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Abstract
Adaptive evolution frequently occurs in episodicbursts, localized to a few sites in a gene, and to a small number of lineages in a
phylogenetic tree. A popular class of “branch-site” evolutionarymodels provides a statistical framework to search for evidence
of such episodic selection. For computational tractability, current branch-site models unrealistically assume that all branches
in the tree can be partitioned a priori into two rigid classes—“foreground” branches that are allowed to undergo diversifying
selective bursts and “background” branches that are negatively selected or neutral. We demonstrate that this assumption
leads to unacceptably high rates of false positives or false negatives when the evolutionary process along backgroundbranches
strongly deviates from modeling assumptions. To address this problem, we extend Felsenstein’s pruning algorithm to allow
efficient likelihood computations for models in which variation over branches (and not just sites) is described in the random
effects likelihood framework. This enables us to model the process at every branch-site combination as a mixture of three
Markov substitution models—our model treats the selective class of every branch at a particular site as an unobserved state
that is chosen independently of that at any other branch. When benchmarked on a previously published set of simulated
sequences, our method consistently matched or outperformed existing branch-site tests in terms of power and error rates.
Using three empirical data sets, previously analyzed for episodic selection,wediscuss howmodeling assumptions can influence
inference in practical situations.
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Introduction
The inference of selection from molecular data, both along
a sequence (Nielsen and Yang 1998; Suzuki and Gojobori
1999; Yang et al. 2000) and over the evolutionary tree (Yang
and Nielsen 2002; Kosakovsky Pond and Frost 2005a), has
been an area of active research and unrelenting debate
(Suzuki and Nei 2004; Wong et al. 2004; Nozawa et al. 2009).
Selective pressures can vary over both sites and time, result-
ing in bursts of selection localized to a subset of sites and a
small number of lineages, for example,Messier and Stewart
(1997).

A class of methods, termed “branch-site” tests (Yang
and Nielsen 2002), was the first to offer a model-based
phylogenetic hypothesis testing framework for deciding
whether or not a lineage (or lineages) of interest had under-
gone adaptive change. Branch-site tests measure selective
pressure by ω, the ratio of nonsynonymous (β) to synony-
mous (α) substitution rates, and if a proportion of sites in
the sequence provides statistically significant support for
ω > 1 along the lineages of interest, then episodic positive
selection is inferred. The original formulation of themethod
suffered from high rates of false positives when the model

assumptions were violated (Zhang 2004) because themodel
could misidentify relaxed selective constraints as evidence
of diversifying selection andwas subsequently revised to ad-
dress that shortcoming (Zhang et al. 2005). Typically, the lin-
eages to be tested (“foreground” lineages) were specified a
priori, until a recent extension outlined and benchmarked
a sequential testing approach to examine whether any sin-
gle lineage was under selection (Anisimova and Yang 2007).
These branch-sitemethods have been usedextensively, with
well over 1,000 citations to date, highlighting the interest
of the evolutionary community in being able to identify
instances of episodic selection. Alternative approaches to
capturing variable selective pressures include the covarion
models of Guindon et al. (2004) and a full Bayesian treat-
ment in the framework of Rodrigue et al. (2010).

In the context of codon evolutionary models, the se-
lective profile of site Ds in a multiple sequence alignment
can be characterized by the collection of branch-specific
ω values, (ω1, . . . ,ωB ), denoted Ωs, where B equals the
total number of branches in the phylogeny. Existingbranch-
sitemodels use three alignment-wide (i.e., sharedbyall sites)
ratiosω− < ωN = 1 � ω+ to model strong conservation,
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FIG. 1. An illustration of episodic selection profiles at a single site with
three possible regimes: negative, neutral (or nearly neutral), and di-
versifying selection along a branch. Panel (A ) depicts the phylogeny
used for discussion in the text and to carry out robustness simula-
tions; Branch 5 is designated as foreground (FG), and the remaining
four branches as background (BG). Panel (B ) illustrates the four a pri-
ori selective profiles allowed by themodel of Zhang et al. (2005). Panel
(C ) shows 2 of 239 possible selective profiles not modeled by current
branch-site models; these profiles are used in robustness simulations
(see Methods).

neutral evolution, and diversifying selection, respectively.
Assuming these three ω ratios (fig. 1) with no further re-
strictions, each site can follow one of 3B possible selec-
tive profiles—the number of different ways to assign the
B branches to the three different selection rate bins. How-
ever, it is unclear how to determinewhich of these selective
profiles or, equivalently, assignments of branches to selec-
tion rate bins is the most appropriate at a given site.

One approach (Yang and Nielsen 2002) is to model each
site using only four predefined profiles regardless of the
size of the phylogeny. More specifically, 1) every branch
belongs either to the a priori known foreground class, which
is allowed to experience diversifying selection, or the “back-
ground” class, which evolves under purifying selection or
neutrally and 2) at a given site, there is no variation in se-
lection strength (ω) among background branches, with all
foreground branches either sharing the selection strength
of the background or being under shared diversifying se-
lection (fig. 1B ). Clearly, these options are not exhaustive:
For example, neither variable strength of selection among
background or foreground nor positive selection along
background branches is allowed. We refer to this approach
as the restricted branch-site (rBS) model because the num-
ber of selective profiles is limited to the four a priori defined
scenarios. Given a 4-taxon tree (fig. 1), and three selection
parameters (as in fig. 1B ), there are 35 = 243 possible se-
lection configurations, only four of which are accounted for
by the branch-site model. The number of ω configurations

grows as KB , where K is the number of rate classes, thus
making it unlikely that any four selection profiles cho-
sen a priori are going to be sufficiently representative.
Because there are no compelling biological reasons to ex-
pect that any two branches in the phylogenetic tree will
have the same ω at any given site, we do not expect these
four predefined selective profiles to provide an adequate
description of complex biological data. This model was
likely motivated by the need to avoid overfitting in the
case of small sample sizes; however, we argue that if
branches with differing selective pressures are incorrectly
assigned to the same class, likelihood ratio test (LRT)-
based branch-site methods can be positively misleading. In
this manuscript, we present one case where they falsely
identify positive selection on a neutrally evolving lineage
(Type I or false positive error), and another where they
fail to detect positive selection on a lineage with ω > 1
(Type II or false negative error). In addition, if several
branches are claimed to be under positive selection by
setting the foreground to one branch at a time, as is
done by the sequential testing procedure of Anisimova
and Yang (2007), this creates a logical inconsistency—
when a branch is found to be under selection, the model
under which this was established implies that no other
branch could be under positive selection.

