Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):m1608. doi: 10.1107/S1600536811043510

catena-Poly[[zinc-μ-[2-(2-{[2-(2-hy­droxy­benzo­yl)hydrazinyl­idene]meth­yl}phen­oxy)acetato­(2–)]] monohydrate]

Feihua Luo a,*, Li Yang a, Ping Zhang a, Dan Liu a
PMCID: PMC3247530  PMID: 22219835

Abstract

In the title compound, {[Zn(C16H12N2O5)]·H2O}n, the unique ZnII ion is coordinated in a distorted square-pyramidal environment by three O atoms and one N atom from a symmetry-unique ligand. A symmetry-related ligand provides an O atom from a carboxyl­ate group to complete the coordination in the apical site and generate a one-dimensional polymer parallel to [010]. In addition to an intra­molecular O—H⋯N hydrogen bond, inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds are observed within the one-dimensional structure.

Related literature

For background information on zinc(II) carboxyl­ate compounds, see: Suen et al. (2002). For general information on the structures of carboxyl­ate and hydrazone compounds, see: Wu et al. (2007); Luo et al. (2010).graphic file with name e-67-m1608-scheme1.jpg

Experimental

Crystal data

  • [Zn(C16H12N2O5)]·H2O

  • M r = 395.66

  • Monoclinic, Inline graphic

  • a = 14.730 (2) Å

  • b = 5.4063 (8) Å

  • c = 20.983 (3) Å

  • β = 106.620 (2)°

  • V = 1601.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • 9785 measured reflections

  • 3132 independent reflections

  • 2764 reflections with I > 2σ(I)

  • R int = 0.092

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.109

  • S = 1.06

  • 3132 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043510/lh5346sup1.cif

e-67-m1608-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043510/lh5346Isup2.hkl

e-67-m1608-Isup2.hkl (150.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H20⋯N1 0.75 (4) 1.92 (4) 2.583 (3) 148 (4)
O6—H60A⋯O1i 0.84 2.22 3.056 (4) 179
C8—H8⋯O2ii 0.93 2.41 3.316 (4) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Zn(II) carboxylates, especially those with nitrogen donor ligands, have been the subject of numerous investigations (Suen et al., 2002). Different coordination modes of carboxylate groups can form mononuclear and polynuclear structures. Hydrazone with carboxylate groups can also form mononuclear and polynuclear structures in different conditions (Wu et al., 2007; Luo et al., 2010). Herein we report the synthesis and crystal structure of the title compound.

Part of the one-dimensional structure is shown in Fig. 1. The unique ZnII ion is coordinated in a distorted square-pyramidal environment by three O atoms and one N atom from a symmetry unique ligand. A symmetry related ligand provides an O atom from a carboxylate group to complete the coordination in the apical site and generate a one-dimensional polymer parallel to [010] (Fig 2). In addition to an intramolecular O—H···N hydrogen bond, intermolecular O—H···O and weak C—H···O hydrogen bonds are observed within the one

Experimental

The hydrazone ligand was synthesized according to the literature procedure (Luo et al., 2010). Zinc(II) acetate monohydrate (1 mmol) was dissolved in methanol (15 ml), to which a solution of the ligand (2.5 mmol) in dimethylformamide (15 ml) was added. The mixture was stirred for 3 h at room temperature. An light-yellow solution was obtained, the solution was filtered and allowed to stand at room temperature for three weeks, where upon colorless block-shaped crystals were obtained.

Refinement

All H atoms, except for H2O were placed in idealized positions and allowed to ride on their parent atoms, with O—H = 0.84 Å (water), C—H = 0.93-0.97Å and Uiso=1.2–1.5 Ueq(C,O). The hydroxy H atom (H2O) was refined independently with an isotropic displacement parameter.

Figures

Fig. 1.

Fig. 1.

The molecular structure of with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (a) -x+1, y-1/2, -z+1/2; (b) -x+1, y+1/2, -z+1/2]. H atoms are not shown.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds drawn as dashed lines. Only H atoms involved in hydrogen bonds are shown.

Crystal data

[Zn(C16H12N2O5)]·H2O F(000) = 808
Mr = 395.66 Dx = 1.641 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3978 reflections
a = 14.730 (2) Å θ = 2.8–27.4°
b = 5.4063 (8) Å µ = 1.57 mm1
c = 20.983 (3) Å T = 298 K
β = 106.620 (2)° Block, colorless
V = 1601.2 (4) Å3 0.16 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2764 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.092
graphite θmax = 26.0°, θmin = 2.0°
φ and ω scans h = −16→18
9785 measured reflections k = −6→6
3132 independent reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.0104P] where P = (Fo2 + 2Fc2)/3
3132 reflections (Δ/σ)max = 0.001
230 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.37549 (2) 0.04095 (6) 0.273648 (16) 0.03342 (14)
O1 0.33632 (13) −0.1912 (4) 0.33490 (10) 0.0408 (5)
O2 0.04795 (17) −0.1639 (6) 0.32481 (16) 0.0713 (8)
O3 0.35695 (13) 0.1914 (4) 0.16947 (9) 0.0381 (5)
O4 0.45124 (12) −0.1779 (3) 0.23378 (9) 0.0347 (4)
O5 0.54232 (13) −0.2163 (4) 0.16671 (9) 0.0401 (5)
N1 0.18798 (16) −0.0372 (4) 0.28074 (13) 0.0380 (6)
N2 0.23483 (15) 0.1069 (4) 0.24511 (11) 0.0320 (5)
C1 0.2011 (2) −0.3599 (5) 0.35985 (14) 0.0396 (7)
C2 0.1069 (2) −0.3391 (7) 0.35924 (17) 0.0522 (8)
C3 0.0705 (3) −0.5039 (8) 0.3972 (2) 0.0722 (12)
H3 0.0084 −0.4860 0.3988 0.087*
C4 0.1252 (3) −0.6905 (7) 0.43192 (19) 0.0711 (12)
H4 0.0998 −0.8000 0.4564 0.085*
C5 0.2174 (3) −0.7179 (6) 0.43094 (17) 0.0624 (10)
H5 0.2541 −0.8471 0.4541 0.075*
C6 0.2553 (3) −0.5528 (5) 0.39543 (16) 0.0475 (8)
H6 0.3181 −0.5705 0.3952 0.057*
C7 0.24582 (19) −0.1871 (5) 0.32341 (13) 0.0334 (6)
C8 0.1840 (2) 0.2634 (5) 0.20485 (14) 0.0402 (7)
H8 0.1218 0.2832 0.2061 0.048*
C9 0.2143 (2) 0.4136 (5) 0.15722 (14) 0.0364 (6)
C10 0.29665 (18) 0.3766 (5) 0.13731 (13) 0.0317 (6)
C11 0.3143 (2) 0.5182 (5) 0.08720 (15) 0.0384 (7)
H11 0.3689 0.4913 0.0743 0.046*
C12 0.2508 (2) 0.6998 (5) 0.05635 (15) 0.0460 (7)
H12 0.2627 0.7940 0.0225 0.055*
C13 0.1696 (2) 0.7423 (6) 0.07554 (16) 0.0536 (8)
H13 0.1275 0.8663 0.0552 0.064*
C14 0.1519 (2) 0.5995 (6) 0.12493 (17) 0.0516 (8)
H14 0.0969 0.6274 0.1372 0.062*
C15 0.42785 (19) 0.1002 (5) 0.14144 (14) 0.0343 (6)
