD4+CD25+ Treg are decreased in SLE.
Other than CD4+CD25+ Treg, there are several Treg popula-
tions including IL-10-producing Tr1-like cells. Cooperation
between these subsets of Tregs might be required for optimal
immunoregulatory function (Figure 1). Investigations of
Treg-associated cytokines, such as IL-10, TGF-β, IL-27, and
IL-35, might aid the development of novel therapies for
SLE. Indeed, the generation of T cells producing high levels
of immunosuppressive cytokines in response to antigen
specific stimulation successfully prevented autoimmune dis-
ease in animal models. Therapeutic approaches that induce
functional Tregs with relevant antigen-specificities would
restore immune homeostasis in patients and protect them
from further autoimmune response. Further investigations
in animal models and humans will hopefully allow lupus to
be treated with Tregs and Treg-associated cytokines.
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