Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):m1632. doi: 10.1107/S160053681104431X

Tris(pyridin-2-yl­methanol)nickel(II) hexa­fluoridophosphate trifluoro­acetate

Tomohiko Hamaguchi a,*, Tomoko Nagata a, Satoshi Kawata a, Isao Ando a
PMCID: PMC3247549  PMID: 22219854

Abstract

In the crystal structure of the title complex, [Ni(C6H7NO)3](PF6)(C2F3O2), the NiII ion is in a slightly distorted octa­hedral NiO3N3 coordination geometry with each of the three N and three O atoms in a meridional coordination. In the crystal, the complex mol­ecules and the trifluoro­acetate anions are connected via O—H⋯O hydrogen bonding into layers parallel to the ab plane.

Related literature

For related complexes, see: Ito & Onaka (2004); Kermagoret & Braunstein (2008).graphic file with name e-67-m1632-scheme1.jpg

Experimental

Crystal data

  • [Ni(C6H7NO)3](PF6)(C2F3O2)

  • M r = 644.08

  • Triclinic, Inline graphic

  • a = 9.6381 (2) Å

  • b = 11.9668 (4) Å

  • c = 11.9892 (3) Å

  • α = 109.950 (1)°

  • β = 95.348 (1)°

  • γ = 101.411 (1)°

  • V = 1254.60 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 200 K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) T min = 0.813, T max = 1.000

  • 12517 measured reflections

  • 5736 independent reflections

  • 5234 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.088

  • S = 1.05

  • 5736 reflections

  • 376 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: Yadokari-XG and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104431X/nc2249sup1.cif

e-67-m1632-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104431X/nc2249Isup2.hkl

e-67-m1632-Isup2.hkl (280.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—O1 2.0461 (12)
Ni1—N2 2.0601 (14)
Ni1—O2 2.0647 (12)
Ni1—N1 2.0662 (14)
Ni1—O3 2.0714 (12)
Ni1—N3 2.0769 (14)
O1—Ni1—N1 78.11 (5)
N2—Ni1—O2 78.53 (5)
O3—Ni1—N3 78.09 (5)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.87 1.76 2.6003 (19) 162.5
O2—H2⋯O5ii 0.92 1.77 2.6965 (18) 175.8
O3—H3⋯O5iii 0.98 1.65 2.6267 (18) 173.8

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported in part by funds (No. 115001) from the Central Research Institute of Fukuoka University.

supplementary crystallographic information

Comment

The crystal structure of the title compound is composed of [NiII(C6H7ON)3]2+ cations, hexafluorophosphate and trifluoroacetate anions. The NiII ion is in a slightly distorted octahedral coordination, comprising three N atoms and three O atoms from three pyridine-2-methanol ligands (Fig. 1 and Table 1). The three N and three O atoms make a meridional NiO3N3 coordination and the mean bite angle of the pyridine-2-methanol ligand amount to 78.2 (2) °.

In the crystal structure the complexes are connected via O—H···O hydrogen bonding between the hydroxy H atoms of the pyridine-2-methanol ligand and the O atoms of the trifluoroacetate anion into layers that are parallel to the a/b plane. (Fig. 2 and 3 and Table 2).

Experimental

A solution of NiSO4.6H2O (0.5 mmol) in H2O (1 ml) was added to the solution of pyridine-2-methanol (1.5 mmol) in H2O (3 ml). Afterwards NH4PF6 (6.0 mmol) and CF3COONa (2.5 mmol) were added to the resulting blue solution. The resulting pale blue precipitate was collected. The crude product was purified by recrystallization from acetone and water. The blue prism-like crystals were obtained a few days later on slow evaporation of the solvent.

Refinement

The O–H H atoms were located in a difference Fourier map and the coordinates were fixed. Their Uiso(H) values were set to 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on the parent C atoms, with C–H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C). Three F atoms in CF3COO anions are rotationally disordered between three positions. The two parts of lower occupation were refined only isotropic (sof. 0.6:0.24:0.16).

Figures

Fig. 1.

Fig. 1.

ORTEP drawing for the title complex with labeling showing 50% probability displacement ellipsoids. Please note: The trifluoroacetate anion is disordered.

Fig. 2.

Fig. 2.