H15A 0.4731 0.2296 0.1406 0.041*
H15B 0.3992 0.0441 0.0962 0.041*
C16 0.47695 (18) −0.1127 (5) 0.18446 (13) 0.0332 (6)
O6 0.4589 (3) 0.7641 (10) 0.47903 (19) 0.171 (2)
H60A 0.4249 0.7787 0.4396 0.256*
H60B 0.5164 0.7397 0.4823 0.256*
H20 0.074 (3) −0.090 (7) 0.305 (2) 0.067 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0246 (2) 0.0419 (2) 0.0363 (2) 0.00089 (12) 0.01278 (15) 0.00451 (13)
O1 0.0301 (10) 0.0488 (12) 0.0463 (12) 0.0011 (9) 0.0154 (9) 0.0140 (9)
O2 0.0348 (13) 0.093 (2) 0.094 (2) −0.0094 (14) 0.0308 (14) 0.0222 (17)
O3 0.0306 (10) 0.0517 (12) 0.0363 (11) 0.0114 (9) 0.0163 (8) 0.0117 (9)
O4 0.0331 (10) 0.0378 (10) 0.0368 (10) 0.0055 (8) 0.0157 (8) 0.0039 (8)
O5 0.0315 (10) 0.0508 (11) 0.0411 (11) 0.0072 (9) 0.0153 (9) 0.0016 (9)
N1 0.0270 (12) 0.0492 (14) 0.0417 (14) −0.0039 (10) 0.0160 (11) 0.0052 (11)
N2 0.0240 (11) 0.0389 (12) 0.0354 (13) 0.0020 (9) 0.0123 (10) 0.0045 (10)
C1 0.0453 (17) 0.0440 (16) 0.0323 (15) −0.0146 (14) 0.0156 (13) −0.0054 (12)
C2 0.0429 (18) 0.061 (2) 0.055 (2) −0.0190 (17) 0.0189 (16) 0.0034 (17)
C3 0.067 (3) 0.085 (3) 0.076 (3) −0.038 (2) 0.038 (2) −0.004 (2)
C4 0.100 (3) 0.064 (2) 0.058 (2) −0.043 (2) 0.037 (2) −0.0004 (19)
C5 0.093 (3) 0.052 (2) 0.0418 (19) −0.019 (2) 0.0199 (19) 0.0033 (15)
C6 0.059 (2) 0.0452 (17) 0.0401 (18) −0.0089 (15) 0.0163 (16) −0.0020 (13)
C7 0.0319 (14) 0.0365 (14) 0.0339 (14) −0.0066 (11) 0.0130 (12) −0.0046 (11)
C8 0.0257 (14) 0.0531 (17) 0.0448 (17) 0.0032 (12) 0.0147 (13) 0.0049 (14)
C9 0.0345 (15) 0.0409 (15) 0.0342 (15) 0.0071 (12) 0.0104 (12) 0.0046 (12)
C10 0.0282 (13) 0.0345 (13) 0.0308 (14) 0.0006 (11) 0.0056 (11) −0.0004 (11)
C11 0.0381 (16) 0.0416 (15) 0.0359 (16) −0.0031 (12) 0.0112 (13) 0.0004 (12)
C12 0.057 (2) 0.0418 (16) 0.0381 (16) −0.0013 (14) 0.0127 (15) 0.0060 (13)
C13 0.063 (2) 0.0492 (18) 0.0487 (19) 0.0229 (16) 0.0155 (17) 0.0140 (15)
C14 0.0488 (19) 0.0548 (19) 0.055 (2) 0.0195 (16) 0.0202 (16) 0.0116 (16)
C15 0.0279 (14) 0.0438 (15) 0.0337 (15) 0.0032 (12) 0.0127 (12) 0.0008 (12)
C16 0.0275 (14) 0.0370 (14) 0.0354 (15) −0.0026 (11) 0.0094 (12) −0.0041 (12)
O6 0.097 (3) 0.327 (7) 0.087 (3) −0.054 (4) 0.023 (2) −0.067 (4)