We introduce a new class of models in which substitu-
tion rates may vary from branch to branch and from
site to site. We incorporate this variation via “random
effects”—unobserved strengths of selection at sites and
branches are incorporated using a discrete or a dis-
cretized parametric probability distribution. Parameters
defining the distribution are estimated jointly from
all sites using maximum likelihood. Random effects
likelihood (REL) and complementary fixed effects likelihood
(FEL) models are standard tools in statistical modeling.
Both types of model have been used to allow sitewise rate
variation in phylogenetic models—see Kosakovsky Pond
and Frost (2005b) for an overview. Nucleotide REL models
were first introduced in Yang (1994), where rates over
sites in a nucleotide alignment followed a discretized
unit-mean gamma distribution (the now ubiquitous +Γ4
model). Nielsen and Yang (1998) and Yang et al. (2000)
applied REL models to codon data in order to identify
signatures of natural selection, whereas Kosakovsky Pond
and Frost (2005b) and Massingham and Goldman (2005)
used FEL models for the same purpose. For all these
models, likelihoods of individual sites are computed by
Felsenstein’s pruning algorithm (Felsenstein 1981). How-
ever, as we show later, the direct application of the pruning
algorithm is intractable for REL models with branchwise as
well as sitewise rate variation. It is presumably for this reason
that, to date, branch models (Yang 1998; Kosakovsky Pond
and Frost 2005a) have only been implemented in the FEL
framework and branch-site models only as a four-category
sitewise REL model. Our solution involves a simple exten-
sion of the pruning algorithm which makes it feasible to
implement not only the model proposed here but also
several other branch-site REL models.
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The extended pruning algorithm computes the likeli-
hood of each site, treating the selection site profileΩs as an
unobserved variable, under the assumption that the proba-
bility of observing a substitution rate at a branch is indepen-
dent of all other branches. Computationally, our algorithm
is equivalent to replacing the standard Markov evolution-
ary model at a single phylogenetic branch with a mixture
of three Markov models (one each for ω−,ωN , and ω+),
where the mixing coefficients and ω rates are inferred for
each branch alongwith branch lengths, nucleotide substitu-
tion biases, and other alignment-wide parameters. Just like
existing branch-site methods (Anisimova and Yang 2007),
we use sequential likelihood ratio testing to identify which
branches support a model with episodic diversifying selec-
tion. Unlike existing methods, however, our approach is
unrestricted and considers every possible site profile, thus
avoiding some of the prominent issues posed bymodel mis-
specification and further allows ω rates to vary indepen-
dently from branch to branch and site to site.

Using an extensive collection of simulated sequences
from Anisimova andYang (2007), we perform a direct com-
parison of the unrestricted branch-site (uBS) model with
the existing, restricted, approach (rBS) to evaluate Type I er-
ror and power. We also reinvestigate three empirical data
sets that had been previously analyzed with the standard
or sequential branch-site method and discover that many,
but not all, of the original inferences are supported by our
mixture model. Lastly, we report selective episodes not pre-
viously detected.

Methods
Codon Model Specification
To facilitate our presentation of episodic selection meth-
ods, we first briefly reviewmaximum likelihood codon phy-
logenetic models (although see Delport et al. 2009 and
Anisimova and Kosiol 2009 for detailed reviews). These
models assume that substitutions along a branch of a phy-
logenetic tree can be described by an appropriately parame-
terized continuous-time stationaryMarkov process, defined
by its instantaneous rate matrix, Q , with elements that de-
scribe the rate of substitution of codon i with codon j :

qij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
r(Ai ,Aj )θijπij , δ(i , j ) = 1,

0, δ(i , j ) > 1,

−∑
k �=i

qik , i = j .

(1)

Here, δ(i , j ) is the number of nucleotide differences be-
tween codons i and j , πij denote the equilibrium frequency
parameters (e.g., πAAA ,AAC = q3

C ,πACC ,AAC = q2
A ), θij are

the nucleotidemutational biases, and r(Ai , Aj ) = r(Aj ,Ai )
are the relative substitution rates between amino acids en-
coded by codons i and j . In the most general model, each
of these r(Ai ,Aj )’s can be independently estimated (see
Delport et al. 2010), but here we follow the common ap-
proach of allowing only two rates:α for synonymous (Ai =
Aj ) and β for nonsynonymous (Ai �= Aj ) substitutions.
Their ratio, β/α, is the familiar selection parameter, ω.

The equilibrium frequency parameters may be estimated
empirically either as the product of position-specific nu-
cleotide frequencies (Goldman and Yang 1994) or as the
position-specific frequency of the target nucleotide (Muse
and Gaut 1994). Because we have previously identified bi-
ases using such empirical approaches (Kosakovsky Pond
et al. 2010), we use corrected estimates (CF3 × 4) of nu-
cleotide frequency parameters. Given a phylogenetic tree T
(fig. 1), with B branches and branch lengths ti , i = 1, . . . , B ,
the likelihood of changing from state i to j at a site along
branch b in time tb is given by the (i , j ) element of the
transition matrix PQ (tb ) = eQtb . Subsequently, the likeli-
hood of observing the alignment is evaluated as the product
of site-likelihoods (with sites ranging from 1 to the number
S of sites in the alignment), each of which is calculated us-
ing the standard pruning algorithm (Felsenstein1981) given
the data, a phylogenetic tree, T , and instantaneous rate
matrix, Q .

Sitewise REL Models
Before extending Felsenstein’s pruning algorithm, we first
summarize how it is used in the context of the commonly
used class of sitewise REL models. We pick our notation to
allow extension to other types of RELmodels in the sections
that follow. Throughout, we consider only the case of a finite
number of discrete categories; extension to continuous-
valued unobserved variables is straightforward, but compu-
tationally impractical, at least in the standard frequentist
phylogenetic framework.

In a sitewise REL model, we think of each site as belong-
ing to a site category, with the possible site categories rang-
ing from 1 to K . For notational convenience, we present the
special case where the categories differ only in terms of their
ω values—allowing us to denote the category for site s by
ωs . Considering all sites simultaneously, the configuration
of categories over all sites is a vectorΩ∀ b = (ω1, . . . ,ωS ),
where the subscript makes it explicit that this configuration
is shared by all branches. We model the joint probability of
the configuration as the product of independent factors:

P (Ω∀ b ) =
S∏

s=1

P (ωs ). (2)

The individual category probabilities P (ωs) are shared
across all sites. Although the independence of sites is a stan-
dard assumption in the literature and allows for a particu-
larly efficient likelihood calculation, it is not necessary. For
example, P (Ω∀ b ) has been modeled as a Hidden Markov
process to permit spatial correlations among site categories
(Felsenstein and Churchill 1996).

Another alternative to the model assumption of equa-
tion (2) would have been to allow only a small number
of configurations. For example, we could imagine a model
where sites are divided a priori into “buried” and “exposed”
residues (e.g., Yang and Swanson 2002) andpropose the fol-
lowing four configurations: 1) all sites conserved; 2) all sites
evolving neutrally; 3) buried sites conserved and exposed
sites under positive selection; and 4) buried sites evolving
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neutrally and exposed sites under positive selection. One
could calculate the alignment-wide likelihood under each
configuration and infer which of the configurations fits the
data best. We mention this not because we think it is a
good model (surely, it would not be biologically realistic to
assume such a limited number of possible configurations)
but because it is directly analogous to the existing branch-
site model of Zhang et al. (2005). Our contribution in this
manuscript is to upgrade from a branch-site model with
four prechosen configurations such as these to one that is
analogous to a REL model where the categories of different
sites are independent.

Returning to standard sitewise RELmodels, the likelihood
of the data Ds observed at site s (conditioned implicitly on
non-ωmodel parameters) is

P (Ds) =
∑
ωs

P (ωs)P (Ds |ωs) (3)

=
∑
ωs

P (ωs)
∑
A

P (Ds ,A |ωs), (4)

where the first sum is over all site categories, A denotes a
vector of ancestral node states, and the sum over A is taken
over all possible such vectors. Labeling each nonroot node
with the number of its parental branch, and the root node
as 0, we can write this out more fully using

P (Ds , A |ωs) = P (A0)

B∏
b=1

P (Ab |Apa(b ),ωs , tb ), (5)

where Ab denotes the state at node b and pa(b ) is the par-
ent node of b . The task of Felsenstein’spruning algorithm is
to calculate the sum

P (Ds |ωs) =
∑
A0

∑
A1

· · ·
∑
AB

P (Ds ,A |ωs), (6)

which, because each of the terms P (Ab |Apa(b ),ωs , tb ) in
equation (5) depends only on a local part of the tree (a child
and parent node and the branch connecting them), can be
factorized efficiently and calculated bymeans of a postorder
tree traversal. Inwhat follows, we retain this property so that
the same tree traversal remains an efficientway to calculate
the desired likelihood.

Branch-Site REL Models
To define a branch-site REL model, we replace our sitewise
category variable ωs with a branch-site category variable
ωbs . Each branch-site combination is considered to belong
to one of our K categories. We still aim to calculate the
likelihood for a single site s , so we consider the configura-
tion Ωs = (ω1s , . . . ,ωBs ) of branch categories. Our new
approach is based on the observation that if the branch
categories are independent, so that

P (Ωs) =

B∏
b=1

P (ωbs), (7)

then the likelihood at a site can be computed efficiently
without the need to apply the pruning algorithm for every
possible value ofΩs . By definition,

P (Ds) =
∑
Ωs

P (Ωs)P (Ds |Ωs) (8)

=
∑
Ωs

B∏
b=1

P (ωbs )
∑
A

P (Ds ,A |Ωs). (9)

Changing the order of summations, this can be written as
follows:

P (Ds) =
∑
A

P (A0)
∑
ω1s

∑
ω2s

· · ·
∑
ωBs

B∏
b=1

P (ωbs)P (Ab |Apa(b ) ,ωbs , tb ). (10)

This is identical to the quantity calculated by Felsenstein’s
algorithm except for the presence of the P (ωbs) terms and
the summations over ω values. Thinking algorithmically,
and as indicated in equation (10), the entire space of KB

values of Ωs can be traversed by B nested loops,
where the outermost loop iterates over ω1s , the sec-
ond loop over ω2s etc. Note that each product term
P (ωbs)P (Ab |Apa(b ) ,ωbs , tb ) depends on only one branch.
Hence, the sum computed by B nested loops (O(KB )
operations) is equivalent to a product of B sums (O (KB )
operations):∑
ω1s

∑
ω2s

· · ·
∑
ωBs

B∏
b=1

P (ωbs)P (Ab |Apa(b ),ωbs , tb )

=

B∏
b=1

K∑
ωbs=1

P (ωbs)P (Ab |Apa(b ) ,ωbs , tb ).

Consequently, we can rewrite equation (10):

P (Ds)=
∑
A

P (A0)

B∏
b=1

[
K∑

ωbs=1

P(ωbs )P (Ab |Apa(b ) ,ωbs , tb )

]
.

(11)

The summation in parentheses can be viewed as the
transition probability matrix of a mixture of K Markov
substitution models, with P (Ab |Apa(b ) ,ωbs , tb ) being the
model-specific likelihoods at branch b , and P(ωb) being the
mixing proportions. IfQωbs

is the ratematrix associatedwith
ωbs (as in equation (1)), then this transition probabilityma-
trix can be computed as

P bs(t) =
K∑
ωb=1

P (ωbs )e
Qωbs t . (12)

The sum over A in equation (11) can be carried out
efficiently using Felsenstein’s pruning algorithm, with the
transitionmatrices along each branch defined as K -process
mixtures as above. In other words, in order to compute the
likelihood of an alignment site, we first assume that the
probability of a particular selective regime at a branch is in-
dependent of that at any other branch, and apply the prun-
ing algorithm as usual, except that the substitution model
along each branch is given as the mixture of equation (12).
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Depending on how the mixing coefficients and the tran-
sition matrices in equation (12) are parameterized, we can
obtain different types of branch-sitemodels. In principle, for
every branch-site combination (b , s), there could be K in-
dependently estimated mixing proportions P (ωbs ) and se-
lection parameters ωbs . However, this approach will yield
a model with considerably more parameters than observa-
tions. Three simpler model types appear promising.

Nonspecific Branch-Site REL.
ωbs and P (ωbs ) for each category K are shared by all
branches and sites. There are K alignment-wide ω param-
eters (Ωk ), and the probability that P (ωbs = Ωk ) = qk
is described by an alignment-wide frequency parameter
qk ,
∑

k qk = 1. This is a simplemodel with 2K −1 parame-
ters estimated from the entire alignment butmay not incor-
porate enough biological realism.We used it as the first step
of the optimizationprocess for our more complexmodel to
obtain initial parameter estimates.

Site-Specific Branch-Site REL.
P (ωbs ) is a function of s , that is, every site (ormore precisely
site pattern) has its own set of mixing coefficients, shared
across all branches.ωbs are shared by all sites and branches.
This model has KS + K − S parameters: KΩk parameters
estimated jointly from the alignment and S sets of qsk mix-
ing parameters, with

∑
k qsk = 1, ∀ s = 1, . . . , S , so that

P (ωbs = Ωk ) = qsk . Because the number of parame-
ters grows with the size of the alignment, the model will be
asymptotically ill behaved. However, for fixed length align-
ments withmany sequences, it may be possible to learn site-
specific mixing parameters reliably.

Branch-Specific Branch-Site REL.
ωbs and P (ωbs) are functions of b , that is, every branch has
its own set of model parameters (ωkb ) and mixing coeffi-
cients (qk

b ,
∑

k q
k
b = 1), but they are estimated jointly from

all sites. This model has (2K − 1)B parameters and is inves-
tigated in the presentmanuscript. It has the attractive prop-
erty that the model parameters we learn include, for every
branch, the proportion of sites belonging to every selection
category.

A New Test for Episodic Selection
We define and fit a branch-specific branch-site REL model
(termed unrestricted branch site or uBS). For consistency
with several existing REL models, we restrict ω at every
branch to take on one of K = 3 values ω−b � ωNb �
1 � ω+b , representative of strong and weak conservation
and positive diversifying selection. In our experience (e.g.,
see Kosakovsky Pond et al. 2010), models that permit mul-
tiple classes of sites with ω < 1 fit protein-coding se-
quence alignmentsmuch better than those with one of the
ω values fixed at 1.We denote their mixing proportionsq−b ,
qN
b , and q+b (subject to q−b + qN

b + q+b = 1), respec-
tively. All model parameters are estimated by maximum
likelihood. Next, we fit B models (one for each branch),
where model b = 1, . . . , B differs from the unrestricted

model by the additional constraint of ω+b = 1. Each
of these models, therefore, disallows diversifying selection
along a single branch while leaving all other background
branches unrestricted. Compare this with the requirement
that all background branches have uniform neutral or neg-
ative selection regimes in the standard branch-site model
(Zhang et al. 2005). As describedmost recently inAnisimova
and Yang (2007), the evidence for positive selection along
branch b can be evaluated by a LRT using the asymptotic
distribution of the LR statistic defined by (χ21+ χ

2
0)/2 (Self

and Liang 1987). If B branches are tested in sequence, it is
necessary to correct the nominal significance level for each
individual test to control the cumulative (or familywise) er-
ror rate of the tests. Anisimova and Yang (2007) compared
multiple such corrections in the context of branch-site
methods and reported that their performance was broadly
similar.With that inmind, we settled on the correction pro-
cedure due to Holm (1979), which is more powerful and as
easy to compute as the simple Bonferroni correction. Briefly,
if the desired Type I error for the event “any of the B tests is
a false positive under the null model” is α, then the testing
procedure first ranks p values for each individual test in in-
creasing order p (1) � p (2) � · · · � p (B) and rejects first k
hypotheses if p (i ) � α/(B − i + 1) for i = 1, . . . , k and
p (k+1) > α/(B − k ). Our testing procedure uses a single
alternative hypothesis and requires that B + 1 model fits
be performed, whereas the testing procedure of Anisimova
and Yang (2007) demands the fitting of 2B models because
a different null and alternative pair must be evaluated for
each branch.

Evaluating the Robustness of the rBS Model
We simulated data according to two selection scenarios
along a 4-taxon tree (fig. 1A ) using the codon substitu-
tionmodel definedabove, withequal codon equilibriumfre-
quencies (π = 1/61) and the HKY85 (Hasegawa et al. 1985)
nucleotide substitution biases (i.e., θac = θat = θcg =
θgt = 2; θag = θct = 1). This choice of base frequencies
andnucleotide substitution biases will deemphasize the dif-
ferences in how frequency parameters and nucleotide sub-
stitution biases are modeled in rBS and uBS.

First (robustness simulation 1, RS1), we designated
branch 5 (fig. 1 A ) as a neutrally evolving foreground, that
is, the one to be tested for episodic diversifying selection
by the models), branch (ω = 1), whereas background
branches 1 and 3 were simulated under strong diversify-
ing selection (ω = 10), and background branches 2 and
4—under strong purifying selection (ω = 0.1). This sce-
nario was crafted to include variable selection along back-
ground branches which is not handled by any of the four
classes of the branch-site model, and hence the standard
branch-site test of selection along branch 5 will be fit-
ting the data using two incorrect models. Second (RS2),
we designated branch 5 as a positively selected foreground
branch (ω = 2), whereas background branches 1 and
2 are under strong diversifying selection (ω = 10) and
background branches 3 and 4 are under strong purifying
selection (ω = 0.05). These two scenarios are designed
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to explore the asymptotic behavior of the tests and use
sequences longer than most genes. A test with poor asymp-
totic properties when a specific model assumption is vio-
lated may appear to behave acceptably on smaller samples
due to, for example, lack of power. If test errors increasewith
sample size, this may point to fundamental issues with the
approach.

Evaluating the Performance of the Unrestricted
Branch-Site Model
Anisimova and Yang (2007) generated several thousand
alignments under seven selective regimes, three of which
included no positive selection (to test for Type I error or
false positives) and four included varying extents of diver-
sifying selective pressure (to assess Type II error or power).
These simulation alignments were kindly provided by the
authors, and we reanalyzed the data for a direct compari-
son with our approach. For complete details on these simu-
lations, we refer the reader to table 2 and text in Anisimova
and Yang (2007). Briefly, either 4 or 8 taxon balanced trees
were used for simulations,with 1,000 (4 taxa) or 200 (8 taxa)
300-codon long replicates/scenario.

In addition, we test our approach in a high information
content setting, using sequences with 1,000 codons simu-
lated along a 16-taxon balanced tree (supplementary fig. S3,
Supplementary Material online). We subdivide the length
of the sequence into three partitions, such that a site is sim-
ulated under one of three potential selection models. The
first two models are homogeneous with respect to the tree
and encompass purifying selection (ω = 0.1) and neutral-
ity (ω = 1) with proportions, p1 = 0.8 and p2 = 0.05,
respectively. Finally, the third model, with proportion p3 =
0.15, is heterogeneous with respect to the tree, comprising
neutral evolution (ω = 1) at all branches, except a set
of three branches at which strong diversifying selection is
simulated (ω = 5). We considered two modifications of
this scenario: a lower proportion of selected sites (p2 =
0.15, p3 = 0.05) or weaker selection (ω = 2 in the third
model).

Finally, we reexamine three empirical alignments previ-
ously analyzed for evidence of episodic selection: a data set
consisting of 19 lysozyme c sequences (S = 130 codons)
from primates, initially analyzed by Messier and Stewart
(1997); CD2 gene sequences (S = 187 codons) coding for
a cell adhesion molecule located on the surface of certain
type of lymphocyte, isolated from 10 mammalian species
and originally analyzed by Lynn et al. (2005); and 10 mam-
malian sequences (S = 1, 162 codons) of the tumor sup-
pressor gene BRCA1 (Zhang et al. 2005).

Implementation
The model is implemented as a collection of HyPhy
(Kosakovsky Pond et al. 2005) Batch Language scripts and
is distributed as a part of HyPhy v2.0020110306 or later
as BranchSiteREL.bf file in the Positive Selection rubrik of
standard analyses.

Results
Test Performance on Simulated Data
We applied our uBS sequential selection test to parametric
replicates generated under seven different selection profiles
previously used by Anisimova and Yang (2007) to evalu-
ate the original sequential branch-site test for detecting
episodic selection (Zhang et al. 2005) and to two additional
sets robustness simulations. Details of simulation results are
collated in table 1.

1. When sequences are simulated under rBS assumptions
(fig. 1), that is, those which conform to the null or the al-
ternativemodel of Zhang et al. (2005), both uBS and rBS
perform comparably (NC1, NC2, and SC in table 1), with
similar familywise error rates (FWER) and power. It is en-
couraging that our unrestrictedmethoddoes not appear
to be strongly underpowered compared with rBS, even
when the data are simulated to favor the former (38%
vs. 44%poweron SCwithone sequence). The sameholds
for data generated under models which deviate from rBS
assumptions but not too strongly (NI, SI1 in table 1).

2. The advantages of uBS over rBS become apparent when
the assumptions of the latter are inappropriate for the
data (SI2 and SI3). Already, in the SI2 scenario, where
two branches are experiencing episodic diversifying se-
lection, uBS provides a considerable boost in power for
8-taxon trees (63% vs. 48.5%). The greatest difference
between our approach and rBS is revealed in the SI3 sim-
ulation scenario, when four background branches in a
4-taxon tree were simulated under episodic selection,
whereas the single foreground branch was evolved neu-
trally or under purifying selection. The intent of SI3 in
Anisimova and Yang (2007) was to violate the assump-
tions of the rBS model as much as conceivably possible
and investigate how this would reflect on Type I errors.
Although the rBSmodel controlled the rates of false posi-
tives (FWER 1.7%), it suffered a severe loss of power—the
cumulative power was reported at only 35.3%, despite
pervasive episodic selection in this case. In contrast, uBS
achieved 92.5% power while maintaining FWER of 6.0%.

3. Given sufficient deviations from modeling assumptions
(RS1, RS2 in table 1), rBS tests for selection on foreground
branches can be severely misleading. For RS1, the null
model (ω2 = 1) is rejected in favor the alternativemodel
(ω2 � 1), implying positive selection along the neu-
tral lineage five with frequencies much higher than the
nominal error rate of the tests, and a very skewed dis-
tribution of the p -values (supplementary fig. S1, Supple-
mentary Material online). The null hypothesis rejection
rate increases as the length (S codons) of the alignment
is increased. For example, at testp = 0.05, the nullmodel
was rejected 12/100 times for S = 1, 000, 31/100 times
for S = 2, 000, 74/100 times for S = 5, 000, and in
97/100 cases for S = 10, 000. Nominal p -values are com-
monly interpreted as the acceptable rate of false posi-
tives of the test, hence p = 0.05 should result in about
5/100 false rejections of the null. Lowering p = 10−4 still
yields 34/100 false positives for S = 10, 000, suggesting
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Table 1. uBS Performance on Simulated Data.

Simulation Sequences/Codons Branch 1 Branch 2 Branch 3 Branch 4 Branch 5 FWER Power
Scenario

rBS uBS rBS uBS
NC1 4 0.008 0.006 0.01 0.007 0.005 0.043 0.036 — —

8 0.005 0.005 0.005 0.015 0.00 0.044 0.03 — —
NC2 4 0.014 0.01 0.016 0.007 0.07 0.053 0.053 — —

8 0.005 0.015 0.01 0.005 0.000 0.045 0.035 — —
NI 4 0.006 0.012 0.009 0.001 0.005 0.051 0.033 — —

8 0.03 0.025 0.01 0.005 0.005 0.08 0.07 — —
SC 4 0.005 0.008 0.004 0.004 0.101 0.026 0.02 0.084 0.101

8 0.015 0.015 0.000 0.005 0.38 0.045 0.035 0.44 0.38
SI1 4 0.007 0.007 0.005 0.007 0.103 0.033 0.025 0.082 0.103

8 0.00 0.015 0.005 0.015 0.435 0.06 0.035 0.495 0.435
SI2 4 0.116 0.004 0.008 0.009 0.07 0.033 0.021 0.166 0.176

8 0.53 0.01 0.01 0.00 0.195 0.02 0.02 0.485 0.630
SI3 4 0.295 0.484 0.599 0.667 0.06 0.017 0.06 0.353 0.925
RS1 1,000 1 0.01 1 0.00 0.00 0.12 0.01 1.00 1.00
RS1 2,000 1 0.00 1 0.00 0.08 0.31 0.08 1.00 1.00
RS1 5,000 1 0.01 1 0.00 0.03 0.74 0.03 1.00 1.00
RS1 10,000 1 0.00 1 0.01 0.03 0.97 0.03 1.00 1.00
RS2 1,000 1 1 0.00 0.00 0.44/0.03∗ 0.00 0.00 1.00 1.00
RS2 2,000 1 1 0.00 0.00 0.83/0.02∗ 0.00 0.00 1.00 1.00
RS2 5,000 1 1 0.00 0.00 0.98/0.03∗ 0.00 0.00 1.00 1.00
RS2 10,000 1 1 0.00 0.00 1.00/0.05∗ 0.00 0.00 1.00 1.00

RS1 and RS2 are described in the text and figure 1. Simulations NC1, NC2, NI, SC, SI1, SI2, and SI3 are taken from Anisimova and Yang (2007) (see table 2 therein for complete
details of simulation parameters). The first three simulations (NC1, NC2, and NI) do not include any lineages under positive selection, whereas the last four include one or
more lineages under selection at some sites in the alignment. Branches that experience positive selection are typeset in italic. Entries for Branch 1–Branch 5 columns show the
proportion of replicates where any branch from this class was found to be under positive selection at p � 0.05. FWER is the proportion of replicates where at least one branch
was falsely classified as undergoing positive selection. The Power column lists the proportion of replicates for which at least one branch under positive selection was correctly
classified as such. ∗ : the second number reports the proportion of replicates where Branch 5 was reported under positive selection by rBS.

that the rate of false positives is difficult to control. The
estimate of ω along lineage 5 is biased, with mean ω̂ ≈
1.4 andvariance inverselyproportional to sample size.On
the same data, uBS hadwell-controlled rates of false posi-
tives, which did not correlate with the length of the align-
ments. For RS2, the rBS test now performs as if the null
model (ω = 1 on branch 5) were correct—the rate of
rejections is similar to the rate expected under the null
model and the ω2 estimate is now biased downward to
ω2 ≈ 1.0 and very low power (2–5%) to detect selection
along branch 5 (table 1). We observed shrinking estima-
tor variances for larger sample sizes (fig. S2), showing that
the lack of power is not due to insufficient sample sizes. In
contrast, uBS showed very low rates of false positives on
the negatively selected branches (0%) andpower ranging
from 44% (S = 1, 000) to 100% (S = 10, 000) on the
interior branch of the tree simulated to be under diversi-
fying selection.

Test Performance as a Function the Strength and Extent
of Episodic Selection
For the 16-taxon tree and 1, 000-codon long sequences with
lineagesA, B, andAB (supplementaryfig. S3, Supplementary
Material online) are under positivediversifying selection,we
observed the following test performance.

15% of Sites under Selection with ω = 5.
uBS achieved 100% power and FWER of 2%, demonstrat-
ing that larger and more informative alignments allow the
test to bemorediscriminative andaccurate, as expected. For

the same data set, rBS was surprisingly conservative with 0%
FWER, but only 6% power.

5% of Sites under Selection withω = 5.
uBS achieved only 9% power at FWER of 2%, demonstrating
that if too few sites are under selection, the ability of the test
to detect episodic selection is severely impacted.

15% of Sites under Selection withω = 2.
uBS attained 8% power at FWER of 3%, indicating that
a weak selection signal is considerably more difficult to
identify.

Empirical Data Applications
First, we analyzed CD2 gene sequences coding for a cell ad-
hesion molecule located on the surface of certain types of
lymphocytes. These sequences were isolated from tenmam-
malian species and were previously analyzed by Lynn et al.
(2005) using a branch (no site-to-site variation) method
(Yang 1998) and more recently by Anisimova and Yang
(2007) with a branch-site method. Lynn and colleagues
found that lineages leading to pig, cow, horse, cat, the (pig
and cow) ancestor (lineage 3 in fig. 2A ), and the primate
clade ancestral lineage (13) were under positive selection
because themean point estimate of ω at those branches ex-
ceeded one and the branch heterogeneity test (Yang 1998)
rejected the hypothesis that all lineages were under the
same selective pressure. Anisimova and Yang (2007) iden-
tified positive selection along lineages leading to cow, cat,
and the ancestor of (pig, cow, horse, and cat) clade us-
ing a sequential rBS test; and pointed out that comparing
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FIG. 2. Empirical data sets analyzed for episodic selection. Each tree is
scaled on the expected number of substitutions/nucleotide. The hue
of each color indicates strength of selection, with primary red corre-
sponding to ω > 5, primary blue to ω = 0, and grey to ω = 1.
Thewidth of each color component represents the proportion of sites
in the corresponding class. Thicker branches have been classified as
undergoing episodic diversifying selection by the sequential test at
p � 0.05.

the value of point estimate of ω to 1 was only suitable for
exploratory analyses and did not constitute a valid statisti-
cal test. Our uBS model confirms (at p � 0.05) episodic
selection along the same three lineages reported by Anisi-
mova and Yang (2007) but also identifies two additional
lineages—the horse lineage and the most recent common

ancestor of the primate clade. Neither of these lineages
approached significance in the analysis of Anisimova and
Yang, but because CD2 appears to have undergone exten-
sive episodic selection at multiple lineages, the assumptions
of the rBS test are likely to be violated in these data, for
example, leading to loss of power by rBS (as was shown in SI3
simulations). The patterns of episodic selection were com-
plex (fig. 2A and table 2), with marked differences in the
extent (proportion) and strength (ω+) of selection along
different lineages. Interestingly, Branches 6 (not reported
by Lynn et al. 2005) and 13 (not reported by Anisimova
and Yang 2007) appear to experience very strong selective
forces (ω+6 = 37.2,ω+13 = 39.7) on a small percentage of
sites (q+6 = 0.094, q+13 = 0.092), whereas the other three
selected branches (cow, horse, and cat) each have ap-
proximately 40% of sites under relatively weaker positive
selection (ω = 5.2–10.7).

Next, we reexamined a data set consistingof 19 lysozyme
c sequences from primates initially analyzed byMessier and
Stewart (1997) and more recently by Zhang et al. (2005).
The authors suspected positive selection along the lineage
leading to the colobine monkeys and hominoids for which
the lysozyme protein may have acquired a different diges-
tive function that allows them to lyse symbiotic bacteria.
Yang (1998) confirmed positive selection along the homi-
noid lineage (and elevated ω compared with background
on the colobine lineage) using codon models that permit-
ted no site-to-site rate variation. Indeed, it appears that if
one assumes negative or neutral selection elsewhere on the
phylogeny, the “average” strength of selection along the lin-
eages of interest exceeds or approaches one. It was there-
fore somewhat unexpected that more sensitive rBS models
did not find evidence of episodic diversifying selection along
the two lineages (Zhang et al. 2005). uBS reached the same
conclusion—no single lineage had sufficient statistical sup-
port for episodic diversifying selection under a sequential
(branch at a time) test. The inferred selectivemixture for the
hominoid ancestral lineages (28 in fig. 2B ) showed 18.2% of
sites under very strong selection ω > 100 and an uncor-
rected p -value of 0.008, that is, were we to test only for selec-
tion only along this lineage based on apriori information,we
would find episodic diversifying selection at p < 0.05. For
the colobine ancestral lineage (8 in fig. 2B ), 100% of sites
were allocated to the positive selection regime (ω = 3.4),
yet the test p -value was only 0.10.

The last data set we analyzed contains ten mammalian
sequences of the tumor suppressor gene BRCA1. Zhang
et al. (2005) previously analyzed eight of these sequences
as the chimpanzee and human lineages are suspected
to be under positive selection but found no evidence
of positive selection along any lineages. Our sequen-
tial analysis found evidence of episodic diversifying se-
lection on the lineage ancestral to primates and lemurs
(Branch 15 in fig. 2C ) with 3.3% of sites in the ω+ =
17.3 class. The human lineage shows borderline (uncor-
rected) significance with p = 0.076 (all sites un-
der weaker positive selection, ω = 2.26), whereas
the chimpanzee lineage is not significant (uncorrected
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Table 2. uBS on the CD2 Data Set.

Branch Mean ω ω− q− ωN qN ω+ q+ LRT p Corrected p
Pig 1.341 0.000 0.443 0.919 0.000 2.811 0.557 3.276 0.035 0.352
Cow 1.914 0.000 0.025 0.000 0.513 10.732 0.462 23.465 0.000 0.000
3 1.480 0.000 0.328 0.000 0.370 7.824 0.303 5.989 0.007 0.079
Horse 1.244 0.000 0.001 0.000 0.569 5.190 0.430 11.463 0.000 0.005
Cat 1.598 0.252 0.463 1.000 0.137 6.544 0.400 13.309 0.000 0.002
6 0.664 0.000 0.906 0.118 0.000 37.328 0.094 7.432 0.003 0.038
RHmonkey 22.503 1.000 0.007 1.000 0.316 113.398 0.677 1.196 0.137 0.822
Baboon 0.000 0.000 0.550 0.000 0.336 0.000 0.113 0.000 1.000 1.000
9 0.400 0.047 0.000 0.443 1.000 0.009 0.000 0.000 1.000 1.000
Human 0.002 0.126 0.468 0.215 0.384 2.963 0.148 0.000 0.500 1.000
Chimpanzee 24.634 0.313 0.000 0.812 0.000 47.512 1.000 0.630 0.214 1.000
12 0.368 0.000 0.149 0.000 0.803 12.624 0.048 1.393 0.119 0.952
13 1.915 1.000 0.020 1.000 0.888 39.772 0.092 8.823 0.001 0.019
14 0.432 0.156 0.039 0.162 0.730 2.581 0.232 1.315 0.126 0.880
Rat 1.093 0.000 0.552 0.002 0.000 2.998 0.448 0.367 0.272 1.000
Mouse 0.524 0.400 0.947 0.799 0.000 22.217 0.053 2.240 0.067 0.605

Mean ω is estimated under the free-ratio MG94× REV model (no site-to-site rate variation). ω and q values reflect the branch-level mixture of negative, (nearly) neutral, and
positive selection models. LRT: likelihood ratio test statistic, p : uncorrected p -value obtained using the mixture ofχ2

0 andχ
2
1 distributions; corrected p : after an application of

Holm’s multiple testing correction. Internal branches are numbered concordantly with figure 2. Branches found by uBS to be under positive diversifying selection are shown
in italic.

p = 0.16). These findings are in qualitative agreement with
previous analyses (Zhang et al. 2005).

Discussion
This work demonstrates that current branch-site meth-
ods can have excessive Type I and Type II errors when the
data strongly deviate frommodel assumptions. These mod-
els enforce uniform selective pressure on all background
branches, thus biasing the estimate of ω along foreground
branches. We have demonstrated this behavior to be posi-
tivelymisleading, with decreasing variance for larger sample
sizes. The nature of the bias will depend on the distri-
bution of selective pressures along background branches,
nucleotide substitution biases, and branch lengths. More
critically, the sequential rBS approach (Anisimova and Yang
2007) to test eachbranch in a phylogeny for evidence of pos-
itive selection, while specifically postulating that no other
branches in the phylogeny are subject to positive selection,
is likely an oversimplification of biological reality. Further-
more, when one branch is found to be under selection by
this method, it automatically implies that no other branch
(in the background) can be under selection, hence the
sequential testing procedure that finds multiple selected
branches by setting the foreground to one branch at a time
is logically inconsistent.

We have developed and validated a new random ef-
fects branch-site model (uBS) to detect positive selection
in protein-coding sequences that do not require partition-
ing lineages into foreground andbackground branches. This
model considers all possible assignments of three selective
regimes to the branches in a phylogeny at a given site. If
the selective behavior along a branch is independent of that
along other branches, our model can be efficiently evalu-
ated in the standardphylogenetic framework. This is accom-
plished by replacing the standard substitution model along
a branch with a mixture of three Markov models: one for
purifying, one for nearly neutral, and one for diversifying

selection. To detect episodic diversifying selection,we adopt
the familiar hypothesis testing framework (Anisimova and
Yang 2007) to identify the lineages in a phylogeny that could
have undergone episodic selection, and we measure the
strength (ω) and extent (proportion of sites) of such se-
lection independently (but jointly) for each branch. uBS is
approximately twice as computationally efficient as the cur-
rent branch-site approach because it tests a series of nulls
(no positive selection on a given branch) versus a univer-
sal alternative (no constraints on any branches), whereas
the sequential rBS approach constructs a separate null and
alternative model for each branch. The new approach is
more computationally attractive than the family of codon-
based covarionmodels (Guindon et al. 2004), where the ad-
dition of each evolutionarymodality incurs an expansionof
the character state space and the corresponding quadratic-
to-cubic (in terms the number of ω classes) increase in al-
gorithmic complexity. However, some aspects of covarion
models are more flexible, for example, the switchpoints in
the evolutionary process are not delineated by branches in
the tree as they are in uBS, hence the two approaches are
complementary.

Because our testing procedure does not limit the num-
ber and type of site configurations at a site, we expect it
to demonstrate improved performance on data that do not
conformto the restrictive assumptions of the rBSmodel. Us-
ing the same set of simulations as in Anisimova and Yang
(2007), we demonstrate that uBS has notably higher power
and lower error rates than the sequential rBS method when
the assumptions of the latter method are strongly violated
(scenarios SI2 and SI3). Encouragingly, on the data that do
meet rBS restrictions, our approach delivers comparable
performance, suggesting that it is not necessary to make a
priori assumptions about the patterns of episodic selection.
uBS attains 100% power if sufficient data (e.g., 16 sequences,
1,000 codons, and 15% of sites under selection) are
supplied. Our reanalysis of three benchmark biological data
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sets revealed slight differences from published results and
confirmed the lower power of sequential rBS methods to
detect short bursts of strong selection in a data set subject
to pervasive episodic selection.

Much future work remains, however. First, there is no
clear understanding of what extent and strength of se-
lection, data sizes, and divergence levels are necessary for
episodic selection tools to be appropriately powered, yet
not subject to excessive false positive rates. Even based on
our limited 16-taxon simulations, it is apparent that uBS
rapidly loses power when the proportion of sites under se-
lection is too small or when selective pressures are relaxed.
Second, does the location of lineages under selection in the
phylogeny (e.g., tips vs. deep internal branches) influence
our ability to infer selection? Simulations in this study sug-
gest that theremaybemorepower todetect recent episodic
selection at terminal branches, but a more systematic
exploration is necessary. Third, how does one go about au-
tomatically pooling branches together to boost the power
to detect weaker selection that affects the same set of sites
in multiple lineages—a good example would be HIV evo-
lution to independently acquire drug-resistance mutations
in lineages that represent patients on treatment (Seoighe
et al. 2007). Fourth, much of episodic selection is likely to
be directional rather than diversifying, hence models must
be adapted to include this type of selection as well (e.g.,
Delport et al. 2008; Kosakovsky Pond et al. 2008). Fifth,
might it be beneficial to relax the assumption of con-
stant synonymous rates (Kosakovsky Pond andMuse 2005)?
Sixth, naive, or Bayes empirical Bayes approaches developed
for rBS for detecting individual sites subject to episodic di-
versifying selection (Yang et al. 2005), need to be adapted to
and evaluated in the context of uBS.

Based on the results, theoretical considerations and
computational feasibility presented in this manuscript, we
advocate our mixture approach over current tools for the
detection of episodic diversifying selection (Anisimova and
Yang 2007). Unlike Nozawa et al. (2009), who propounded
a severely underpowered (and difficult to extend) counting
method for lineage-specific selection detection and made
a number of strong claims recently refuted by Yang and
dos Reis (2011), we espouse the view that likelihoodmodel-
based approaches are a much more appealingway forward.
We are convinced that continued improvements in biologi-
cal realism of evolutionarymodels, underpinned by gains in
computing power and algorithmic development, will pro-
vide evolutionary biologists with the tools to better char-
acterize fundamental adaptiveprocesses. uBS demonstrates
the potential for continued extension of classical frequentist
and hypothesis testing approaches to parallel recent semi-
nal developments in Bayesian approaches to fitting complex
substitutionmodels (e.g., Rodrigue et al. 2010).

Supplementary Material
Supplementary figures S1–S3 are available at Molec-
ular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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