Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3110. doi: 10.1107/S1600536811043595

3-(Trimethyl­sil­yl)prop-2-ynyl p-toluene­sulfonate

Devin C Schmitt a, Guillermo A Morales a,, Frank R Fronczek a,*, Steven F Watkins a
PMCID: PMC3247495  PMID: 22220113

Abstract

In the title compound, C13H18O3SSi, the SO3 group displays a partial rotational (ca 50°) disorder about the C—S bond, with relative proportions 0.7744 (13):0.2256 (13). This disorder also forces the propynyl CH2 group to be disordered.

Related literature

For information on the title compound, see: Westmijze & Vermeer (1979); Tanabe et al. (1995); Morales (1995).graphic file with name e-67-o3110-scheme1.jpg

Experimental

Crystal data

  • C13H18O3SSi

  • M r = 282.42

  • Monoclinic, Inline graphic

  • a = 10.6857 (4) Å

  • b = 12.9413 (5) Å

  • c = 11.8793 (4) Å

  • β = 113.471 (2)°

  • V = 1506.83 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 90 K

  • 0.33 × 0.18 × 0.17 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.910, T max = 0.952

  • 9135 measured reflections

  • 4721 independent reflections

  • 3257 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.108

  • S = 1.03

  • 4721 reflections

  • 177 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043595/fj2461sup1.cif

e-67-o3110-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043595/fj2461Isup2.hkl

e-67-o3110-Isup2.hkl (226.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043595/fj2461Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

The title compound was prepared as an intermediate in the synthesis of 3-methyl substituted benz[f]indole derivatives (Morales, 1995). It has been described as a colorless liquid at room temperature (Tanabe et al., 1995; Westmijze & Vermeer, 1979). Our initial synthesis, by treating 3-trimethylsilylpropargyl alcohol with freshly powdered KOH and freshly recrystallized p-toluenesulfonyl chloride in ether at -50°C, also yielded the desired sulfonate as a liquid. However, after several recrystallizations from hexanes, suitable single crystals were obtained as colorless needles with melting point 43–44°C.

3-Trimethylsilyl-2-propynyl p-toluenesulfonate contains a p-toluenesulfonate group with the S(O)2OCH2 group partially (22.56 (13)%) disordered by rotation of ca 50° about the C–S bond. The disorder was modelled with constrained partial occupancy of two O3 and two H2 sites. The disordered O–C bond distances were restrained to be approximately equal (to within σ = 0.002 Å) to compensate for disorder of the C atom itself. The two partial S–O bonds average 1.574 (2) Å, and the four partial S═O bonds average 1.435 (1) Å.

Experimental

The title compound was prepared according to the procedure of Westmijze & Vermeer (1979): Commercially available 3-trimethylsilylpropargyl alcohol (5.13 g, 40.0 mmol) and freshly purified tosyl chloride (9.53 g, 50.0 mmol) were mixed in anhydrous diethyl ether under an Ar atmosphere. The mixture was cooled to -50 °C, and freshly powdered KOH (15.0 g, 268 mmol) was added at once under vigorous stirring. The temperature of the resulting thick mixture was slowly raised to 0 °C, and the mixture was stirred at this temperature for 30 min. This mixture was poured onto water (200 ml), extracted with ethyl ether (3 τimes 50 ml), washed with water (100 ml), and concentrated under reduced pressure to give a light brown oil. Repeated crystallization from hexanes afforded colorless needles (7.93 g, 70.3% yield).

Refinement

The site occupation factor was constrained to be x for O1, O2, O3, H8A, H8B, and 1 - x for O1A, O2A, O3A, H8A', H8B'. Atomic displacement parameters were constrained to be equal for the following disordered atom pairs: O1 and O1A, O2 and O2A, O3 and O3A, and interatomic distances C8—O1 and C8—O1A were restrained to be equal to within σ = 0.002.

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic-H), 0.98 (methyl-H), and 0.99 (alkyl-H) Å, and displacement parameters Uiso=1.2Ueq (aromatic and alkyl C) and 1.5Ueq (methyl-C), and thereafter refined as riding.

Figures

Fig. 1.

Fig. 1.

View of (I) showing 50% probability displacement ellipsoids. The two disordered components of the sulfonate group are shown, while only the major component of the attached disordered methylene group is drawn.