Crystal structure of the title compound view along the b-axis. The C-H H atoms, the PF6 anions and the disordered F atoms with lower occupation of the trifluoroacetate anions are omitted for clarity. O—H···O hydrogen bonding is shown as dashed blue lines.

Fig. 3.

Fig. 3.

Crystal structure of the title compound with view along the c-axis. The C-H H atoms and the disordered F atoms with lower occupation of the trifluoroacetate anions are omitted for clarity.

Crystal data

[Ni(C6H7NO)3](PF6)(C2F3O2) V = 1254.60 (6) Å3
Mr = 644.08 Z = 2
Triclinic, P1 F(000) = 652
Hall symbol: -P 1 Dx = 1.705 Mg m3
a = 9.6381 (2) Å Mo Kα radiation, λ = 0.71075 Å
b = 11.9668 (4) Å µ = 0.94 mm1
c = 11.9892 (3) Å T = 200 K
α = 109.950 (1)° Block, blue
β = 95.348 (1)° 0.40 × 0.30 × 0.20 mm
γ = 101.411 (1)°

Data collection

Rigaku R-AXIS RAPID diffractometer 5234 reflections with I > 2σ(I)
graphite Rint = 0.018
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) h = −12→11
Tmin = 0.813, Tmax = 1.000 k = −15→15
12517 measured reflections l = −15→15
5736 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.5841P] where P = (Fo2 + 2Fc2)/3
5736 reflections (Δ/σ)max = 0.001
376 parameters Δρmax = 0.50 e Å3
9 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.18393 (2) 0.369025 (18) 0.808996 (17) 0.02212 (7)
O1 0.00845 (13) 0.39356 (12) 0.88953 (12) 0.0304 (3)
H1 −0.0596 0.4198 0.8609 0.046*
O2 0.35252 (13) 0.32008 (12) 0.72559 (12) 0.0337 (3)
H2 0.4425 0.3733 0.7547 0.051*
O3 0.33165 (14) 0.49798 (11) 0.95482 (11) 0.0316 (3)
H3 0.3431 0.5104 1.0408 0.047*
N1 0.16982 (15) 0.24566 (12) 0.89561 (13) 0.0257 (3)
N2 0.07694 (15) 0.24685 (13) 0.64160 (13) 0.0264 (3)
N3 0.20297 (15) 0.52595 (13) 0.76794 (12) 0.0255 (3)
C1 0.26677 (19) 0.17914 (16) 0.90061 (18) 0.0338 (4)
H4 0.3381 0.1775 0.8509 0.041*
C2 0.2656 (2) 0.11372 (19) 0.9755 (2) 0.0447 (5)
H5 0.3343 0.0670 0.9765 0.054*
C3 0.1636 (3) 0.1169 (2) 1.0488 (2) 0.0530 (6)
H6 0.1624 0.0740 1.1025 0.064*
C4 0.0627 (2) 0.1836 (2) 1.0432 (2) 0.0458 (5)
H7 −0.0093 0.1864 1.0924 0.055*
C5 0.06813 (18) 0.24611 (15) 0.96467 (16) 0.0286 (3)
C6 −0.04137 (18) 0.31692 (16) 0.95294 (17) 0.0297 (4)
H8 −0.1347 0.2596 0.9086 0.036*
H9 −0.0553 0.3674 1.0338 0.036*
C7 −0.06644 (19) 0.20268 (16) 0.60926 (16) 0.0306 (4)
H10 −0.1254 0.2263 0.6681 0.037*
C8 −0.1309 (2) 0.12438 (17) 0.49383 (18) 0.0377 (4)
H11 −0.2324 0.0945 0.4734 0.045*
C9 −0.0448 (2) 0.09037 (18) 0.40852 (18) 0.0418 (5)
H12 −0.0866 0.0372 0.3282 0.050*
C10 0.1021 (2) 0.13424 (19) 0.44087 (17) 0.0400 (4)
H13 0.1628 0.1117 0.3833 0.048*
C11 0.1602 (2) 0.21193 (17) 0.55887 (16) 0.0317 (4)
C12 0.3203 (2) 0.2616 (2) 0.59846 (19) 0.0488 (6)
H14 0.3690 0.1939 0.5724 0.059*
H15 0.3558 0.3211 0.5607 0.059*
C13 0.1246 (2) 0.53539 (18) 0.67400 (16) 0.0345 (4)
H16 0.0528 0.4656 0.6217 0.041*
C14 0.1440 (2) 0.6415 (2) 0.6504 (2) 0.0446 (5)
H17 0.0860 0.6451 0.5838 0.054*
C15 0.2493 (2) 0.7428 (2) 0.7254 (2) 0.0459 (5)
H18 0.2664 0.8168 0.7102 0.055*
C16 0.3291 (2) 0.73469 (18) 0.82255 (19) 0.0375 (4)
H19 0.4015 0.8034 0.8757 0.045*
C17 0.30264 (17) 0.62549 (15) 0.84201 (15) 0.0255 (3)
C18 0.38677 (18) 0.61428 (15) 0.94787 (16) 0.0282 (3)
H20 0.4892 0.6238 0.9393 0.034*
H21 0.3805 0.6801 1.0230 0.034*
P1 0.59552 (5) 0.02974 (4) 0.74358 (4) 0.03228 (11)
F4 0.5841 (2) 0.0626 (2) 0.88218 (15) 0.0891 (6)
F5 0.61092 (18) 0.00030 (18) 0.60798 (13) 0.0725 (5)
F6 0.76632 (13) 0.04945 (12) 0.77770 (13) 0.0494 (3)
F7 0.61897 (16) 0.17125 (12) 0.76545 (17) 0.0680 (5)
F8 0.42616 (14) 0.01136 (14) 0.71068 (15) 0.0597 (4)
F9 0.57607 (18) −0.10966 (14) 0.7258 (2) 0.0789 (5)
F1A 0.2162 (3) 0.4114 (5) 0.3777 (4) 0.0633 (9) 0.60
F2A 0.4293 (6) 0.4201 (7) 0.3364 (5) 0.0959 (18) 0.60
F3A 0.3715 (5) 0.5861 (4) 0.4479 (2) 0.0956 (15) 0.60
F1B 0.2326 (11) 0.3584 (9) 0.3289 (9) 0.075 (3)* 0.24
F2B 0.4556 (11) 0.4729 (9) 0.3644 (10) 0.048 (2)* 0.24
F3B 0.3095 (15) 0.5496 (11) 0.4460 (11) 0.097 (4)* 0.24
F1C 0.3378 (19) 0.3456 (13) 0.2889 (13) 0.091 (4)* 0.16
F2C 0.4376 (13) 0.5252 (12) 0.4082 (13) 0.063 (3)* 0.16
F3C 0.2240 (13) 0.4706 (12) 0.4110 (11) 0.054 (3)* 0.16
O4 0.15453 (15) 0.51056 (17) 0.21720 (16) 0.0494 (4)
O5 0.38100 (14) 0.53211 (14) 0.18470 (12) 0.0372 (3)
C19 0.28069 (19) 0.50937 (18) 0.23870 (16) 0.0320 (4)
C20 0.3227 (3) 0.4746 (3) 0.3470 (2) 0.0605 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01984 (11) 0.02370 (12) 0.02007 (11) 0.00408 (8) 0.00167 (7) 0.00581 (8)
O1 0.0279 (6) 0.0369 (7) 0.0343 (7) 0.0153 (5) 0.0108 (5) 0.0175 (6)
O2 0.0225 (6) 0.0426 (7) 0.0292 (6) 0.0059 (5) 0.0058 (5) 0.0058 (5)
O3 0.0354 (7) 0.0307 (6) 0.0223 (6) −0.0020 (5) −0.0054 (5) 0.0102 (5)
N1 0.0229 (6) 0.0228 (6) 0.0273 (7) 0.0037 (5) −0.0003 (5) 0.0064 (5)
N2 0.0275 (7) 0.0248 (7) 0.0227 (7) 0.0042 (5) 0.0015 (5) 0.0055 (5)
N3 0.0244 (7) 0.0279 (7) 0.0217 (7) 0.0032 (5) 0.0020 (5) 0.0085 (5)
C1 0.0264 (8) 0.0289 (9) 0.0426 (10) 0.0080 (7) 0.0000 (7) 0.0099 (8)
C2 0.0370 (10) 0.0365 (10) 0.0634 (14) 0.0103 (8) −0.0038 (9) 0.0243 (10)
C3 0.0543 (13) 0.0514 (13) 0.0652 (15) 0.0095 (10) 0.0025 (11) 0.0402 (12)
C4 0.0453 (12) 0.0497 (12) 0.0522 (13) 0.0087 (9) 0.0137 (10) 0.0313 (11)
C5 0.0263 (8) 0.0252 (8) 0.0304 (8) 0.0019 (6) 0.0023 (6) 0.0085 (7)
C6 0.0247 (8) 0.0284 (8) 0.0344 (9) 0.0035 (6) 0.0079 (7) 0.0105 (7)
C7 0.0280 (8) 0.0312 (9) 0.0293 (9) 0.0016 (7) −0.0013 (7) 0.0117 (7)
C8 0.0383 (10) 0.0316 (9) 0.0357 (10) −0.0020 (7) −0.0101 (8) 0.0131 (8)
C9 0.0574 (13) 0.0314 (9) 0.0267 (9) 0.0082 (9) −0.0084 (8) 0.0040 (8)
C10 0.0544 (12) 0.0372 (10) 0.0248 (9) 0.0169 (9) 0.0052 (8) 0.0044 (8)
C11 0.0346 (9) 0.0300 (9) 0.0269 (8) 0.0094 (7) 0.0046 (7) 0.0051 (7)
C12 0.0325 (10) 0.0682 (15) 0.0309 (10) 0.0091 (9) 0.0099 (8) 0.0007 (10)
C13 0.0352 (9) 0.0379 (10) 0.0258 (8) 0.0003 (7) −0.0039 (7) 0.0132 (7)
C14 0.0460 (11) 0.0492 (12) 0.0394 (11) 0.0012 (9) −0.0067 (9) 0.0269 (10)
C15 0.0483 (12) 0.0403 (11) 0.0511 (13) 0.0000 (9) −0.0021 (10) 0.0282 (10)
C16 0.0339 (9) 0.0326 (9) 0.0414 (10) −0.0022 (7) −0.0023 (8) 0.0159 (8)
C17 0.0210 (7) 0.0298 (8) 0.0247 (8) 0.0049 (6) 0.0050 (6) 0.0092 (7)
C18 0.0257 (8) 0.0256 (8) 0.0283 (8) 0.0018 (6) −0.0021 (6) 0.0080 (7)
P1 0.0319 (2) 0.0294 (2) 0.0314 (2) 0.00634 (18) 0.00592 (18) 0.00648 (19)
F4 0.0957 (13) 0.1473 (19) 0.0426 (9) 0.0587 (13) 0.0304 (9) 0.0368 (11)
F5 0.0719 (10) 0.1113 (14) 0.0344 (7) 0.0355 (10) 0.0129 (7) 0.0187 (8)
F6 0.0357 (6) 0.0454 (7) 0.0592 (8) 0.0106 (5) 0.0001 (5) 0.0114 (6)
F7 0.0577 (9) 0.0331 (7) 0.1023 (13) 0.0123 (6) −0.0049 (8) 0.0157 (8)
F8 0.0328 (7) 0.0575 (8) 0.0740 (10) 0.0086 (6) 0.0046 (6) 0.0086 (7)
F9 0.0600 (9) 0.0381 (7) 0.1392 (17) 0.0055 (7) 0.0159 (10) 0.0374 (9)
F1A 0.0651 (18) 0.089 (3) 0.061 (2) 0.0150 (19) 0.0181 (15) 0.059 (2)
F2A 0.082 (3) 0.167 (5) 0.110 (4) 0.085 (4) 0.032 (3) 0.105 (4)
F3A 0.075 (2) 0.159 (4) 0.0224 (12) −0.018 (3) −0.0068 (13) 0.0261 (17)
O4 0.0281 (7) 0.0754 (11) 0.0610 (10) 0.0183 (7) 0.0077 (6) 0.0425 (9)
O5 0.0281 (6) 0.0558 (8) 0.0263 (6) 0.0041 (6) 0.0028 (5) 0.0171 (6)
C19 0.0276 (8) 0.0416 (10) 0.0291 (9) 0.0093 (7) 0.0032 (7) 0.0158 (8)
C20 0.0362 (11) 0.114 (2) 0.0521 (14) 0.0214 (13) 0.0112 (10) 0.0533 (16)

Geometric parameters (Å, °)

Ni1—O1 2.0461 (12) C10—C11 1.389 (3)
Ni1—N2 2.0601 (14) C10—H13 0.9500
Ni1—O2 2.0647 (12) C11—C12 1.506 (3)
Ni1—N1 2.0662 (14) C12—H14 0.9900
Ni1—O3 2.0714 (12) C12—H15 0.9900
Ni1—N3 2.0769 (14) C13—C14 1.374 (3)
O1—C6 1.421 (2) C13—H16 0.9500
O1—H1 0.8716 C14—C15 1.381 (3)
O2—C12 1.417 (2) C14—H17 0.9500
O2—H2 0.9235 C15—C16 1.377 (3)
O3—C18 1.422 (2) C15—H18 0.9500
O3—H3 0.9822 C16—C17 1.384 (3)
N1—C5 1.340 (2) C16—H19 0.9500
N1—C1 1.352 (2) C17—C18 1.501 (2)
N2—C11 1.342 (2) C18—H20 0.9900
N2—C7 1.346 (2) C18—H21 0.9900
N3—C17 1.340 (2) P1—F5 1.5697 (15)
N3—C13 1.347 (2) P1—F9 1.5777 (15)
C1—C2 1.377 (3) P1—F7 1.5881 (14)
C1—H4 0.9500 P1—F4 1.5915 (16)
C2—C3 1.376 (4) P1—F8 1.5960 (14)
C2—H5 0.9500 P1—F6 1.6087 (13)
C3—C4 1.385 (3) F1A—C20 1.308 (4)
C3—H6 0.9500 F2A—C20 1.316 (4)
C4—C5 1.387 (3) F3A—C20 1.417 (5)
C4—H7 0.9500 F1B—C20 1.420 (10)
C5—C6 1.503 (2) F2B—C20 1.284 (11)
C6—H8 0.9900 F3B—C20 1.255 (12)
C6—H9 0.9900 F1C—C20 1.505 (14)
C7—C8 1.380 (3) F2C—C20 1.188 (11)
C7—H10 0.9500 F3C—C20 1.279 (12)
C8—C9 1.381 (3) O4—C19 1.223 (2)
C8—H11 0.9500 O5—C19 1.249 (2)
C9—C10 1.376 (3) C19—C20 1.536 (3)
C9—H12 0.9500
O1—Ni1—N2 98.09 (6) N2—C11—C10 121.78 (18)
O1—Ni1—O2 172.33 (5) N2—C11—C12 117.35 (16)
O1—Ni1—N1 78.11 (5) C10—C11—C12 120.87 (18)
N2—Ni1—O2 78.53 (5) O2—C12—C11 109.50 (16)
N2—Ni1—N1 97.35 (6) O2—C12—H14 109.8
O2—Ni1—N1 95.41 (6) C11—C12—H14 109.8
O1—Ni1—O3 95.00 (5) O2—C12—H15 109.8
N2—Ni1—O3 166.15 (6) C11—C12—H15 109.8
O2—Ni1—O3 89.01 (5) H14—C12—H15 108.2
N1—Ni1—O3 89.74 (5) N3—C13—C14 122.91 (17)
O1—Ni1—N3 93.77 (5) N3—C13—H16 118.5
N2—Ni1—N3 96.49 (6) C14—C13—H16 118.5
O2—Ni1—N3 93.45 (6) C13—C14—C15 118.77 (18)
N1—Ni1—N3 164.81 (6) C13—C14—H17 120.6
O3—Ni1—N3 78.09 (5) C15—C14—H17 120.6
C6—O1—Ni1 118.49 (10) C16—C15—C14 118.86 (18)
C6—O1—H1 112.8 C16—C15—H18 120.6
Ni1—O1—H1 122.2 C14—C15—H18 120.6
C12—O2—Ni1 115.90 (11) C15—C16—C17 119.37 (18)
C12—O2—H2 114.4 C15—C16—H19 120.3
Ni1—O2—H2 118.1 C17—C16—H19 120.3
C18—O3—Ni1 117.12 (10) N3—C17—C16 122.05 (16)
C18—O3—H3 106.7 N3—C17—C18 117.36 (15)
Ni1—O3—H3 130.7 C16—C17—C18 120.58 (15)
C5—N1—C1 118.61 (16) O3—C18—C17 110.11 (13)
C5—N1—Ni1 116.13 (11) O3—C18—H20 109.6
C1—N1—Ni1 124.57 (13) C17—C18—H20 109.6
C11—N2—C7 118.69 (15) O3—C18—H21 109.6
C11—N2—Ni1 115.61 (12) C17—C18—H21 109.6
C7—N2—Ni1 125.69 (12) H20—C18—H21 108.2
C17—N3—C13 118.01 (15) F5—P1—F9 90.77 (11)
C17—N3—Ni1 116.35 (11) F5—P1—F7 90.50 (11)
C13—N3—Ni1 125.64 (12) F9—P1—F7 178.09 (10)
N1—C1—C2 122.16 (19) F5—P1—F4 178.33 (12)
N1—C1—H4 118.9 F9—P1—F4 90.26 (12)
C2—C1—H4 118.9 F7—P1—F4 88.43 (12)
C3—C2—C1 119.20 (19) F5—P1—F8 90.97 (9)
C3—C2—H5 120.4 F9—P1—F8 91.58 (9)
C1—C2—H5 120.4 F7—P1—F8 89.83 (8)
C2—C3—C4 119.1 (2) F4—P1—F8 90.31 (10)
C2—C3—H6 120.5 F5—P1—F6 89.37 (8)
C4—C3—H6 120.5 F9—P1—F6 88.81 (8)
C3—C4—C5 119.1 (2) F7—P1—F6 89.77 (7)
C3—C4—H7 120.5 F4—P1—F6 89.35 (9)
C5—C4—H7 120.5 F8—P1—F6 179.48 (9)
N1—C5—C4 121.87 (17) O4—C19—O5 129.17 (18)
N1—C5—C6 117.09 (15) O4—C19—C20 115.85 (17)
C4—C5—C6 121.03 (17) O5—C19—C20 114.97 (16)
O1—C6—C5 108.67 (14) F2C—C20—F3C 111.5 (9)
O1—C6—H8 110.0 F3B—C20—F2B 102.8 (7)
C5—C6—H8 110.0 F1A—C20—F2A 109.8 (4)
O1—C6—H9 110.0 F1A—C20—F3A 104.4 (3)
C5—C6—H9 110.0 F2A—C20—F3A 106.6 (4)
H8—C6—H9 108.3 F3B—C20—F1B 108.1 (7)
N2—C7—C8 122.40 (18) F2B—C20—F1B 110.5 (6)
N2—C7—H10 118.8 F2C—C20—F1C 102.0 (9)
C8—C7—H10 118.8 F3C—C20—F1C 107.2 (8)
C7—C8—C9 118.65 (18) F2C—C20—C19 118.3 (6)
C7—C8—H11 120.7 F3B—C20—C19 113.8 (6)
C9—C8—H11 120.7 F3C—C20—C19 113.1 (6)
C10—C9—C8 119.43 (18) F2B—C20—C19 113.3 (5)
C10—C9—H12 120.3 F1A—C20—C19 115.0 (2)
C8—C9—H12 120.3 F2A—C20—C19 113.6 (3)
C9—C10—C11 119.03 (19) F3A—C20—C19 106.5 (3)
C9—C10—H13 120.5 F1B—C20—C19 108.2 (4)
C11—C10—H13 120.5 F1C—C20—C19 103.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O4i 0.87 1.76 2.6003 (19) 162.5
O2—H2···O5ii 0.92 1.77 2.6965 (18) 175.8
O3—H3···O5iii 0.98 1.65 2.6267 (18) 173.8

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2249).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Ito, M. & Onaka, S. (2004). Inorg. Chim. Acta, 357, 1039–1046.
  4. Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.
  5. Kermagoret, A. & Braunstein, P. (2008). Dalton Trans. pp. 1564–1573. [DOI] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Rigaku (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  8. Rigaku (2002). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104431X/nc2249sup1.cif

e-67-m1632-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104431X/nc2249Isup2.hkl

e-67-m1632-Isup2.hkl (280.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES