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Abstract

Interactions between protein aggregates and a cellular membrane have been strongly implicated in many protein
conformational diseases. However, such interactions for the case of Cu/Zn superoxide dismutase (SOD1) protein, which is
related to fatal neurodegenerative disorder amyotrophic lateral sclerosis (ALS), have not been explored yet. For the first
time, we report the direct observation of defect formation and increased ion permeability of a membrane induced by SOD1
aggregates using a supported lipid bilayer and membrane patches of human embryonic kidney cells as model membranes.
We observed that aggregated SOD1 significantly induced the formation of defects within lipid membranes and caused the
perturbation of membrane permeability, based on surface plasmon resonance spectroscopy, atomic force microscopy and
electrophysiology. In the case of apo SOD1 with an unfolded structure, we found that it bound to the lipid membrane
surface and slightly perturbed membrane permeability, compared to other folded proteins (holo SOD1 and bovine serum
albumin). The changes in membrane integrity and permeability were found to be strongly dependent on the type of
proteins and the amount of aggregates present. We expect that the findings presented herein will advance our
understanding of the pathway by which structurally disordered SOD1 aggregates exert toxicity in vivo.
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Introduction

Cu/Zn-superoxide dismutase (SOD1) is a ubiquitous enzyme

and has been linked to amyotrophic lateral sclerosis (ALS), also

known as Lou Gehrig’s disease [1,2,3]. Details of the mechanism

leading to the development of neurodegeneration in ALS are

currently unclear, but aberrant SOD1 aggregate formation has

been strongly implicated as a causative factor in the disease. A

number of pathogenic mechanisms have been proposed for the

relationship between ALS and SOD1 aggregates, including the

disruption of axonal transport [4], the aberrant binding of

apoptosis regulators [5], inhibition of the proteasome [6],

perturbations in mitochondrial function [7]. In these mechanisms,

interactions between the cellular membrane and the aggregate

have been somewhat overlooked, but are now thought to be a

factor in other protein-aggregation disease mechanisms [8]. The

disease relevance of protein-membrane interactions can be

elucidated with investigating the membrane interactions of the

protein aggregates to travel intercellularly [9,10] and the toxic

actions executed at the mitochondrial level through voltage-

dependent anion channel [11,12]. Therefore, a better understand-

ing of how SOD1 aggregate interacts with a membrane and what

is the nature of the consequences of such interactions might

provide a mechanism that compliments the existing thinking on

this subject.

Moreover, the hypothesis that SOD1 variants might aggregate

on mitochondrial membrane surfaces has recently been supported

by the demonstration that SOD1 aggregates are attached to the

cytoplasmic face of the mitochondrial membrane in transgenic

ALS mice [13,14,15]. Considering the ubiquitous distribution of

SOD1 in a cell (i.e. cytosol, nucleus, peroxisomes, lysosomes, and

mitochondrial intermembrane space), it would not be surprising

that SOD1 species would eventually interact with cell membranes,

as shown in the scheme in Figure 1A. However, in vivo monitoring

of protein-aggregation-associated pathogenic events is a difficult

task. Therefore, in vitro observation of cell membrane behaviors

changed by a specific type of protein, which differs from that of

other normal proteins, represents a meaningful approach to

understand the membrane components (i.e. lipid molecules)-

mediated cytotoxic actions generated in vivo.
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We herein, for the first time, report on such membrane-protein

aggregate interactions by investigating SOD1 aggregate-induced

changes in both the morphology of a supported lipid bilayer (SLB)

(Figure 1B) and the ion permeability of a cellular membrane

(Figure 1C). Significant morphological changes of the SLB in

terms of shape and surface coverage after exposure to SOD1

aggregates were characterized by the surface plasmon resonance

(SPR) spectroscopy [16] and atomic force microscopy (AFM) [17],

both of which are surface sensitive label-free techniques. Since

membrane damage could constitute a viable candidate for

membrane permeabilization [18,19,20], by measuring the current

changes in membrane patches detached from human embryonic

kidney (HEK 293) cells, we also observed unregulated membrane

permeabilization induced by aggregate-membrane interactions.

Results

Abnormal properties of structurally disordered SOD1
Since the disordered regions and/or monomerization [21,22,23]

as the result of the metal-free state of SOD1 have a role in initiating

protein aggregation, it is well known that apo SOD1 species (non

metal bound, usually exists as a monomer state) readily assemble to

largely aggregated structures under destabilizing conditions [21,

22,23,24,25,26], as shown in the description of Figure 2A.

Moreover, many recent publications [24,27] have presented

compelling evidence that wild-type (WT) and mutant SOD1 (i.e.,

especially their apo forms) share an aberrant conformation and a

common pathogenic pathway in ALS. In most cases, some of holo

mutants largely retain the stability of holo WT SOD1, which is an

exceptionally stable form. Related with this, it has been reported

that some of the holo mutant SOD1s actually are more stable than

apo WT SOD1 [24]. In addition, recent report presenting that the

overexpression of WT SOD1 accelerates disease onset of a G85R

SOD1 mouse [28], supports the pathogenic mechanism involved

with WT SOD1 in ALS. For this reason, we have first studied with

aggregates, prepared from apo WT SOD1 as a starting material, to

explore the in vitro membrane behavior related with SOD1

aggregates. The in vitro formation of an SOD1 aggregate was

achieved using apo WT SOD1 following a previously reported

protocol based on a treatment with 2,2,2-trifluoroethanaol (TFE)

[26]. TFE has been extensively used to study the structural

variations of other proteins [29,30]. An inset of Figure 2A shows the

general morphology of the as-prepared SOD1 aggregates. The

morphological properties of the aggregates prepared in vitro, were

also characterized by AFM imaging (Figure S1). The sizes and the

appearance of amorphous granular structures and rough surfaces,

were similar to those reported for ALS patients [31,32] and ALS

transgenic mice [26,33,34]. The circular dichroism (CD) spectrum

(Figure 2B) of apo WT SOD1 shows the characteristic b-sheet

pattern, with a broader peak than that for holo WT SOD1, due to

the structural change caused by the absence of Cu and Zn2+, which

have both catalytic and structural roles in SOD1 [35]. Note that the

secondary structure of holo WT SOD1 is known to be mainly

comprised of 60% b-sheet and 30% random coil with the remainder

being an a-helix [36,37], compared to bovine serum albumin (BSA,

a negative control, mainly composed of a-helixes). In the case of the

SOD1 aggregate, the characteristic signature for secondary

structures was not found. Since these conformational changes in

Figure 1. Experimental approaches for understanding the interaction between SOD1 aggregates and cellular membranes. (A) A
cartoons showing the protein’s aggregation and its interaction with a cellular membrane. (B) The SPR instrumental setup equipped with a flow cell
used in an in vitro observation with an artificial SLB. (C) The inside-out configuration of the patch clamp used in an observation with a real cell
membrane patch.
doi:10.1371/journal.pone.0028982.g001
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proteins are generally accompanied by structural turnover and/or

changes in surface residues [2,38], ANS fluorescence was next

applied to determine how the surface property of the proteins are

altered during the aggregation. A higher ANS fluorescence (5.5-fold

enhancement, Figure 2C) was observed for the SOD1 aggregate,

compared to its native state (holo WT SOD1). This is caused by the

exposure the numerous hydrophobic residues on the protein surface

during the aggregation process. Native proteins (holo WT SOD1

and BSA) did not show significant ANS fluorescence enhancement

from the base line for a control sample (ANS dye only), while

substantial ANS fluorescence enhancement (2.5-fold) for the apo

WT SOD1 was observed. Based on our previous report [22], the

change in hydrophobicity of a protein significantly affects on the

interaction with lipid molecules, which are main components of the

cell membrane.

Monitoring of interactions between the SOD1 proteins
and SLB

Having shown that SOD1 aggregates have abnormal properties

(i.e., structural disorderness and hydrophobicity) compared to their

native state, we explored the interactions between the cellular

membrane and the SOD1 aggregates, using the methods described

in Figure 1B and 1C. We first used a supported lipid bilayer (SLB)

prepared from phospholipids (1,2-dipalmitoyl-sn-glycero-3-phos-

phocholine, DPPC, saturated lipid molecule). An SPR instrument

equipped with a reaction cell was used to monitor the interaction

between the SLB and the proteins in real-time. A flow cell was

mounted onto the SLB/Au/prism assembly so that protein

solutions could be easily introduced and flow across the SLB.

Interestingly, exposure to the SOD1 aggregate resulted in a

decrease in SPR reflectance (Figure 3A and Figure S2A), whereas

an increase due to the adsorption to SLB was observed for both apo

WT SOD1 and BSA (Figure 3B and 3C). The decrease or increase

in SPR reflectance can be attributed to changes in the mass of the

SLBs adjacent to the gold film, which is induced by interactions

between SLBs and proteins. When the SOD1 aggregates were

exposed to the cholesterol contained DPPC SLB, the decrease in

SPR reflectance was also observed (Figure S2B).

These interactions were also checked by the detection of

aggregates induced by the interactions between DPPC vesicles and

proteins. After incubating the proteins with DPPC vesicles, they

were sampled and then subjected to thioflavin T (ThT)

fluorescence measurements. ThT is a fluorescence probe used to

detect the presence of aggregates and the amount of aggregated

proteins [26], compared to the initial state of each sample.

Figure 4A shows the results for the time-resolved analysis for the

further SOD1 aggregation induced by the interaction between

proteins and lipid vesicles. As controls, we also analyzed the

proteins incubated without lipid vesicles (Figure 4B). No significant

changes were observed in the control cases. While, SOD1

aggregates, when incubated with lipid vesicles, demonstrated a

higher tendency to undergo aggregation than the other samples

depending on the incubation time. In the case of apo WT SOD1,

the fluorescence intensity also increased to a considerable extent.

This indicates that lipid-SOD1 complex [22] can be formed on a

SLB. Accordingly, the decrease (Figure 3A) or increase (Figure 3B

and 3C) in SPR reflectance can be attributed to the detachment of

lipid molecules on the SLB and binding to the SLB, respectively,

which are induced by interactions between SLBs and proteins. To

demonstrate the relevance of the observed strong binding affinity

of the SOD1 aggregates to the saturated DPPC lipid molecules, we

also examined the binding propensity with other lipid vesicles

Figure 2. Schematic illustration of SOD1 aggregation and its characteristics. (A) A scheme for the aggregation of SOD1. Inset is a shape of
as-prepared SOD1 aggregate. Bars, 200 nm. (B) CD spectra and (C) ANS fluorescence intensities for proteins (Red, SOD1 aggregates; orange, apo WT
SOD1; blue, holo WT SOD1; grey, BSA).; All protein samples were prepared in PBS at a concentration of 0.1 mg/mL. SOD1 aggregates were taken after
incubation with TFE for 5 days, and then characterized.
doi:10.1371/journal.pone.0028982.g002
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composing different compositions (i.e., unsaturated lipid molecules

and cholesterol molecules). In the case of 1-palmitoyl-2-oleoyl-

phosphatidylcholine (POPC, unsaturated lipid molecule) lipid

vesicles (Figure S3), the insertion of cholesterol molecules to the

vesicles induced the significant increase of the fluorescent intensity

compared to the cases of POPC lipid only and cholesterol only.

The association propensity was also different among different mole

fraction between lipid molecules and cholesterol molecules (i.e.,

1:0, 1:1, 2:1, and 0:1). This result indicates that the interactions

between lipid vesicles and SOD1 aggregates can behave differently

dependent on the saturation of lipid molecule chain and the

composition of vesicles.

AFM images of the SLB surface were also obtained to visualize

and cross-check the results of the SPR measurements (Figure 3) for

changes in SLB and the ThT assay (Figure 4) for resulting

aggregates induced by molecular interactions between proteins

and lipid vesicles. Figure 5A shows an AFM image of the original

SLB surface formed on a gold substrate, which resembled the

morphology of the gold substrate (Figure S4). It should be noted

that the roughness of a gold surface was below 2 nm and that of

undamaged SLB surface was also below 2 nm. After the exposure

of SLB to SOD1 aggregates, numerous defects within the SLB

were observed (Figure 5B), compared with the SLB before

exposure (Figure 5A). In the case of apo WT SOD1, an AFM

image (Figure 5C) shows a considerable increase in the number of

clusters on the original smooth SLB surface, which is due to the

formation of a lipid-protein complex, as supported by the ThT

fluorescence measurement of the interaction between apo WT

SOD1 and lipid molecules (Figure 4A). Conversely, native BSA

was bound to the SLB and its integrity was maintained (Figure 5D),

which is attributable to its non-specific binding property and poor

aggregation propensity after incubation with lipid molecules, as

confirmed by the ThT assay (Figure 4A). From the results, we

conclude that the SOD1 variants with disordered regions, as the

Figure 3. SPR reflectance changes after the interactions between the proteins and the SLBs. (A) SPR reflectance decreases after the
interaction between SOD1 aggregates and SLB. (B) SPR reflectance increases after the interaction between apo WT SOD1 and SLB. (C) SPR reflectance
increases after the interaction between BSA and SLB. All proteins were prepared in PBS at a concentration of 0.1 mg/ml and were exposed to the lipid
membrane for 1 h. The time-resolved reflectance changes derived by the interaction between SLBs and injected proteins were measured using the
fixed angle method.
doi:10.1371/journal.pone.0028982.g003

Figure 4. Time-resolved ThT fluorescence measurement for the incubated proteins. (A) With DPPC lipid vesicles. (B) Without DPPC lipid
vesicles. To investigate the effect of the interaction of lipid molecules with proteins on aggregation, proteins were incubated with DPPC vesicles in
PBS at 37.5uC. As controls, proteins without DPPC vesicles were also incubated under the same conditions. All samples were incubated without
agitation. At each time point, an aliquot of each sample was taken and the presence of aggregates was determined using ThT fluorescence assay.
doi:10.1371/journal.pone.0028982.g004
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result of demetallation (apo SOD1) and further aggregation

(SOD1 aggregate), can cause the loss of SLB integrity, as the result

of further aggregation on a SLB and/or the detachment of parts of

the SLB (i.e., defects), respectively.

Identification of defects within the SLB by interaction
with the SOD1 aggregate

We next performed an in-depth characterization of SLBs that

contained numerous defects. Figure 6A shows a line profile of the

resulting SLB (Figure 5B), caused by contact with SOD1

aggregates. The data show a remarkable height difference between

the bright domain and the dark domain of less than 8 nm

(indicated by red arrow-heads). Considering that the length of a

DPPC molecule is 3.4 nm [39], the bright and dark domains

correspond to remaining lipid layers and lipid-detached regions,

respectively. As shown in the right image of Figure 6A, the

remaining lipid layers (shown in pink) occupy approximately 20%

of the entire surface. This is in good agreement with the SPR

result, in which the loss of surface coverage by SLB was calculated

to be 80% (Figure 6B, Since SPR angular shift is typically

proportional to the surface coverage [40], we calculated the

change in coverage from the collected SPR angles for the SLB

before and after its contact with the SOD1 aggregates, which were

1.24u and 1.01u, respectively. We also observed the similar

decrease in the surface coverage of cholesterol contained DPPC

SLB after exposure to the SOD1 aggregates (Figure S2B, S2C).

This result clearly indicates that the changes in lipid membrane

integrity by interacting with the SOD1 aggregates are common

behaviors irrespective of the existence of cholesterol molecules. In

addition, we characterized the size of the defects based on the

AFM characterization for the SLB after its exposure to the SOD1

aggregates. As shown in Figure S5, we can obtain the statistic data

from the surface topography (Figure 6A) of the resulting lipid

membrane. Figure S5B shows the grains indicating the dark areas

(i.e., lipid detached areas) of the Figure S5A. Histograms (Figure

S5C, S5D) show the statistic distribution of the length and area of

the numbered areas in the Figure S5B, respectively. Result shows

that the majority of the defects have several hundreds of lengths

and areas of below 0.1 mm2.

ThT fluorescence imaging (Figure 6C) was applied to SLB, to

determine whether or not the aggregate remains on the surface of

the SLB after the interaction. The inset shows a clear blue ThT

fluorescence for the SOD1 aggregate solution exposed to the SLB

layer, however, visible blue spots were not found over most of the

field of view for the resulting SLB, indicating that no aggregate

remains on the surface of the SLB. This further indicates that,

after the interaction between an aggregate and SLB, the aggregate

assembled with lipid molecules is detached from the SLB, thus

creating numerous defects within the SLB, as shown in the

description of Figure 6D.

Identification of unregulated membrane permeability in
HEK 293 cell membrane patches by SOD1 aggregates

It should be noted that the formation of defects within a

membrane by proteins is extremely important because the

perturbation in mass transport (i.e., membrane permeability by

Figure 5. AFM images of resulting SLB surfaces. (A) Original SLB layer. (B), (C), and (D) SLB layers after the interaction with SOD1 aggregates,
apo SOD1, and BSA, respectively. Bars, 1 mm. All images were obtained after the SPR measurement.
doi:10.1371/journal.pone.0028982.g005
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defect) may play crucial roles in determining membrane-mediated

cytotoxicity [18,41]. Our finding of the formation of defects is also

supported by recent reports of membrane disruption by Amyloid-b
fibrils [18,20] and amyloidogenic human amylin peptide [19,41].

Although the changes in membrane integrity could constitute a

viable candidate for membrane permeabilization, membrane

permeabilization induced by protein aggregates has been mainly

investigated so far by indirect demonstrations, such as monitoring

the kinetics of a fluorescent probe released from vesicles [18,19]

and molecular simulations with proteins and vesicles [20]. By

monitoring the fluorescent dye released from the DPPC lipid

vesicles, we pre-observed the permeability of lipid membrane

(Figure S6). For a more practical demonstration, we examined

what occurs in a real cell membrane system, as the result of

changes in membrane integrity by the formation of defects and the

binding to cell membranes observed in our model system, SLB.

For a direct demonstration of membrane permeability with a

cellular membrane, we investigated membrane permeability by

measuring current changes in membrane patches detached from

HEK 293 cells upon exposure to different SOD1 variants.

In this test, to collect more biologically relevant information (i.e.

mutation effect) through the use of a real cell membrane patch,

A4V SOD1 as well as WT SOD1 was chosen for the following

reasons; (1) We suspected that membrane permeability might be

strongly dependent on the extent of aggregation, and it is well

known that the kinetics of aggregation for A4V are faster than that

of WT SOD1 [42,43]. (2) The A4V mutation is one of several

ALS-linked SOD1 mutations. As shown in Figure S7A, S7B, the

A4V SOD1 aggregate forms a much greater extent than that of

WT SOD1 under the same conditions due to the difference in

aggregation kinetics, which is consistent with previous reports

[21,42,43]. However, they share common properties of aggregates

in terms of surface property and morphology, as judged from the

ANS fluorescence enhancement (Figure S7C) and the electron

micrographs (Figure S7D). For as-prepared SOD1 variants, the

ionic permeability of HEK 293 cell membranes (Figure 7) was

measured using the inside-out configuration (a description of

Figure 1C) of a patch clamp. A large increase in conductance was

observed on perfusing the A4V SOD1 aggregate into the

experimental bath (Figure 7E). In stark contrast, no significant

change in conductance was observed in the control with BSA

(Figure 7A), which can be attributed to the conservation of the

integrity of membrane after being in contact with BSA, as

observed in the SLB (Figure 5D). For holo SOD1, no obvious

Figure 6. The formation of defects within the SLB by the interaction between the SOD1 aggregate and the SLB. (A) (p) and (h) AFM
image and height profile of the resulting SLB surface after the exposure to the SOD1 aggregate. (r) and (s) AFM image colored for remaining lipid
layers (shown in pink) and height distribution of entire surface. Remaining lipid layers occupy approximately 20% of the entire surface. (B) SPR
contour plots at each event. Each plot indicates before formation of SLB (black), after formation of SLB (blue), and after interaction between SLB and
SOD1 aggregates (red), respectively. (C) ThT fluorescence image of the resulting SLB surface. (An inset shows clear blue ThT fluorescence for a SOD1
aggregate solution.). Bars, 100 mm. (D) Description of the formation of defects within a SLB by the SOD1 aggregate.
doi:10.1371/journal.pone.0028982.g006
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change was also observed (data not shown). However, WT apo

SOD1 and A4V apo SOD1 (Figure 7B and 7D) slightly changed

conductance, which might be due to membrane binding and

further aggregation with lipid molecules induced by their

structural disorderness, based on the results observed for SLB

(Figure 5C). The WT SOD1 aggregate often increased the

membrane conductance (Figure 7C) but with far less frequency

than the A4V SOD1 aggregate (Figure 7E). Since such changes in

conductance are closely related to unregulated membrane

permeability, it appears likely that the SOD1 aggregates induce

the formation of numerous defects within the cellular membrane,

thus perturb membrane permeability. As expected, the changes in

extent of the conductance were correlated with the amount of

aggregates present, as confirmed by ThT fluorescence intensity

data (each inset of Figure 7). Taken together, different conforma-

tions at the metal-free state did not induce significant difference in

conductance changes (Figure 7B and 7D). However, when they

form aggregates, remarkable difference was observed according to

its original conformation (Figure 7C and 7E). On the basis of these

results, we can address that membrane permeabilization is more

strongly related with the quantity of resulting aggregates rather

than original conformations at their native and/or monomer

states. This can be supported by the recent reports showing that

WT and mutant SOD1 share an aberrant conformation and a

common pathogenic pathway in ALS [24,27].

Discussion

We note that interactions between protein aggregates and cell

membranes may play a crucial role in determining the

membrane-associated cytotoxicity of aggregated proteins, because

many protein conformation diseases (i.e., Alzheimer’s disease,

Parkinson’s disease, prion disease, and ALS) are known to be

related to membrane system [7,18,20,44,45,46]. In this study, we

for the first time demonstrate the cytotoxic actions of SOD1

aggregates associated with membranes by showing their abnor-

mality in terms of structural and surface properties, and by

investigating changes in the membrane integrity and permeabil-

ity. Based on our observations, it appears that the aggregates with

abundant hydrophobic parts, induced by conformational chang-

es, can be readily inserted to the inner space of the membrane

and assembled with the hydrophobic tails of lipid molecules. This

is well supported by our previous work [22] showing that the

change in hydrophobicity of a protein significantly affects on the

interaction with lipid molecules and finally induces the formation

of cytotoxic aggregation. Although the binding interactions

between the SOD1 aggregates and lipid membranes are affected

by various factors including lipid structures and lipid composi-

tions, the changes in the lipid membrane integrity by interacting

with SOD1 aggregates were found to be common behaviors. As a

result, defects within a membrane are formed by the detachment

Figure 7. The unregulated membrane permeability in HEK 293 cell membrane patches by the SOD1 aggregates. The ionic
permeability of HEK 293 cell membranes in response to the perfusion of proteins was measured at 10 kHz in inside-out configuration (Fig. 1C) of a
patch clamp. The bath (approximately 0.15 ml) was superfused at 1 ml/min and voltage clamp experiments were performed at room temperature
(22–25uC). (A–E) Electrophysiological recordings for (A) BSA, as a control, (B) Apo WT SOD1, (C) WT SOD1 aggregate, (D) Apo A4V SOD1, and (E) A4V
SOD1 aggregate. Bar graphs represent the ThT fluorescence intensity of each sample solution obtained before perfusing.
doi:10.1371/journal.pone.0028982.g007
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of lipid molecules that are co-assembled with SOD1 aggregates.

This in vitro observation was also directly examined by using real

cell membrane patches with more complicated compositions and

structures than artificial SLBs. Basically, the extent of changes in

permeability through membrane patches depended on the

amount of aggregates.

In conclusion, our findings suggest that a plausible explanation

for the changes in membrane integrity and permeability is the

structural disorderness and surface hydrophobicity of SOD1

aggregates, which are induced by conformational changes. That

is, the abnormal interaction between a membrane and SOD1

aggregates induces defects in membrane integrity, and perturbs

membrane permeability. We expect that this finding will advance

our understanding of the pathway by performing further through

investigations of the gain of toxic function of SOD1 variants and

offer diagnostics and therapeutics associated with ALS. To more

clearly address our observations, more investigations on other

structurally disordered proteins (i.e., Amyloid-b fibrils) as well as

other mutant SOD1s are currently underway by employing in

vitro observation methods used here. We believe that these

fundamental studies of biomolecular interactions can be a model

system and provide clues for understanding the intra- and

extracellular interactions between real cell membranes and

proteins.

Materials and Methods

Materials
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmi-

toyl-2-oleoyl-phosphatidylcholine (POPC), bovine serum albumin

(BSA), and thioflavin T (ThT) were purchased from Sigma. 2,2,2-

trifluoroethanaol (TFE) was purchased from Aldrich. 11-mercap-

toundecanoic acid (MUA) and 8-anilino-1-naphthalene-sulfonic

acid (ANS) were obtained from Sigma-Aldrich. Standard 106
phosphate buffered saline (100 mM PBS), which contained the

salts; NaCl 80.0 g (1.37 M), KCl 2.0 g (27 mM), Na2HPO4 14.4 g

(100 mM), KH2PO4 2.4 g (17.6 mM), was diluted to the 25 mM

PBS for our all experiments. All chemicals were used as received

without further purification.

In vitro preparation of SOD1 aggregate
The purification of SOD1 proteins was achieved by following a

previously reported purification protocol [16,22]. To prepare

SOD1 aggregate, the purified apo SOD1 samples were diluted

with an acidic phosphate buffer saline (PBS) solution (pH 5.4) at a

concentration of 0.1 mg/ml [26]. SOD1 aggregates were

prepared by treatment with a solution containing 20% (v/v)

TFE. To monitor aggregate formation, ThT fluorescence of

samples was measured by fluorescence spectroscopy (LS 55,

PerkinElmer). ThT is known to associate rapidly with aggregated

fibrils, giving rise to a new excitation maximum at around 450 nm

and an enhanced emission at around 482 nm. 150 mL of each

sample was mixed with 15 mL of 10 mM ThT in PBS, and

fluorescence emission intensity was immediately and repeatedly

recorded at least five times to obtain a reasonable values. To

further characterize the morphology of the SOD1 aggregates,

transmission electron microscopy (TEM) was used. Samples

(150 mL aliquots) were incubated on 400-mesh carbon-coated

formvar copper grids overnight. The grids were air-dried and

stained with 1% (w/v) uranyl acetate. Specimens were viewed with

an energy-filtering TEM (LIBRA, Carl Zeiss) at an accelerating

voltage of 120 kV.

Circular dichroism (CD) spectroscopy
The secondary structure of proteins was determined by CD

analysis (Jasco J-715 spectropolarimeter). A 0.1-cm quartz cell was

used for the measurements and the CD spectra were recorded from

190 to 250 nm. All CD measurements were carried out using the

following parameters: 1 nm bandwidth, 50 nm/min run speed,

1 nm step size, 8.3 s response time, and an average of three runs.

ANS fluorescence spectroscopy
For the measurement of surface hydrophobicity, the fluores-

cence property of the extrinsic fluorophore ANS (final concentra-

tion 20 mM, excitation at 360 nm, bandwidth 5 nm) was

examined by 10 min of incubation at 37uC with proteins in the

buffer via fluorescence spectroscopy.

Preparation of lipid vesicles and SLBs
The vesicles were prepared by probe sonication. A 40 mg

portion of lipids was dissolved and agitated in 4 mL chloroform in

a glass vial. For the preparation of cholesterol contained lipid

vesicles, cholesterol molecules were added to the lipid solution by

the desired molar ratios. Freeze-and-thaw cycles by liquid nitrogen

for three times. The organic solvent was evaporated with a

nitrogen stream to form a thin lipid layer on the inner wall of the

vial. Dried lipid films were resuspended in PBS at a concentration

of 0.1 mg/mL, and the suspension was sonicated at low amplitude

in an ice bath for 30 min. Sonication for 5–10 min was repeated to

avoid too much increase in the suspension temperature. The

resulting vesicle solution was then stored at 4uC before use. For the

preparation of SLBs, Au substrate was modified by pretreatment

of 5 mM MUA ethanolic solution for overnight and was rinsed

with pure ethanol to remove the excess molecules. The resulting

hydrophilic substrate was incubated under 100 mL of the vesicle

suspension for 2 h at 45uC. After incubation, the excess vesicles

were removed by rinsing with PBS.

In situ SPR/SLB assays and AFM imaging
For the real-time analysis of interaction between SLBs and

proteins, commercial SPR instrumentation (K-MAC) equipped

with reaction cell was used [16]. Specimens of SOD1 aggregates,

apo SOD1, and native BSA were separately dispersed in PBS at a

concentration of 0.1 mg/ml. Each specimen was exposed to the

lipid membrane for 1 h. The time-resolved reflectance changes

derived by the interaction between SLBs and injected samples

were measured using the fixed angle method. The change in

surface coverage of the remained SLB was calculated from the

collected SPR angles, since SPR angular shift is typically

proportional to the surface coverage [40]. After the incubation

with each protein solution, the resulting morphologies of SLBs

were also characterized by AFM imaging. AFM images were

acquired in non-contact mode using an atomic force microscope

(XE-100, Park systems). Uncoated silicon cantilevers with typical

tip curvature radius of about 10 nm were used.

Time-resolved analysis of lipid molecule-induced
aggregation

To investigate the effect of the interaction of lipid molecules

with proteins on aggregation, proteins were incubated with DPPC

vesicles in PBS at 37.5uC. As controls, proteins without DPPC

vesicles were also incubated under the same conditions. All

samples were incubated without agitation. At each time point, an

aliquot of each sample was taken and the presence of aggregates

was determined using ThT fluorescence assay.
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Cell culture
Human embryonic kidney (HEK 293) cell line was obtained

from American Type Culture Collection (Manassas, VA, USA).

Prior to the experiment, HEK 293 cells were grown in Dulvecco’s

Modified Eagle’s Medium (DMEM) (Invitrogen) supplemented

with 10% (v/v) heat-inactivated fetal bovine serum (Hyclone,

Logan, UT), (Sigma), and 1% penicillin/streptomycin (Invitrogen).

All cells were incubated in 20% O2, 10% CO2 37uC.

Electrophysiological recordings
For electrophysiological recordings, the cells were transferred

into a bath mounted on the stage of an inverted microscope (IX-

70, Olympus). The bath (approximately 0.15 ml) was superfused

at 1 ml/min and voltage clamp experiments were performed at

room temperature (22–25uC). Patch pipettes with a free-tip

resistance of about 2.5 MV were connected to the head stage of

a patch-clamp amplifier (Axopatch-1D, Axon Instruments).

pCLAMP software v.9.2 and Digidata-1322A (both from Axon

Instruments) were used for the acquisition of data and the

application of command pulses. Single channel activities were

recorded at 10 kHz in inside-out configurations. The pipette

solution contained (in mM) 145 KCl, 1 EGTA, and 10 HEPES

with a pH of 7.4 (titrated with KOH). The bath solution contained

(in mM) 145 KCl, 1 EGTA, and 10 HEPES with a pH of 7.2

(titrated with KOH). The voltage and current data were low-pass

filtered at 1 kHz. Current traces were stored and analyzed using

Clampfit v.9.2 and Origin v. 7.0 (Microcal Inc.).

Supporting Information

Figure S1 Morphology of the prepared SOD1 aggre-
gates. (A) AFM image of the SOD1 aggregates formed after 5

days incubation. Bar, 5 mm. (B) Three-dimensional image of (A)

showing amorphous granular structures and rough surfaces. (C)

Thickness profile of a red line in (B).

(TIF)

Figure S2 SPR contour plots for SLBs disruption
process according to the regular time-interval exposure
of SOD1 aggregates. (A) Interaction between SOD1 aggregates

and DPPC lipid layer (B) Interaction between SOD1 aggregates

and DPPC lipid layer with cholesterol domains. (C) Plots for the

coverage of SLBs remained according to the interaction time with

SOD1 aggregates.

(TIF)

Figure S3 The interactions between the lipid vesicles
and SOD1 aggregates for four types of lipid vesicles with
different compositions.
(TIF)

Figure S4 Formation of a SLB on a Au substrate. (A) SPR

contour plots before and after formation of SLB on the hydrophilic

Au surface. (B) AFM images of a hydrophilic Au surface modified

with MUA (left) and a SLB surface formed after vesicle fusion

(right). Bars, 500 nm.

(TIF)

Figure S5 The size and distribution of the defects within
lipid membrane based on the AFM characterization. (A)

Surface topography of the resulting lipid membrane after

interaction with the SOD1 aggregates. (B) Image assigning the

grains where indicate the dark areas (i.e., lipid detached areas) of

the Figure S5A. (C) and (D) Statistic distribution of the length and

area of the numbered areas in the Figure S5B.; The majority of the

defects have several hundreds of lengths and areas of below

0.1 mm2.

(TIF)

Figure S6 Dye leakage assay from the lipid vesicles
induced by interactions between the lipid vesicles and
SOD1 aggregates.
(TIF)

Figure S7 The A4V and WT SOD1 aggregates used in
this study share a common morphology, but the kinetics
of their aggregation is dramatically different. (A) ThT

florescent intensity of the prepared SOD1 aggregates under same

conditions (i.e., same protein concentration and destabilizing

condition). (B) Visualization of the aggregates by formation of the

precipitation, which are induced by gold nanoparticle binding to

the SOD1 aggregates; The A4V aggregate is much more formed

that of WT SOD1 under the same conditions (Note that the

aggregation kinetic of A4V is faster than that of WT.). (C) and (D)

ANS fluorescence enhancement and morphologies of prepared

aggregates show the similarity between WT (left) and A4V (right).

(TIF)
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