Geometric parameters (Å, °)

Zn1—O4 1.9694 (17) C4—C5 1.372 (6)
Zn1—O5i 1.9717 (19) C4—H4 0.9300
Zn1—O1 1.9958 (18) C5—C6 1.379 (4)
Zn1—N2 2.017 (2) C5—H5 0.9300
Zn1—O3 2.2743 (18) C6—H6 0.9300
O1—C7 1.285 (3) C8—C9 1.454 (4)
O2—C2 1.347 (4) C8—H8 0.9300
O2—H20 0.75 (4) C9—C14 1.400 (4)
O3—C10 1.380 (3) C9—C10 1.406 (4)
O3—C15 1.425 (3) C10—C11 1.385 (4)
O4—C16 1.250 (3) C11—C12 1.382 (4)
O5—C16 1.259 (3) C11—H11 0.9300
O5—Zn1ii 1.9717 (19) C12—C13 1.387 (4)
N1—C7 1.322 (4) C12—H12 0.9300
N1—N2 1.392 (3) C13—C14 1.376 (4)
N2—C8 1.276 (3) C13—H13 0.9300
C1—C2 1.389 (4) C14—H14 0.9300
C1—C6 1.393 (4) C15—C16 1.513 (4)
C1—C7 1.476 (4) C15—H15A 0.9700
C2—C3 1.400 (5) C15—H15B 0.9700
C3—C4 1.365 (6) O6—H60A 0.8400
C3—H3 0.9300 O6—H60B 0.8400
O4—Zn1—O5i 110.48 (8) C5—C6—H6 119.5
O4—Zn1—O1 101.48 (8) C1—C6—H6 119.5
O5i—Zn1—O1 104.35 (8) O1—C7—N1 124.8 (2)
O4—Zn1—N2 129.69 (9) O1—C7—C1 119.0 (2)
O5i—Zn1—N2 117.57 (9) N1—C7—C1 116.3 (2)
O1—Zn1—N2 80.84 (8) N2—C8—C9 126.0 (2)
O4—Zn1—O3 74.54 (7) N2—C8—H8 117.0
O5i—Zn1—O3 104.79 (7) C9—C8—H8 117.0
O1—Zn1—O3 150.04 (8) C14—C9—C10 117.5 (3)
N2—Zn1—O3 79.67 (8) C14—C9—C8 116.5 (3)
C7—O1—Zn1 110.12 (16) C10—C9—C8 125.9 (2)
C2—O2—H20 109 (3) O3—C10—C11 122.6 (2)
C10—O3—C15 119.63 (19) O3—C10—C9 116.6 (2)
C10—O3—Zn1 127.81 (15) C11—C10—C9 120.9 (3)
C15—O3—Zn1 111.85 (14) C12—C11—C10 119.9 (3)
C16—O4—Zn1 121.68 (17) C12—C11—H11 120.0
C16—O5—Zn1ii 119.40 (17) C10—C11—H11 120.0
C7—N1—N2 112.6 (2) C11—C12—C13 120.4 (3)
C8—N2—N1 116.1 (2) C11—C12—H12 119.8
C8—N2—Zn1 132.25 (18) C13—C12—H12 119.8
N1—N2—Zn1 111.50 (16) C14—C13—C12 119.4 (3)
C2—C1—C6 118.9 (3) C14—C13—H13 120.3
C2—C1—C7 122.5 (3) C12—C13—H13 120.3
C6—C1—C7 118.6 (3) C13—C14—C9 121.9 (3)
O2—C2—C1 123.4 (3) C13—C14—H14 119.1
O2—C2—C3 117.4 (3) C9—C14—H14 119.1
C1—C2—C3 119.2 (4) O3—C15—C16 107.4 (2)
C4—C3—C2 120.7 (4) O3—C15—H15A 110.2
C4—C3—H3 119.7 C16—C15—H15A 110.2
C2—C3—H3 119.7 O3—C15—H15B 110.2
C3—C4—C5 120.6 (3) C16—C15—H15B 110.2
C3—C4—H4 119.7 H15A—C15—H15B 108.5
C5—C4—H4 119.7 O4—C16—O5 123.9 (3)
C4—C5—C6 119.6 (4) O4—C16—C15 120.1 (2)
C4—C5—H5 120.2 O5—C16—C15 115.9 (2)
C6—C5—H5 120.2 H60A—O6—H60B 113.4
C5—C6—C1 121.0 (3)
O4—Zn1—O1—C7 −126.34 (18) C7—C1—C6—C5 179.3 (3)
O5i—Zn1—O1—C7 118.79 (18) Zn1—O1—C7—N1 −4.7 (3)
N2—Zn1—O1—C7 2.52 (18) Zn1—O1—C7—C1 175.39 (18)
O3—Zn1—O1—C7 −47.4 (3) N2—N1—C7—O1 4.5 (4)
O4—Zn1—O3—C10 172.7 (2) N2—N1—C7—C1 −175.7 (2)
O5i—Zn1—O3—C10 −79.7 (2) C2—C1—C7—O1 168.5 (3)
O1—Zn1—O3—C10 86.5 (2) C6—C1—C7—O1 −12.4 (4)
N2—Zn1—O3—C10 36.3 (2) C2—C1—C7—N1 −11.4 (4)
O4—Zn1—O3—C15 −17.10 (17) C6—C1—C7—N1 167.7 (3)
O5i—Zn1—O3—C15 90.50 (17) N1—N2—C8—C9 −172.7 (3)
O1—Zn1—O3—C15 −103.3 (2) Zn1—N2—C8—C9 12.9 (5)
N2—Zn1—O3—C15 −153.49 (18) N2—C8—C9—C14 −170.7 (3)
O5i—Zn1—O4—C16 −81.2 (2) N2—C8—C9—C10 14.4 (5)
O1—Zn1—O4—C16 168.6 (2) C15—O3—C10—C11 −15.1 (4)
N2—Zn1—O4—C16 81.0 (2) Zn1—O3—C10—C11 154.5 (2)
O3—Zn1—O4—C16 19.1 (2) C15—O3—C10—C9 164.0 (2)
C7—N1—N2—C8 −177.3 (2) Zn1—O3—C10—C9 −26.5 (3)
C7—N1—N2—Zn1 −1.6 (3) C14—C9—C10—O3 −179.6 (3)
O4—Zn1—N2—C8 −88.4 (3) C8—C9—C10—O3 −4.7 (4)
O5i—Zn1—N2—C8 72.7 (3) C14—C9—C10—C11 −0.5 (4)
O1—Zn1—N2—C8 174.2 (3) C8—C9—C10—C11 174.3 (3)
O3—Zn1—N2—C8 −28.7 (3) O3—C10—C11—C12 179.4 (2)
O4—Zn1—N2—N1 96.90 (19) C9—C10—C11—C12 0.4 (4)
O5i—Zn1—N2—N1 −101.94 (17) C10—C11—C12—C13 0.4 (4)
O1—Zn1—N2—N1 −0.47 (17) C11—C12—C13—C14 −1.0 (5)
O3—Zn1—N2—N1 156.67 (18) C12—C13—C14—C9 0.8 (5)
C6—C1—C2—O2 −178.0 (3) C10—C9—C14—C13 −0.1 (5)
C7—C1—C2—O2 1.2 (5) C8—C9—C14—C13 −175.4 (3)
C6—C1—C2—C3 3.5 (5) C10—O3—C15—C16 −175.6 (2)
C7—C1—C2—C3 −177.4 (3) Zn1—O3—C15—C16 13.3 (2)
O2—C2—C3—C4 178.1 (4) Zn1—O4—C16—O5 162.7 (2)
C1—C2—C3—C4 −3.2 (6) Zn1—O4—C16—C15 −18.2 (3)
C2—C3—C4—C5 0.9 (6) Zn1ii—O5—C16—O4 −10.5 (4)
C3—C4—C5—C6 1.1 (6) Zn1ii—O5—C16—C15 170.31 (18)
C4—C5—C6—C1 −0.7 (5) O3—C15—C16—O4 0.8 (3)
C2—C1—C6—C5 −1.5 (5) O3—C15—C16—O5 180.0 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H20···N1 0.75 (4) 1.92 (4) 2.583 (3) 148 (4)
O6—H60A···O1iii 0.84 2.22 3.056 (4) 179.
C8—H8···O2iv 0.93 2.41 3.316 (4) 164.

Symmetry codes: (iii) x, y+1, z; (iv) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5346).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Luo, F. H., Hu, Z. Q. & Yang, L. (2010). Chin. J. Inorg. Chem. 26, 682–686.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  5. Suen, M. C., Keng, T. C. & Wang, J. C. (2002). Polyhedron, 21, 2705–2710.
  6. Wu, L. M., Qiu, G. F. & Teng, H. B. (2007). Inorg. Chim. Acta, 360, 3069–3074.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043510/lh5346sup1.cif

e-67-m1608-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043510/lh5346Isup2.hkl

e-67-m1608-Isup2.hkl (150.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES