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Abstract

Background: Pax3 is a developmental transcription factor that is required for neural tube and neural crest development. We
previously showed that inactivating the p53 tumor suppressor protein prevents neural tube and cardiac neural crest defects
in Pax3-mutant mouse embryos. This demonstrates that Pax3 regulates these processes by blocking p53 function. Here we
investigated the mechanism by which Pax3 blocks p53 function.

Methodology/Principal Findings: We employed murine embryonic stem cell (ESC)-derived neuronal precursors as a cell
culture model of embryonic neuroepithelium or neural crest. Pax3 reduced p53 protein stability, but had no effect on p53
mRNA levels or the rate of p53 synthesis. Full length Pax3 as well as fragments that contained either the DNA-binding
paired box or the homeodomain, expressed as GST or FLAG fusion proteins, physically associated with p53 and Mdm2 both
in vitro and in vivo. In contrast, Splotch Pax3, which causes neural tube and neural crest defects in homozygous embryos,
bound weakly, or not at all, to p53 or Mdm2. The paired domain and homeodomain each stimulated Mdm2-mediated
ubiquitination of p53 and p53 degradation in the absence of the Pax3 transcription regulatory domains, whereas Splotch
Pax3 did not stimulate p53 ubiquitination or degradation.

Conclusions/Significance: Pax3 inactivates p53 function by stimulating its ubiquitination and degradation. This process
utilizes the Pax3 paired domain and homeodomain but is independent of DNA-binding and transcription regulation.
Because inactivating p53 is the only required Pax3 function during neural tube closure and cardiac neural crest
development, and inactivating p53 does not require Pax3-dependent transcription regulation, this indicates that Pax3 is not
required to function as a transcription factor during neural tube closure and cardiac neural crest development. These
findings further suggest novel explanations for PAX3 functions in human diseases, such as in neural crest-derived cancers
and Waardenburg syndrome types 1 and 3.
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Introduction

Understanding how regulators of embryonic development

function on a molecular level is a major objective of developmental

biology. Pax3, a member of the mammalian Pax family of

developmental regulators, is expressed in the neuroepithelium,

neural crest, and somitic mesoderm [1,2,3]. One hundred percent

of mouse embryos that are homozygous for the mutant Pax3 allele,

Splotch (Pax3Sp/Sp) develop neural tube defects (NTD), cardiac

outflow tract defects (COTD), and fail to form skeletal muscle,

indicating that Pax3 is essential for formation of these structures

[4,5,6]. In humans, Waardenburg syndrome (WS) types 1 and 3 is

an autosomal dominant condition that is caused by PAX3

mutations and affects neural crest-derived structures, [7]. Pax

proteins are characterized by the presence of a paired box DNA-

binding element [1]. Some of the Pax proteins, including Pax3,

contain a paired-type homeodomain that also binds to DNA, and

a conserved octapeptide [1]. It has traditionally been accepted that

Pax3 regulates developmental processes by operating as a

transcriptional regulator because: (i) Pax3 contains sequence-

specific DNA-binding domains that are capable of directing trans-

activation [8,9,10]; (ii) the protein product of the mutant Splotch

Pax3 allele is trans-activation defective [11]; and (iii) several genes

have been identified that are directly or indirectly regulated by

Pax3 [12,13,14,15,16,17,18,19,20,21,22,23]. However, exactly

how Pax3 regulates formation of the neural tube and neural

crest-dependent structures has not yet been determined.

Apoptotic cells are observed in embryos expressing nonfunc-

tional Pax3 alleles at sites where normal Pax3-expressing

neuroepithelial and cardiac neural crest cells are located in w.t.

embryos [24,25,26]. This suggests that the ensuing NTD and

COTD result from depletion of progenitor cells that are necessary

to populate these structures. We showed that inactivation of p53

through germ-line mutation or chemical inhibition prevented the

NTD, exencephaly and spina bifida, and COTD that are

characteristic of Pax3Sp/Sp embryos, as well as associated apoptosis,

in embryos expressing nonfunctional Pax3 alleles [25,27]. This

indicates that Pax3 is not required in neuroepithelium and neural
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crest to regulate genes that direct morphogenesis or migration, but

that it is required to block p53-dependent processes that lead to

apoptosis. This contrasts with the role of Pax3 in skeletal muscle

development where it serves as an upstream regulator of myogenic

gene expression [16,17]. p53 protein, but not mRNA, was

increased in Pax3Sp/Sp embryos, suggesting that Pax3 blocks p53

function by inhibiting p53 protein synthesis, stability, or both [27].

However, the precise mechanism by which Pax3 regulates steady

state levels of p53 protein, and whether it involved Pax3

functioning as a transcription factor, has not been determined.

Further study of the molecular mechanism by which Pax3

regulates p53 can be facilitated by a cell culture model of

developing neuroepithelium and neural crest. Murine embryonic

stem cells (ESC) can be induced to form neuronal precursors that

express genes that are characteristic of neuroepithelium, including

Pax3 [28]. Thus, if expression of Pax3 causes a reduction in steady-

state levels of p53 protein, differentiating ESC would be a valid cell

culture model to study the mechanism by which Pax3 blocks p53

function in embryonic neuroepithelium and neural crest.

Results

p53 protein is negatively regulated by Pax3 in ESC
We first investigated whether abundance of p53 protein, but not

mRNA, was inversely related to abundance of Pax3 in ESC as in

mouse embryos. Murine ESC were grown as undifferentiated

cultures (stage 1), or were induced to form neuroepithelial-like

neuronal precursors (stage 3) using established methods [29].

There was no difference in abundance of p53 mRNA between

stage 1 and stage 3 (Figure 1 A). In contrast, Pax3 mRNA was

undetectable in stage 1 ESC but was significantly increased during

stage 3. Nestin mRNA, which is expressed in neuroepithelium in

vivo and in mESC-derived neuronal precursors [29,30] increased

in stage 3 ESC. In contrast to p53 mRNA, p53 protein

significantly decreased during ESC differentiation, while Pax3

protein increased in parallel to Pax3 mRNA (Figure 1 B). Nestin

protein levels also significantly increased in stage 3 ESC.

Immunofluorescence using antibodies against p53 or Pax3 further

supported that p53 and Pax3 protein abundance are inversely

related in undifferentiated and differentiating ESC (Figure 1 C, D).

Thus, in ESC, just as in mouse embryos, p53 protein, but not

mRNA, is inversely related to production of Pax3.

To test whether Pax3 was responsible for the decrease in p53

protein in differentiating ESC the effects of expressing Pax3 in

stage 1 ESC, and of knocking down expression of Pax3 in stage 3

ESC, on p53 were examined. Transfecting ESC with a Pax3

expression vector showed that constitutive expression of Pax3 had

no effect on p53 mRNA (Figure 1 E) but was sufficient to suppress

p53 protein in stage 1 ESC (Figure 1 F). Conversely, knocking

down Pax3 using an inducible shRNA in stage 3 ESC increased

Figure 1. Pax3 negatively regulates p53 protein, but not mRNA levels in ESC just as in mouse embryos. (A) Real time RT-PCR of p53,
Pax3, and Nestin mRNA in stage 1 (open bars) and stage 3, days 2–8 (solid bars) ESC. Nestin mRNA is expressed in neuroepithelium and in ESC-derived
neuronal precursors [29,30] and served as a control for a marker of neuroepithelial neuronal precursors. Each mRNA was normalized to rRNA. In (A),
(B), and (D) values represent the mean 6 SEM (n = 3 culture dishes). *p,0.01 vs. stage 1. (B) Quantification (band intensity in arbitrary units) of
immunoblots of p53, Pax3, and Nestin normalized to b-actin in stage 1 and stage 3 ESC harvested on days as indicated in (A). (C) Indirect
immunofluorescence of p53 (green) and Pax3 (red) in stage 1 and stage 3 ESC. Cells were counterstained with DAPI (blue) to visualize nuclei. Cells
incubated with secondary antibodies alone generated no detectable signals (not shown). (D) Percent Pax3 or p53 positive cells in stage 1 and stage 3
ESC. Values represent the mean 6 SEM (n = 10 fields). (E) Real time RT-PCR of Pax3 and p53 mRNA in stage 1 ESC transfected with empty vector
(Control), or vector encoding w.t. Pax3. Each mRNA was normalized to rRNA. ***p,0.0001 vs. control cells. (F) Immunoblot of Pax3 or p53 in stage 1
ESC stably transfected with empty pCMV vector or pCMV-Pax3. (G) Immunoblot of Pax3 or p53 in stage 1 or stage 3 ESC. Stage 3 ESC were
untransfected, or transfected with empty shRNA vector (pSingle), pSingle expressing a scrambled shRNA sequence (scrambled), and 3 different Pax3
shRNA sequences. Stage 3 cultures were treated or not with doxycycline during days 4–6.
doi:10.1371/journal.pone.0029379.g001
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p53 protein (Figure 1 G). These results demonstrate that Pax3, and

not the process of differentiation per se, is responsible for the

decrease in p53 in stage 3 ESC.

Pax3 stimulates p53 ubiquitination and degradation
Treatment of lung carcinoma cells transfected with a PAX3

expression plasmid with cycloheximide suggested that Pax3

stimulates p53 degradation [31], however, whether synthesis of

p53 or synthesis of a regulator of p53 turnover was also inhibited

by cyclohexamide was not determined. To examine whether the

decrease in p53 protein in ESC-derived neuronal precursors was

due to a reduction in protein synthesis, stability, or both, newly

synthesized p53 was pulse labeled with 35S-met. The rate of

incorporation of 35S-met into p53 demonstrated that p53 protein

synthesis was not reduced in stage 3 ESC (Figure 2 A). However,

assay of 35S-met-labeled p53 followed by a chase with unlabeled

met demonstrated that the t1/2 of p53 is reduced approximately 3-

fold in stage 3 ESC compared to stage 1 ESC (Figure 2 B). p53

degradation is stimulated by association with Mdm2 and

activation of Mdm2 ubiquitin ligase activity [32]. To test whether

decreased stability of p53 in stage 3 ESC might be due to increased

ubiquitination, ubiquitinated p53 relative to total p53 was assayed

by immunoblot. The amount of p53 that was ubiquitinated was

significantly increased in stage 3 ESC (Figure 2 C), suggesting that

Pax3 stimulates p53 degradation by promoting its ubiquitination.

Although it is possible that Pax3 could regulate expression of

genes whose products participate in p53 ubiquitination, we

considered that a more rapid modulation of p53 degradation

could be effected if Pax3 physically associates in a complex

containing p53 and Mdm2. To study this, we immunoprecipitated

p53, Pax3, or Mdm2 and examined protein associations by

immunoblot. As shown in Figure 2 D, Pax3 and p53 associated

with each other, particularly using extracts from stage 3 ESC, and

Pax3 also associated with Mdm2. As expected, Mdm2 co-

immunoprecipitated with p53, although more of p53 and Mdm2

were associated with each other using extracts from stage 3 ESC

than from stage 1 ESC. Inasmuch as p53 is less abundant in stage

3 than in stage 1 ESC, it is possible that Pax3 promotes association

of p53 with Mdm2.

We next investigated which structural domains of Pax3 are

responsible for association with p53 or Mdm2. As diagrammed in

Figure 2 E, the structural domains of Pax3 that have been

previously identified include an N-terminal transcription inhibito-

ry domain (ID), the paired domain (PD), a conserved octapeptide

(OCT), the paired-type homeodomain (HD), and a C-terminal

trans-activation domain (TAD). The PD and HD are each

independent DNA-binding domains [3,9,10] that bind to DNA

with higher affinity together than when only one of the domains is

bound together [8], the OCT is necessary for homodimerization

[11], and the ID and TAD possess transcription inhibition and

transcription activation activities, respectively [33]. We construct-

ed plasmids to express glutathione-S-transferase- (GST) and

FLAG-tagged proteins fused with full-length w.t. Pax3, or

fragments containing various Pax3 structural domains. Addition-

ally, we constructed plasmids to express GST or FLAG fused with

the least defective of the proteins encoded by the mutant Pax3

allele, Splotch. The Splotch mutation disrupts the splice acceptor site

of exon 4, resulting in four aberrantly spliced transcripts

[11,34,35]. Three of the predicted protein products cause frame-

shifts beginning in the PD, but the least defective deletes 45 amino

acids that include part of the PD and the OCT (Figure 2 E).

GST fusion proteins were incubated with extracts from stage 1

ESC to determine which Pax3 structures can associate with p53 or

Mdm2 in vitro (Figure 2 F), and plasmids encoding FLAG fusion

proteins were transiently transfected into stage 1 ESC to determine

which Pax3 structures can associate with p53 or Mdm2 in intact

cells in vivo (Figure 2 G). All fusion proteins containing either the

PD or HD associated with p53 and Mdm2 both in vivo and in vitro.

Notably, the PD and HD were each able to associate with p53 and

Mdm2 in the absence of the other DNA-binding domain. p53

associated with Splotch Pax3 at levels comparable to that of w.t.

Pax3 in vitro, but only weakly in vivo. The weak association of Splotch

Pax3 in vivo, despite the presence of the HD, which can associate

with p53 in the absence of other Pax3 structural domains, suggests

that the part of the PD and OCT that are deleted in Splotch Pax3

are necessary to prevent interference by the N-terminal transcrip-

tion inhibitory domain or the C-terminal trans-activation domain

for association of the HD with p53. Mdm2 only weakly associated

with Splotch Pax3 both in vitro and in vivo.

The Pax3 paired domain and homeodomain stimulate
Mdm2-mediated ubiquitination of p53 and p53
degradation

The physical association of Pax3 with p53 and Mdm2 suggested

that Pax3 might regulate p53 ubiquitination. To test this,

ubiquitination of GST-p53 by GST-Mdm2 in the presence or

absence of GST-Pax3 was assayed in vitro. Ubiquitination of GST-

p53 was stimulated by GST-Pax3 in a dose-dependent fashion

(Figure 3 A). This activity was dependent on Pax3 structures, as

GST alone did not stimulate p53 ubiquitination (Figure 3 B).

GST-Pax3 did not stimulate p53 ubiquitination in the absence of

GST-Mdm2 (Figure 3 C), demonstrating that Pax3 was not itself

an ubiquitin ligase, but that it stimulated ubiquitin ligase activity of

Mdm2.

To determine which structural domain(s) of Pax3 are respon-

sible for stimulation of p53 ubiquitination, in vitro ubiquitination of

GST-p53 by GST-Mdm2 with the addition of each of the GST

fusion proteins containing Pax3 structural domains was examined.

Each of the structural domains that are capable of complex

formation with p53 and Mdm2 stimulated ubiquitination of GST-

p53, although the PD appeared to be more potent than the HD

(Figure 3 D). Notably, GST-Splotch Pax3 did not increase

ubiquitination of GST-p53.

To test whether the same Pax3 structural domains that can

stimulate Mdm2-mediated p53 ubiquitination in vitro can stimulate

p53 ubiquitination and degradation upon expression in ESC,

plasmids encoding FLAG fusion proteins were transiently

transfected into stage 1 ESC. As shown in Figure 4 A, the Pax3

structures that contain the PD or the HD, except for Splotch Pax3,

stimulated p53 ubiquitination in vivo, just as they did in vitro.

Transfecting increasing concentrations of plasmids encoding

FLAG fusion proteins caused a dose-dependent decrease in steady

state levels of p53 only if they encoded Pax3 structures that were

capable of stimulating p53 ubiquitination (Figure 4 B, C). Because

each of the PD and HD were capable of stimulating p53

ubiquitination and down regulation when they were expressed in

the absence of the C-terminal trans-activation domain or the N-

terminal transcription inhibitory domain, this indicates that down

regulation of p53 does not require Pax3 to function as a

transcriptional regulator. There was no effect of increasing

concentrations of FLAG-Splotch Pax3 on p53 steady state levels.

This is not due to decreased stability of the Splotch Pax3 protein,

because steady-state levels of FLAG-Splotch Pax3 were similar to

those of FLAG-w.t. Pax3 (Figure 4 B, C). Instead, the failure of

Splotch Pax3 to decrease p53 levels appears to be due to defective

association of Splotch Pax3 with p53 and Mdm2, and failure to

stimulate Mdm2 ubiquitin ligase activity.

Pax3 Stimulates p53 Ubiquitination
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Figure 2. Pax3 stimulates p53 degradation and ubiquitination and physically associates with p53 and Mdm2. (A) Pulse labeling with
35S-met to determine the rate of p53 synthesis in stage1 and stage 3 ESC. Quantitation of 35S-p53 is described in the supporting online material. (B)
Pulse-chase labeling to determine the t12 of p53 in stage 1 and stage 3 ESC. (C) Quantitation of ubiquitinated p53/total p53 in stage 1 and stage 3 ESC
following immunoprecipitation of p53 and immunoblotting using anti-ubiquitin or anti-p53 antibodies. *p,0.05 vs. stage 1. (D) Whole cell extracts of
stage 1 or stage 3 ESC were immunoprecipitated using antibodies against p53, Pax3 or Mdm2, and then immunoblotted using antibodies against
p53, Pax3, and Mdm2. (E) Schematic diagram of full-length w.t. Pax3, Pax3 structural domains, and a Splotch Pax3 (Sp) protein product that were
expressed as GST and FLAG fusion proteins. N-term, amino-terminus of Pax3 through the homeodomain; C-term, carboxy-terminus distal to the
homeodomain (including the trans activation domain); DBD, DNA-binding domain (PD through HD); ID, the trans-activation inhibitory domain
(amino-terminal to the PD); PD, paired domain; OCT, octapeptide (carboxy-terminal of the PD to amino-terminal of the HD); and HD, homeodomain.
The Splotch cDNA deletes exon 4 and lacks coding sequence for part of the PD and the OCT but retains the HD. Numbers refer to amino acid
positions of w.t. Pax3. (F) Immunoblot using antibodies against p53 (upper panel), Mdm2 (middle panel), or GST following incubation of whole cell
lysates from stage 1 ESC with GST-Pax3 fusion proteins linked to glutathione-sepharose beads. (G) Immunoblot using antibodies against p53 (upper
panel), Mdm2 (middle panel), or FLAG following incubation of whole cell lysates from stage 1 ESC that had been transiently transfected with plasmids
encoding FLAG-tagged Pax3 fusion proteins with antibody against FLAG linked to M2 beads.
doi:10.1371/journal.pone.0029379.g002
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Discussion

It has long been recognized that Pax3 is essential for formation of

the neural tube and neural crest-dependent structures. Until now, it

has been believed that the activity of Pax3 as a DNA-binding

transcription factor is responsible for these functions, and that the

phenotype of Pax3Sp/Sp embryos is due to loss of transcription factor

activity of Splotch Pax3 [11,35]. Our previous studies demonstrated

that neural tube closure, cardiac neural crest migration, and cardiac

outflow tract septation proceeds normally in Pax3Sp/Sp and Pax3-null

embryos as long as p53 is inactivated [25,27], demonstrating that

Pax3 is required for these processes only to inactivate p53. The

results presented here demonstrate that Pax3 inactivates p53 by

stimulating its degradation and that stimulation of p53 degradation

occurs independent of Pax3 binding to DNA and regulation of

transcription. Therefore, while Pax3 may, in addition, regulate gene

expression during neural tube and neural crest development, our

results indicate that Pax3 is required in order to effect neural tube

closure and neural crest-dependent cardiac outflow tract septation

only to stimulate p53 ubiquitination and degradation independent

of transcription. Moreover, these findings show that the mutant

Splotch Pax3 allele is defective in associating with p53 and Mdm2 and

fails to stimulate p53 ubiquitination and down regulation. Because

stimulation of p53 degradation by w.t. Pax3 occurs independent of

its activity as a transcription factor, this indicates that Splotch Pax3 is

functionally null, not because it is defective as a transcription factor,

but because it fails to effectively complex with p53 and Mdm2 and

to stimulate Mdm2-mediated ubiquitination of p53.

Associations of the Pax3 PD and HD with other proteins,

including the retinoblastoma tumor suppressor protein (Rb),

Msx1, Mox1 and Mox2, and Ets have been reported

[36,37,38,39]. However, each of these associations functioned to

block Pax3 binding to DNA and activating transcription. In

contrast, the association of the Pax3 DNA-binding domains with

p53 and Mdm2 that are reported here confers an activity on these

domains separate from gene regulation.

Additionally, our findings suggest that human diseases associ-

ated with PAX3 may be explained by insufficient or excessive p53

degradation. For example, almost all of the 76 different PAX3

mutations that have been identified in WS type 1 and type 3 are

localized to the PD, the OCT, or the HD (Figure S1 and Table

S6). Because these mutations interfere with the transcription factor

activity of PAX3, it has been widely accepted that altered

expression of PAX3 target genes is responsible for the WS

phenotype. However, our results predict that mutation of these

PAX3 domains ought to also impair stimulation of HDM2-

mediated ubiquitination of p53. Thus, failure to block p53-

dependent processes, rather than altered expression of PAX3

target genes, may be responsible for the WS phenotype. It is

intriguing to speculate that WS PAX3 proteins compete with w.t.

PAX3 for associating with p53 or HDM2 and behave as trans-

dominant mutants. This could explain why the WS PAX3 alleles,

which appear to be loss-of-function mutations, cause an autosomal

dominant disease. Further research will be necessary in order to

determine whether this is the case. On the flip side, PAX3 over

expression occurs in many neural crest or neuroectodermal tumors

Figure 3. Pax3 stimulates Mdm2-mediated ubiquitination of p53 in vitro. (A) In vitro ubiquitination reactions of GST-p53 with GST-Mdm2
(150 ng), and 0–1600 ng GST-Pax3. Ubiquitination was assayed by immunoblot using 53 antibodies. The position of GST-p53 is indicated by a heavy
arrow, and the positions of ubiquitinated p53 are indicated by narrow arrows. (B) In vitro ubiquitination reactions as in (A) except that GST without
any Pax3 coding sequences was used. (C) In vitro ubiquitination reactions performed with only GST-Mdm2 or 400 ng GST-Pax3. (D) In vitro
ubiquitination reactions of GST-p53 with GST-Mdm2 and 400 ng GST fusion proteins of w.t. Pax3, Pax3 structural domains, or Splotch Pax3. (The GST-
p53 and GST-Mdm2 vectors used here encoded murine p53 and Mdm2, although similar results were obtained using human p53 and Mdm2 fusion
proteins (data not shown).)
doi:10.1371/journal.pone.0029379.g003
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such as melanoma, neuroblastoma, and Ewing’s sarcoma

[40,41,42,43,44]. The p53 gene is rarely deleted or mutated in

these tumors [45,46]. Thus, p53 loss of function may be

accomplished by physical interaction with PAX3, and this may

be crucial to the oncogenesis of these tumors. Other Pax proteins

have oncogenic potential, as indicated by fibroblast transformation

[47]. However, only Pax5 has been shown to regulate p53, and

this was by direct transcription inhibition [48]. Whether down

regulation of p53 by either transcriptional or post-transcriptional

mechanisms is a general property of the Pax family remains to be

determined.

Our conclusions may appear audacious given the existing

dogma that Pax3 regulates neural tube closure and cardiac neural

crest development by virtue of its activity as a transcription factor.

However, reexamination of the existing literature in light of our

findings can reveal a new paradigm of the mechanism by which

Pax3 regulates neural tube and neural crest development. In

particular, there are several genes, including two identified by us,

whose expression is increased or decreased by Pax3

[12,13,14,15,16,17,18,19,20,21,22,23]. Nonetheless, heretofore

there is little functional evidence that Pax3 directly regulates any

of these putative target genes and that they are mechanistically

involved in neural tube closure or neural crest development. The

only gene for which there is functional evidence is Msx2, whose

expression is negatively regulated by Pax3 in the neural tube and

neural crest [19]. Msx2 loss-of-function (Msx22/2) rescued COTD

and embryonic lethality in Pax3Sp/Sp embryos, although NTD were

not rescued [19]. This evidence notwithstanding, the putative

Pax3 binding site within the Msx2 promoter is low affinity [8],

suggesting that Pax3 might not directly regulate Msx2 under

physiological conditions. There is evidence that Msx2 expression is

upregulated along with p53 [49], suggesting that Msx2 might be a

direct or indirect target of p53. Thus, while Pax3 can directly

regulate Msx2 under experimental conditions, effects of Pax3 on

Msx2 expression in embryonic cardiac neural crest may be indirect

and mediated by altered p53 levels. The failure of Msx2 deletion to

rescue NTD in Pax3Sp/Sp embryos indicates that Msx2 is not a

functional target of Pax3 in the neural tube, or that its

downregulation is not sufficient to mediate effects of Pax3 on

neural tube closure.

Interestingly, it was recently reported, using conditional deletion

of Pax3 in premigratory and/or migratory neural crest, that Pax3

is only required for expression in early premigratory and

migratory cardiac neural crest [50]. This is consistent with our

findings, using pifithrin-a, that inhibition of p53 by Pax3 is only

required during approximately the first 4 hours after the onset of

Figure 4. The Pax3 domains that associate with p53 and Mdm2 stimulate p53 ubiquitination and down regulation in vivo. (A)
Quantitation of in vivo ubiquitination of p53 in stage 1 ESC that were untransfected, or transiently transfected with 4 mg FLAG-tagged vectors
encoding w.t. Pax3, Pax3 structural domains, or Splotch Pax3. *p,0.05, **p,0.01. (B) Immunoblot analyses of whole cell extracts from Stage 1 ESC
that were untransfected, or transiently transfected with 1–4 mg FLAG-tagged vectors as in (A) using antibodies against FLAG, p53, or b-actin. (C)
Quantitation of FLAG or p53 relative to b-actin from three replicate transfected culture dishes assayed as in (B).
doi:10.1371/journal.pone.0029379.g004
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Pax3 expression on E8.5 in order for normal cardiac neural crest

migration and outflow tract septation to occur [25]. Thus, while

Pax3-linked reporter gene expression can be detected in cardiac

neural crest cells at least through the 35 somite stage (approxi-

mately E9.5) [25], it is only required to block p53-dependent

processes that are required for subsequent outflow tract septation

in early premigratory and migratory cardiac neural crest cells.

Our findings lead to the overarching question of why it is

necessary for Pax3 to functionally inactivate p53 during embryonic

development. Studies using ESC or generation of induced

pluripotent stem (iPS) cells have indicated that p53 is activated

during ESC differentiation, and that activation of p53 inhibits self-

renewal and promotes differentiation [51,52,53,54,55]. Thus, it

may be necessary for Pax3 to titrate the activity of p53 once

embryonic cells start to differentiate along a neural lineage in

order to prevent premature loss of proliferative capability and

multipotency until a critical cell mass or cellular localization is

achieved.

Materials and Methods

Ethics Statement
Mouse embryos used for recovery of RNA for generation of p53

and Mdm2 expression plasmids were obtained from pregnant

mice on E10.5 using procedures that are approved by the Joslin

Diabetes Center Institutional Animal Care and Use Committee

under Protocol #92-06.

Embryonic Stem Cell Culture
Mouse D3 ESC (ATCC) were cultured and induced to form

neuronal precursors as described [29], except that 0.5 mM retinoic

acid (Sigma) was added to embryoid body cultures. Briefly, cells

were grown as undifferentiated, monolayer cultures (referred to as

stage 1) on 0.1% gelatin-coated tissue culture dishes (without

mouse embryo fibroblasts) in DMEM (Invitrogen) containing 10%

fetal calf serum (Atlanta Biologicals), 110 mM b-mercaptoethanol

(Sigma), 1000 units/ml of leukocyte inhibitory factor (LIF), 2 mM

glutamine, 16nucleosides, 16nonessential amino acids (all from

Millipore), and 16penicillin/streptomycin (Invitrogen). To induce

differentiation to neuronal precursors, stage 1 cultures were

trypsinized, and were induced to form embryoid bodies (referred

to as stage 2) in bacterial grade culture dishes containing stage 1

media with 0.5 mM retinoic acid, but without LIF, for 4 days, then

were transferred to tissue culture dishes in DMEM:F12 media

(Invitrogen) containing fibronectin (Becton Dickenson), insulin,

transferrin, and selenium (Sigma) for up to 4 days (referred to as

stage 3). All experiments were performed using cells that had

undergone fewer than 40 passages.

Plasmid Constructions
Short hairpin RNA (shRNA) sequences targeting Pax3 mRNA

were designed using the shRNA Sequence Designer (Clontech), and

a scrambled sequence was designed using BLOCK-iT RNAi

Designer (Invitrogen). Three Pax3-targeted shRNA sequences and

the scrambled sequence (Table S1) were inserted into the Xho1 and

HindIII sites of pSingle-tTS-shRNA (Clontech). Presence of inserts

was determined by restriction digestion with MluI (Promega).

GST fusion plasmids encoding w.t. Pax3, the amino-terminus,

carboxy-terminus, DBD, ID, PD, OCT, and HD (see Figure 2 E)

were generated as described [8], except using primers and PCR

conditions shown in Table S2. The Splotch Pax3 cDNA was

generated by PCR of GST-w.t. Pax3 to delete exon 4 (nt 839–973)

which encodes the C-terminal 14 amino acids of the PD and the

OCT; this cDNA encodes the only in-frame Pax-3 mRNA

produced in Sp/Sp mutants [34,35]. GST fusion proteins encoding

murine Mdm2 and p53 coding were generated using cDNA

obtained from E 10.5 mouse embryos.

FLAG fusion vectors were constructed by removing the Pax3

coding sequences from the GST fusion plasmids with BamHI and

EcoRI and inserting them into the BamHI and EcoRI sites of

pCMV-Tag2C (Stratagene). The plasmids were grown in DH5a
competent E. coli (Invitrogen) and purified using Qiagen plasmid

preparation kits (Qiagen, Inc.).

All PCR were performed using Taq ready mix (Sigma, St Louis,

MO), except the PCR to generate the Splotch Pax3 internal

deletion, in which PfuUltr High Fidelity DNA polymerase

(Stratagene, La Jolla, CA) was used. The PCR products were

inserted into pGEX-3X (GE healthcare, Piscataway, NJ) that had

been digested with BamHI and EcoRI (New England Biolabs Inc.,

Ipswich, MA). To construct GST-Splotch Pax3, a linear PCR

product was generated using GST-Pax3 FL as template, and

primers that would amplify all of the plasmid except nt 839–973

(exon 4). The methylated template was digested with DpnI (New

England Biolabs Inc., Ipswich, MA). To generate GST fusion

proteins encoding murine Mdm2 and p53, total RNA from whole

mouse embryos was reverse transcribed as described [56], and the

resulting cDNA was amplified using primer sequences, above. The

p53 PCR product was digested with BamHI and EcoRI and

inserted into the BamHI and EcoRI sites of pGEX-3X. The

Mdm2 PCR product was digested with BglII and EcoRI and

inserted into the BamHI and EcoRI sites of pGEX-3X. All

plasmids were grown using competent Rosetta cells (Novagen,

Madison, WI). DNA sequencing by the Dana-Farber/Harvard

Cancer Center DNA Resource Core confirmed the accuracy of

cDNA sequences within all recombinant plasmids.

Transfection of ESC
All transient and stable transfections of stage 1 ESC were

performed using Lipofectamine 2000 (Invitrogen) at a concentra-

tion of 10 mg/ml. Stable transfectants were selected using 400 mg/

ml of G418 (Invitrogen). Transient transfection cultures were

terminated 48 h after transfection.

pCMV-Pax3 [8,47] or empty CMV vector [8] were stably

transfected into cells in 35 mm dishes using 1.8 mg plasmid DNA.

Recombinant shRNA plasmids targeting Pax3 mRNA, or empty

vector were stably transfected into cells in 35 mm dishes using

2 mg plasmid DNA. To induce shRNA expression, ESC were first

differentiated to stage 3, then 1 mg/ml of doxycycline (Clontech)

was added to media on day 4 of stage 3 ESC cultures. Cultures

were harvested 48 h after doxycycline administration.

Association of FLAG-Pax3 and Pax3 domain fusion proteins with

endogenous ESC proteins was studied using transient transfection of

ESC grown in 10 cm plates with 24 mg plasmid DNA. The effect of

increasing expression of FLAG-Pax3 and Pax3 domain fusion

proteins on p53 protein was tested using transient transfection of

ESC in 35 mm plates with 0, 1, 2, or 4 mg plasmid DNA.

Real time RT-PCR
Total RNA was extracted using Ultraspec (Biotecx Laborato-

ries). Real-time RT-PCR was performed in quadruplicate as

described using rRNA as the normalization control [57]. Primer

and probe sequences for Pax3 and p53 were as previously reported

[57,58]. Primers and probes for rRNA and Nestin were obtained

from PerkinElmer.

Immunoblot Analyses
Whole cell extracts were prepared and analyzed by immunoblot

as described [27,59]. Antibodies and their working dilutions of
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primary and secondary antibodies are listed in Table S3.

Antibodies coupled to horseradish peroxidase (HRP) were

detected by chemiluminescence (PerkinElmer) and exposure to

x-ray film. Band intensity was quantified using Adobe Photoshop

(Version 9.01).

Immunoprecipitation
Two hundred mg protein from whole cell extracts were pre-

cleared at 4uC for 1 hour with 10 mg non-immune IgG and 10 ml

of 50% protein A/G beads (Santa Cruz Biotechnology). The pre-

cleared extract was incubated with appropriate antibodies (Table

S4) while rocking at 4uC overnight. Protein A/G beads were

added for one hour prior to precipitation. The precipitated

proteins were analyzed by immunoblot as above.

Immunofluorescence microscopy
ESC were grown on gelatin-coated cover slips. Cells were fixed

with 4% paraformaldehyde, permeabilized with 10% Triton X-

100-PBS, blocked in 5% BSA-PBS, and washed in 1% BSA-PBS.

The cells were then incubated with primary antibodies at 4uC
overnight, and secondary antibodies for 1 hour in the dark at

room temperature (see Supplementary Table S5 for antibody

details). Cells were counterstained for 5 min. with 300 nM DAPI

in PBS. Both antibody incubations were followed by three

10 minutes washes in PBS. Cells were imaged with a Nikon 80i

fluorescence microscope.

Measurement of rates of p53 protein synthesis and decay
p53 synthesis in stage 1 and stage 3 ESC was assayed by pulse

labeling with 35S-methionine. Briefly, cultures were incubated in

cysteine- and methionine-free DMEM for 15 minutes. The media

were replaced with cysteine- and methionine-free media contain-

ing 0.17 mCi/ml 35S-methionine (1175 Ci/mmol) and cultures

were incubated for times indicated. p53 was immunoprecipitated

from whole cell extracts, electrophoresed, and immunoblotted.

p53 bands were cut from nitrocellulose filters and were counted in

a scintillation counter (Beckman Coulter). The relative amount of

newly synthesized p53 was expressed as 35S-cpm/p53 immuno-

reactivity (determined by scanning and quantitation of x-ray film).

Curves were compared using nonlinear regression.

The rates of p53 decay in stage 1 and stage 3 ESC were assayed

by pulse-chase labeling. Briefly, cells were labeled with 35S-

methionine-containing media as above for 1 hour. Media were

removed, cultures were rinsed two times with PBS, and were then

incubated in complete DMEM. The amount of 35S-p53 at each

time point was quantitated as above. Nonlinear regression was

used to calculate the half-life of p53.

In vitro GST Fusion Protein Association Assay
Expression of GST fusion proteins by Rosetta E. coli was

induced as described [60]. GST fusion proteins were isolated as

described [8]. Five hundred mg protein from stage 1 whole cell

lysates were incubated with glutathione-sepharose beads (GE

healthcare, Piscataway, NJ) coupled to GST fusion proteins,

according to the manufacturer’s instructions. The ESC proteins

that co-precipitated with GST fusion proteins were identified by

immunoblot using antibodies listed in Table S3.

In vivo FLAG Fusion Protein Association Assay
Whole cell lysates were prepared from ESC transiently

transfected with FLAG fusion proteins. 500 mg protein were

immunoprecipitated with anti-FLAG M2 agarose (Table S4)

according to the manufacturer’s instructions. The ESC proteins

that co-precipitated with FLAG fusion proteins were identified by

immunoblot using antibodies listed in Table S3.

In vitro Ubiquitination Assay
In vitro ubiquitination reactions were performed as described

[60]. The reaction mixture (20 ml) contained 10 ng GST-p53

(murine), 24 ng E1 (Boston Biochem), 20 ng GST-UbcH5C

(Boston Biochem), 150 ng GST-Mdm2 (murine), 10 mg His-

ubiquitin (Boston Biochem), plus GST fusion proteins containing

full length Pax3 or Pax3 domains. After incubation at 37uC for

60 min, the reaction products were terminated with stop buffer

(Boston Biochem). Ubiquitinated and unubiquitinated p53 were

detected by immunoblot using goat anti-p53 antibodies.

In vivo Ubiquitination Assay
Whole cell lysates were prepared from stage 1 or stage 3 ESC,

or from stage 1 ESC transiently transfected for 48 h with 4 mg

FLAG-tagged plasmid DNA in 35 mm plates. 500 mg protein were

pre-cleared and immunoprecipitated with anti-p53 antibodies

(Ab1 and Ab3) and protein A/G beads at 4uC overnight. The

precipitated proteins were analyzed by immunoblot with anti-

ubiquitin antibodies.

Statistical Analyses
All statistical analyses were performed using GraphPad Prism

software v. 4.0. Data shown are mean 6 S.E.M.

Supporting Information

Figure S1 Locations of Waardenburg syndrome types 1
and 3 mutations within PAX3. The major structural domains

and locations of intron-exon borders are shown. Mutations

causing premature termination are shown above the protein

structure, and those that do not cause premature termination

(frame-shift or deletion) are shown below the protein structure.

Mutations associated with WS3 are shown in italics. Mutations

caused by nucleotide insertions or deletions are indicated by nt

location and number of inserted or deleted nt; mutations caused

by point mutations are indicated by amino acid substitutions.

Further description of PAX3 mutations associated with WS1 and 3

and references are located in Table S6. 1Patient with WS3 is

homozygous for mutation; *2 unrelated families share identical

mutations; #3 unrelated families share identical mutations; abase

substitution at nt +1 within intron 3 abolishes splice donor

sequence, causing translation of intron 3 and termination within

the PD; bbase substitution at the splice acceptor site of intron 3

causes deletion of exon 4; cbase substitution in the splice donor site

of intron 5 causes termination after exon 5. Pax3 structural

domains are labeled as in Figure 2.

(TIF)

Table S1 Oligonucleotide Sequences for Pax3 shRNA.
Short hairpin RNA (shRNA) sequences targeting Pax3 mRNA

were designed and inserted into pSingle-tTS-shRNA (Clontech) as

described in Supplementary Materials and Methods. Xho I sites

are highlighted in green; short hairpin sequences are highlighted in

yellow; Mlu I sites are highlighted in purple; Hind III sites are

highlighted in turquoise.

(DOC)

Table S2 Primer sequences and PCR conditions for
construction of GST fusion proteins. Key: FL, full length;

DBD, DNA-binding domains; ID, inhibitory domain; PD, paired

domain; OCT, conserved octapeptide; HD, homeodomain.
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*Genbank accession number. Nucleotides are numbered with

‘‘+1’’ corresponding to the transcription initiation site.

(DOC)

Table S3 Immunoblot Antibodies. Antibodies used for

immunoblot, their dilutions, species of origin, and commercial

sources.

(DOC)

Table S4 Immunoprecipitation Antibodies. Antibodies

used for immunoprecipitation, amounts used, species of origin,

and commercial sources.

(DOC)

Table S5 Immunofluorescence Antibodies. Antibodies

used for immunoprecipitation, dilutions, species of origin, and

commercial sources.

(DOC)

Table S6 Waardenburg Syndrome Types 1 and 3
Mutations. Summary of currently identified PAX3 mutations

associated with Waardenburg Syndromes Types 1 and 3 and

effects on PAX3 protein.

(DOC)
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