Crystal data

C13H18O3SSi F(000) = 600
Mr = 282.42 Dx = 1.245 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4768 reflections
a = 10.6857 (4) Å θ = 2.6–31.0°
b = 12.9413 (5) Å µ = 0.29 mm1
c = 11.8793 (4) Å T = 90 K
β = 113.471 (2)° Needle, colorless
V = 1506.83 (10) Å3 0.33 × 0.18 × 0.17 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 4721 independent reflections
Radiation source: fine-focus sealed tube 3257 reflections with I > 2σ(I)
graphite Rint = 0.041
Detector resolution: 9 pixels mm-1 θmax = 30.9°, θmin = 2.6°
ω and φ scans h = −15→15
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) k = −18→18
Tmin = 0.910, Tmax = 0.952 l = −17→16
9135 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.7293P] where P = (Fo2 + 2Fc2)/3
4721 reflections (Δ/σ)max = 0.001
177 parameters Δρmax = 0.76 e Å3
1 restraint Δρmin = −0.54 e Å3
3 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 1.00481 (4) 0.33704 (3) 0.46346 (4) 0.01708 (10)
Si1 0.49810 (5) 0.23584 (4) 0.04270 (4) 0.02127 (12)
O1 0.87983 (15) 0.41268 (11) 0.42804 (13) 0.0207 (3) 0.7744 (13)
O2 1.08780 (16) 0.36473 (12) 0.39833 (15) 0.0237 (3) 0.7744 (13)
O3 1.06468 (17) 0.33877 (12) 0.59590 (14) 0.0250 (3) 0.7744 (13)
O1A 0.9453 (3) 0.4058 (4) 0.3433 (4) 0.0207 (3) 0.2256 (13)
O2A 1.1404 (6) 0.3363 (4) 0.4827 (5) 0.0237 (3) 0.2256 (13)
O3A 0.9569 (6) 0.3761 (4) 0.5540 (5) 0.0250 (3) 0.2256 (13)
C1 0.93291 (17) 0.21448 (12) 0.41521 (15) 0.0178 (3)
C2 0.86434 (19) 0.16667 (14) 0.47865 (16) 0.0240 (4)
H2 0.8564 0.1997 0.5469 0.029*
C3 0.8077 (2) 0.06981 (14) 0.44071 (17) 0.0282 (4)
H3 0.7606 0.0364 0.4836 0.034*
C4 0.81874 (18) 0.02064 (13) 0.34052 (16) 0.0257 (4)
C5 0.88776 (18) 0.07073 (13) 0.27880 (16) 0.0246 (4)
H5 0.8955 0.038 0.2102 0.03*
C6 0.94568 (17) 0.16762 (13) 0.31531 (15) 0.0212 (3)
H6 0.993 0.2011 0.2728 0.025*
C7 0.7575 (2) −0.08509 (15) 0.3004 (2) 0.0377 (5)
H7A 0.7553 −0.1005 0.2188 0.057*
H7C 0.6645 −0.0864 0.2972 0.057*
H7B 0.8131 −0.137 0.3591 0.057*
C8 0.81275 (19) 0.45147 (14) 0.30416 (16) 0.0272 (4)
H8A 0.8829 0.4663 0.2715 0.033* 0.7744 (13)
H8B 0.7671 0.5175 0.3066 0.033* 0.7744 (13)
H8A' 0.8112 0.518 0.2626 0.033* 0.2256 (13)
H8B' 0.7906 0.4652 0.3762 0.033* 0.2256 (13)
C9 0.71152 (19) 0.38092 (14) 0.21960 (16) 0.0237 (4)
C10 0.62740 (19) 0.32454 (14) 0.14905 (16) 0.0247 (4)
C11 0.58308 (19) 0.15508 (16) −0.03569 (18) 0.0314 (4)
H11A 0.6075 0.1983 −0.0916 0.047*
H11B 0.5207 0.1003 −0.0824 0.047*
H11C 0.6658 0.1241 0.0257 0.047*
C12 0.4334 (2) 0.15281 (15) 0.13563 (19) 0.0333 (4)
H12A 0.51 0.1164 0.1983 0.05*
H12B 0.3686 0.1023 0.0821 0.05*
H12C 0.3876 0.1959 0.1755 0.05*
C13 0.36123 (19) 0.31849 (14) −0.06735 (17) 0.0270 (4)
H13A 0.3137 0.355 −0.0237 0.041*
H13B 0.2962 0.2751 −0.1317 0.041*
H13C 0.4018 0.3688 −0.1045 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01972 (19) 0.01537 (18) 0.01643 (19) −0.00309 (16) 0.00751 (15) −0.00186 (15)
Si1 0.0256 (2) 0.0199 (2) 0.0190 (2) −0.0004 (2) 0.00962 (19) −0.00338 (19)
O1 0.0220 (7) 0.0174 (7) 0.0228 (8) −0.0009 (6) 0.0091 (6) −0.0038 (6)
O2 0.0242 (8) 0.0217 (8) 0.0295 (8) −0.0020 (6) 0.0152 (7) 0.0019 (6)
O3 0.0322 (8) 0.0222 (8) 0.0168 (7) −0.0078 (7) 0.0058 (6) −0.0022 (6)
O1A 0.0220 (7) 0.0174 (7) 0.0228 (8) −0.0009 (6) 0.0091 (6) −0.0038 (6)
O2A 0.0242 (8) 0.0217 (8) 0.0295 (8) −0.0020 (6) 0.0152 (7) 0.0019 (6)
O3A 0.0322 (8) 0.0222 (8) 0.0168 (7) −0.0078 (7) 0.0058 (6) −0.0022 (6)
C1 0.0199 (8) 0.0136 (7) 0.0176 (8) −0.0008 (6) 0.0050 (6) −0.0020 (6)
C2 0.0311 (9) 0.0206 (8) 0.0227 (8) −0.0059 (7) 0.0134 (7) −0.0051 (7)
C3 0.0346 (10) 0.0207 (9) 0.0307 (10) −0.0075 (8) 0.0144 (8) −0.0006 (7)
C4 0.0253 (9) 0.0159 (8) 0.0268 (9) 0.0007 (7) 0.0006 (7) −0.0028 (7)
C5 0.0294 (9) 0.0199 (8) 0.0200 (8) 0.0056 (7) 0.0049 (7) −0.0058 (7)
C6 0.0246 (8) 0.0203 (8) 0.0184 (8) 0.0035 (7) 0.0083 (7) −0.0008 (7)
C7 0.0426 (12) 0.0185 (9) 0.0417 (12) −0.0053 (8) 0.0059 (10) −0.0078 (8)
C8 0.0314 (9) 0.0178 (8) 0.0256 (9) 0.0002 (7) 0.0043 (8) 0.0018 (7)
C9 0.0291 (9) 0.0212 (8) 0.0224 (9) 0.0032 (7) 0.0120 (7) 0.0018 (7)
C10 0.0317 (10) 0.0241 (9) 0.0199 (8) 0.0008 (7) 0.0120 (7) −0.0004 (7)
C11 0.0257 (9) 0.0394 (11) 0.0267 (9) 0.0020 (8) 0.0079 (8) −0.0119 (8)
C12 0.0434 (12) 0.0255 (10) 0.0342 (11) −0.0013 (9) 0.0191 (9) 0.0022 (8)
C13 0.0299 (9) 0.0251 (9) 0.0250 (9) 0.0012 (7) 0.0100 (8) −0.0014 (7)

Geometric parameters (Å, °)

S1—O2A 1.374 (5) C5—C6 1.389 (2)
S1—O2 1.4352 (15) C5—H5 0.95
S1—O3 1.4434 (15) C6—H6 0.95
S1—O3A 1.454 (6) C7—H7A 0.98
S1—O1 1.5720 (15) C7—H7C 0.98
S1—O1A 1.584 (5) C7—H7B 0.98
S1—C1 1.7561 (16) C8—C9 1.465 (2)
Si1—C10 1.8526 (19) C8—H8A 0.99
Si1—C11 1.8594 (19) C8—H8B 0.99
Si1—C12 1.8600 (19) C8—H8A' 0.99
Si1—C13 1.8625 (19) C8—H8B' 0.99
O1—C8 1.446 (2) C9—C10 1.201 (3)
O1A—C8 1.430 (3) C11—H11A 0.98
C1—C6 1.387 (2) C11—H11B 0.98
C1—C2 1.388 (2) C11—H11C 0.98
C2—C3 1.387 (2) C12—H12A 0.98
C2—H2 0.95 C12—H12B 0.98
C3—C4 1.396 (3) C12—H12C 0.98
C3—H3 0.95 C13—H13A 0.98
C4—C5 1.390 (3) C13—H13B 0.98
C4—C7 1.510 (2) C13—H13C 0.98
O2—S1—O3 118.88 (10) C4—C7—H7A 109.5
O2A—S1—O3A 122.5 (3) C4—C7—H7C 109.5
O2—S1—O1 109.98 (9) H7A—C7—H7C 109.5
O3—S1—O1 104.04 (9) C4—C7—H7B 109.5
O2A—S1—O1A 99.9 (3) H7A—C7—H7B 109.5
O3A—S1—O1A 109.7 (3) H7C—C7—H7B 109.5
O2A—S1—C1 110.1 (2) O1A—C8—C9 109.3 (2)
O2—S1—C1 109.48 (9) O1—C8—C9 114.37 (15)
O3—S1—C1 108.43 (8) O1—C8—H8A 108.7
O3A—S1—C1 108.6 (2) C9—C8—H8A 108.7
O1—S1—C1 105.10 (8) O1—C8—H8B 108.7
O1A—S1—C1 104.31 (19) C9—C8—H8B 108.7
C10—Si1—C11 108.03 (9) H8A—C8—H8B 107.6
C10—Si1—C12 107.80 (9) O1A—C8—H8A' 109.8
C11—Si1—C12 110.10 (10) C9—C8—H8A' 109.8
C10—Si1—C13 106.66 (8) O1A—C8—H8B' 109.8
C11—Si1—C13 112.01 (9) C9—C8—H8B' 109.8
C12—Si1—C13 112.01 (9) H8A'—C8—H8B' 108.3
C8—O1—S1 120.83 (12) C10—C9—C8 178.9 (2)
C8—O1A—S1 121.0 (3) C9—C10—Si1 178.90 (17)
C6—C1—C2 121.51 (15) Si1—C11—H11A 109.5
C6—C1—S1 119.66 (13) Si1—C11—H11B 109.5
C2—C1—S1 118.83 (12) H11A—C11—H11B 109.5
C3—C2—C1 118.87 (16) Si1—C11—H11C 109.5
C3—C2—H2 120.6 H11A—C11—H11C 109.5
C1—C2—H2 120.6 H11B—C11—H11C 109.5
C2—C3—C4 121.00 (17) Si1—C12—H12A 109.5
C2—C3—H3 119.5 Si1—C12—H12B 109.5
C4—C3—H3 119.5 H12A—C12—H12B 109.5
C5—C4—C3 118.69 (16) Si1—C12—H12C 109.5
C5—C4—C7 120.67 (17) H12A—C12—H12C 109.5
C3—C4—C7 120.64 (18) H12B—C12—H12C 109.5
C6—C5—C4 121.35 (16) Si1—C13—H13A 109.5
C6—C5—H5 119.3 Si1—C13—H13B 109.5
C4—C5—H5 119.3 H13A—C13—H13B 109.5
C1—C6—C5 118.58 (16) Si1—C13—H13C 109.5
C1—C6—H6 120.7 H13A—C13—H13C 109.5
C5—C6—H6 120.7 H13B—C13—H13C 109.5
O2—S1—O1—C8 36.57 (16) O3—S1—C1—C2 40.01 (17)
O3—S1—O1—C8 164.93 (14) O3A—S1—C1—C2 −10.1 (3)
C1—S1—O1—C8 −81.18 (15) O1—S1—C1—C2 −70.77 (15)
O2A—S1—O1A—C8 −163.6 (4) O1A—S1—C1—C2 −127.00 (18)
O3A—S1—O1A—C8 −33.6 (5) C6—C1—C2—C3 0.0 (3)
C1—S1—O1A—C8 82.5 (4) S1—C1—C2—C3 −179.91 (14)
O2A—S1—C1—C6 −53.4 (3) C1—C2—C3—C4 −0.1 (3)
O2—S1—C1—C6 −8.82 (17) C2—C3—C4—C5 −0.1 (3)
O3—S1—C1—C6 −139.95 (14) C2—C3—C4—C7 179.61 (18)
O3A—S1—C1—C6 170.0 (3) C3—C4—C5—C6 0.3 (3)
O1—S1—C1—C6 109.28 (14) C7—C4—C5—C6 −179.42 (17)
O1A—S1—C1—C6 53.05 (19) C2—C1—C6—C5 0.1 (3)
O2A—S1—C1—C2 126.6 (3) S1—C1—C6—C5 −179.91 (13)
O2—S1—C1—C2 171.14 (14) C4—C5—C6—C1 −0.3 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2461).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  3. Morales, A. (1995). PhD dissertation, Louisiana State University, Baton Rouge, USA.
  4. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tanabe, Y., Yamamoto, H., Yoshida, Y., Miyawaki, T. & Utsumi, N. (1995). Bull. Chem. Soc. Jpn, 68, 297.
  8. Westmijze, H. & Vermeer, P. (1979). Synthesis, 5, 390–392.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043595/fj2461sup1.cif

e-67-o3110-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043595/fj2461Isup2.hkl

e-67-o3110-Isup2.hkl (226.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043595/fj2461Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES