1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

o WATIG,

HE

M 'NS;))\

D)

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
JR Stat Soc Ser A Stat Soc. 2009 April ; 172(2): 405-425. doi:10.1111/j.1467-985X.2009.00580.x.

Modelling population-based cancer survival trends using join
point models for grouped survival data

Binbing YuT,
National Institutes of Health, Bethesda, USA

Lan Huang,
National Cancer Institute, Bethesda, USA

Ram C. Tiwari*,
National Cancer Institute, Bethesda, USA

Eric J. Feuer, and
National Cancer Institute, Bethesda, USA

Karen A. Johnson
National Cancer Institute, Bethesda, USA

Summary

In the United States cancer as a whole is the second leading cause of death and a major burden to
health care, thus the medical progress against cancer is a major public health goal. There are many
individual studies to suggest that cancer treatment breakthroughs and early diagnosis have
significantly improved the prognosis of cancer patients. To better understand the relationship
between medical improvements and the survival experience for the patient population at large, it is
useful to evaluate cancer survival trends on the population level, e.g., to find out when and how
much the cancer survival rates changed. In this paper, we analyze the population-based grouped
cancer survival data by incorporating joinpoints into the survival models. A joinpoint survival
model facilitates the identification of trends with significant change points in cancer survival,
when related to cancer treatments or interventions. The Bayesian Information Criterion is used to
select the number of joinpoints. The performance of the joinpoint survival models is evaluated
with respect to cancer prognosis, joinpoint locations, annual percent changes in death rates by year
of diagnosis, and sample sizes through intensive simulation studies. The model is then applied to
the grouped relative survival data for several major cancer sites from the Surveillance,
Epidemiology and End Results (SEER) Program of the National Cancer Institute. The change
points in the survival trends for several major cancer sites are identified and the potential driving
forces behind such change points are discussed.
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1. INTRODUCTION

In recent decades, there has been considerable progress against cancer due to improvement
in treatment, the development of cancer prevention, and the dissemination of early diagnosis
and cancer screening techniques. These medical advances improved both the quality of life
and the length of survival, permitting many survivors to continue full and productive lives.
Joinpoint models (Kim et al. 2000) have been used to characterize cancer trends and
progress as connected linear segments. The Cancer Statistics Review (Ries et al. 2006), an
annual publication of the NCI, reports the trends of cancer incidence and mortality rates,
using the joinpoint models. First issued in 1998, the Annual Report to the Nation, a
collaboration among the NCI, the Centers for Disease Control and Prevention (CDC), the
American Cancer Society (ACS), and the North American Association of Central Cancer
Registries (NAACCR), also provides updated information on cancer incidence and mortality
rates in the United States obtained from the joinpoint models. These trends help in
understanding the impact of cancer control and interventions on cancer incidence and
mortality. However, there is no analogous method for reporting trends in cancer survival,
which is also an important measure for monitoring and evaluating the impact of early
diagnosis and treatment breakthroughs.

Medical breakthroughs impact survival of patients diagnosed in a specific time frame.
Including the joinpoints into the survival models enables us to identify and evaluate the
impact of important medical breakthroughs. Feuer et al. (1991) and Weller et al. (1999) have
modeled the impact of treatment breakthroughs on survival in testicular cancer and
Hodgkins disease using joinpoint regression. In their work two joinpoints occur when a
medical development is changing survival as a function of the year of diagnosis; the first
joinpoint when the intervention is introduced, and the second one is when survival levels
off, indicating the end of dissemination through the population. However, they only assumed
a fixed number of joinpoints and do not solve the more general problem of determining the
number of joinpoints. In this article, we extend the use of the joinpoint model to the
population-based grouped survival data from the SEER Program. The main goal of the
Joinpoint survival model (JPSM) is to describe the trends in cancer survival, i.e., to find out
when the cancer survival starts to change its improvement pattern; and, if there is a leveling
off of such realized improvement, how much of an improvement was finally attained.

The rest of the paper is organized as follows. In Section 2, we describe the importance and
challenges of modeling the trends in population-based cancer survival. In Section 3, we
propose the JPSM for population-based grouped cancer survival data, and describe the
estimation method and the model selection criteria. While mainly developed for population-
based grouped survival data, the method could also be applied to any arbitrary interval-
censored survival data. Extensive simulation studies are carried out to assess the
performance of the JPSMs in Section 4. In Section 5, the JPSMs are applied to the grouped
cancer survival data for several major cancer sites from the SEER Program. Finally, the
advantages and the utilities of the JPSMs are discussed.

2. TRENDS IN POPULATION-BASED CANCER SURVIVAL

Information on the survival of cancer patients after diagnosis is a key indicator of cancer
control, alongside the cancer incidence and mortality. Such information is also required to
plan and evaluate health services. This information can only be derived from population-
based cancer registries (Coleman et al., 2003). Because the United States has no centralized
data system for health outcomes, the effect of new treatment on the US population for
potentially fatal diseases must be inferred from administrative records. The Surveillance,
Epidemiology, and End Results (SEER) Program of the NCI is an authoritative source of
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information on cancer incidence and survival in the U.S. SEER currently collects and
publishes cancer incidence and survival data from population-based cancer registries.

The SEER registries routinely collect data on patient demographics, primary tumor site,
morphology, stage at diagnosis, first course of treatment, follow-up for vital status, etc. The
SEER Program began collecting data on cancer cases in 1973, in the states of Connecticut,
lowa, New Mexico, Utah, and Hawaii and the metropolitan areas of Detroit and San
Francisco-Oakland. In 1974-1975, the metropolitan area of Atlanta and the 13-county
Seattle-Puget Sound area were added. These original 9 regions are referred to as the SEER 9
registries, covering 10% of the US population.

The population-based cancer survival data are typically grouped into annual or monthly
intervals by the time after cancer diagnosis. With the ageing of populations, the number and
proportion of elderly cancer patients keep rising. One challenge of the population-based
cancer survival data is that competing risks of death other than cancer are common among
cancer patients. When we evaluate the progress and trend in cancer survival, it is ideal that
the confounding effects of death from other causes are removed. The cancer net survival is a
hypothetical quantity that measures the excess mortality due to the cancer of interest as if
other causes of death are eliminated. There are two common measures of net survival,
namely, the cause-specific survival and the relative survival. In cause-specific survival
analysis, the cause of death is identified and used. The event is the death due to the cancer of
interest and the people dying from other causes or lost to follow-up are considered as
censored. By modeling the trends of population-based cancer survival, the results are
representative of the general population in the U.S. and thus can be used to evaluate the
effectiveness of cancer treatment and services.

The cause-specific survival analysis requires accurate information on cause of death. The
accuracy of death certificates for determining the underlying cause of death is problematic in
some situations (Percy 1981). An alternative method of estimating cancer net survival is to
use the relative survival ratio (Ederer et al. 1961), defined as the observed survival
proportion in the patient group divided by the expected survival rate of a comparable group
from the general population, who are assumed to be practically free of the cancer of interest.
Both measures estimate the same conceptual quantity, i.e., cancer specific net survival,
although in different ways. The major advantage of the relative survival is that the
information on cause of death is not required, thereby circumventing problems with the
inaccuracy or nonavailability of death certificates. Thus, the relative survival is a common
metric used in the population-based cancer survival studies.

3. JOINPOINT SURVIVAL MODEL

Let x be the calendar time, which reflects the possible change point of cancer survival
trends. In cancer survival studies, the survival time is usually defined as the time from
diagnosis to death. We assume that the hazard rate of dying at time t follows a proportional
hazards model with

Atlx)=Ao(t)exp{h(x)}, (1)

where 1q(t) is the baseline hazard and
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K
h(x)=ﬁx+z5i;(x -ty 'z,
<, )

indicates the trend of survival with respect to calendar time x. Here, u* =uifu>0and =0
otherwise. Throughout the paper, we use x to denote the year of diagnosis. The other
covariates z, e.g., race, sex, and comorbidity status, can also be included in h(x). For
simplicity, we omit the covariate z from now onwards. In the model, the regression
parameters are f, d1, ..., ok. The 71, ..., 7k are called the joinpoints because the function h(x)
is continuous at, but has different slopes before and after, z1, ..., 7x. The continuity
constraint on h(x) at the joinpoints is more realistic as the effect of the new treatment or
intervention on the hazard rate usually takes place gradually. We call the survival model,
with h(x) defined as in (2), a K-joinpoint JPSM. There are a total of (K + 1) segments, and

=1
for the k-th segment, the slope coefficient is ﬂk=.3+z,:] o,k=1,.. K+1

The baseline hazard Aq(t) can be modeled, for example, by a time-dependent function such
as regression spline (Rosenberg 1995). Some have considered modeling A¢(t) using one
discontinuous change point, see, for example, Liang et al. (1990), Luo et al. (1997) and Lim
et al. (2002), among others. Recently, Goodman et al. (2006) considered a multiple change
point model and a multiple joinpoint model for the baseline hazard. So far, there is no
literature on the multiple joinpoint models for the survival trends with respect to calendar
year. Here we focus on modeling the secular trend in cancer survival by introducing
joinpoints following the calendar time of cancer diagnosis and the baseline hazards are
model by a nonparametric step function.

For the population-based cancer survival data, e.g., the SEER survival data, the survival
times after diagnosis are usually grouped into intervals Ij = [tj-1, tj), j = 0, ..., J, where tg =
0, and t; is the end of the follow-up. We call it grouped survival data. The death rate during
the interval I; given that a patient is alive at the beginning of the interval is

Li(x)=P(T<tj|T > t; 'x)—l—m J=1 J.
i€ T2 113 St oo, @

Under the proportional hazards assumption, the survival function is given by
S (tx)=S o (1)), )
where Sp(t) is the baseline survival function, and

So(t))
So(tj-1)

log {—log [ 1- /lj(x)]} =log {—log [ } +h(x).
(5)

So(t))
SU"/-»I’

Solt)=expl- ) "]

Let j=log {—log[ ]} Then, the baseline survival function can be expressed as
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When there is no joinpoint, h(x) = Ax and we have exp(8)="r4"=". If the death rates ;(x)

Tog(1—4;(x)

are small forj=1, ..., J, then exp(8) — 1 ~ X4 Thus, [exp(5)—1]100% can be
interpreted as the annual percent change (APC)J of the death rates, 4;(x), with respect to the
diagnosis year x. A negative value of the APC means that the death rates 4;(x) decrease as x
increases. When h(x) is defined by a joinpoint model (2), the APC of the death rates in the k-
th segment is APCy = [exp(Bx) — 1]100%. Because we did not assume interaction between
covariates z and diagnosis year x, so the APC values are the same for different covariate
levels. The collection of the parameters are denoted by 8 = (a, f, 8, 7)T, where a = (a1, ...,

(ZJ),§= (51, ...,5K), T= (Tl, ey ‘L'K).

3.1. The Likelihood function for the grouped cancer survival data

For the patient cohort diagnosed in the year X, let nyj be the number of people alive at the
beginning of interval 1, let dy; be the number of cancer deaths and let l; be the number of
patients lost to follow-up or dying from other causes in interval 1;. By the actuarial

assumption (Gail, 1975), the adjusted number of person-years at risk is ro=ng — L and the
number of cancer deaths in I; follows a binomial distribution, i.e., dyj ~ Bin(ryj, /lj(x)). Hence,
the likelihood function for the cause-specific grouped survival data 2 = {X, (rj, dyj), j = 1,
o, J}is

! S
L= [ Jueof™ 1 -a) ™.

X j=1 (6)

In relative survival analysis, the cause of death is not used. Let dyj denote the number
patients dying from all causes and ly; denote the number of patients lost to follow-up during
interval Ij. The conditional probability of surviving the interval I; from all causes is
Pj(X)E;j(x), where pj(x) = 1 — 4;(x) is the interval relative survival probability and Ej(x) is the
expected probability of surviving interval I; for the general population. We assume that dy;
follows a binomial distribution dyj ~ Bin(ryj, 1 — pj(X)Ej(x)). The likelihood function for the
relative survival data 2 = {X, (ryj, dyj, Exj), j =1, ..., J} is

J . .
Lo)=[ [ 111 - piE @)™ pioE )
v j=1 (7)

Here, Ej(x) are calculated from the life tables for the matched general population (National
Center for Health Statistics, 2003).

3.2. Parameter estimation

When the covariates are fixed, the likelihood functions (6) and (7) correspond to generalized
linear models with complementary log-log link function. For this case, the estimation
methods are described by Prentice and Gloeckler (1978), and Hakulinen and Tenkanen
(1987). For the general interval-censored survival data, the Expectation-Maximization
algorithm has been proposed by Goetghebeur and Ryan (2000). If the locations of the
joinpoints, 7, ..., 7k, are known, then (x — z¢)*, ..., (x — 7x)* are fixed and the above
available methods apply. When the locations of the joinpoints are not known, we can use the
grid search method (Lerman 1980) to find the estimates of joinpoints. We assume that the
joinpoints only occur at the observed data points, i.e., 7y € E, k=1, ..., K, where E is the set
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of observed x values. Let £(0) = log L(4| ) be the loglikelihood function. First the
loglikelihood is maximized for fixed values of 7 = (zy, ..., 7x) and the associated estimates
of (a, A, 8) are denoted by (a,, S, J,). The maximum loglikelihood value of ¢(8) for given =
is a profile loglikelihood. All possible combinations of the joinpoints are tried by grid search
and the maximum likelihood estimates (MLESs) of the joinpoints, 7 are the values that
maximize £,. Thus, the MLE of the parameters is = (a7, S5, 07 7).

The asymptotic distribution theory in the joinpoint regression has been proved by Feder
(1975a,b). With this approach, £max is the maximum value of £, and €, (z1, ..., x|tk = X) is
the maximum value of £, conditional on 7 = x. Then the 100(1—q)% confidence interval
(CI) for 7 includes the x values such that

1
“2{le(t1, .. T lTe=) = bmax} < (XD (@) ®)

where (Xf)_l(q) is the quantile function of a chi-squared distribution with one degree of
freedom.

Feder (1975b, p.53) proved that when the number of data points n goes to infinity, the MLE
6 has the same asymptotic normal distribution as the estimates for the data with a small
number of observations deleted near the true joinpoints. In practice, the standard errors of
the MLEs (a, £, d) are estimated by fitting the JPSM after deleting the data points that are on
the estimated joinpoints 7y, ..., 7x (Lerman 1980; Feder 1975b). The standard errors for the
slopes f, k=1, ..., K +1, and that of the estimated survival function S(tjx, 4) can be
calculated from the delta method using Equations (4) and (2). The Cls for S are obtained
from the normal approximation and the Cls for APCy can be transformed from the Cls for
P k=1, ..., K+ 1. Kim et al. (2006) have showed by simulations that the Cls for £ from
this approach have good coverage rates. In practice, we limit the maximum number of
joinpoints to 3 because the patient’s survival usually improves gradually and changes in
survival are few in number. Also, we impose the restriction that two joinpoints may not be
too close to each other and that a joinpoint may not occur too early or too late in the study
period. We also restrict that, after excluding the joinpoints, the minimum number of data
points between two consecutive joinpoints is 2 and that the minimum number of data points
from a joinpoint to either end of the data is 2.

3.3. Model selection

There are several methods available for model selection, such as the Akaike’s information
criterion (AIC) (Akaike 1973) and the Bayesian Information Criterion (BIC) (Schewarz
1978). The AIC tends to over fit the true model and the BIC is consistent when the number
of true covariates does not increase with the sample size (Yang 2006; Zheng and Loh 1995).
The BIC has been used for selecting the number of joinpoints in Bayesian models (Tiwari et
al. 2005). Kim et al. (2000) used permutation tests for model selection in the joinpoint
models for rates and proportion. The permutation-test based (PTB) model selection
approach consists of a series of permutation tests for Hy: K = kg against Hq: K = kq by
permuting the residuals. The PTB model selection method has been developed for the
joinpoint model for cancer incidence and mortality rates by the NCI
(http://srab.cancer.gov/joinpoint).

The PTB approach can also be used to select the number of joinpoints in JPSM. Let Ij(x) be
the predicted value of 2j(x) in (3) under the null model. The predicted value for the number
of deaths dy; is given by dyj = ryij(x) and its variance Vyj = r,j4j(){1 — 4j()}. Then the
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residuals dxj — dyj are standardized to ey; with mean 0 and variance 1. The permuted

residuals, ¢ are added back to create permuted samples d.;, where

u —A, * J .
dxj—d”-kr_‘_j Vij.

Let F( D) be the F-type statistic for testing the difference between the null and alternative
model using the original data P. Because the joinpoints are estimated, F( 2) no longer
follows an asymptotic F distribution, and its empirical distribution has to be estimated from
the permuted sample D*. The p-value is the proportion of times that F( P*) > F( P) over a
large number of permutations.

However, it is computationally too intensive to use the PTB approach for the survival data in
practice. There are two major contributions of the difference in computation time using the
PTB approach for model selection on survival data and for age-adjusted mortality and
incidence rates (Kim et al. 1999). First, fitting a linear trend for grouped survival data
involves maximizing the loglikelihood (6) or (7), which is an iterative calculation and thus is
much slower than the simple linear regression for rates. Second, there is only one
observation of rates per year for incidence and mortality, but L observations of follow-up
intervals for survival for each diagnosis year, where L is the difference between the
diagnosis year and the end of follow-up. For example, for the people diagnosed from 1975
to 2002 with study cutoff date December 31, 2002, the maximum follow-up time is 27 years
for the people diagnosed in 1975, and there is one less year follow-up for each diagnosis
year ahead. In total there are 27+26+--+1=378 observations. In contrast, there are only 28
observations of incidence or mortality rates for 1975 to 2002. To fit a single JPSM with
fixed joinpoints it takes from 1000 to 5000 times longer with survival data than with a series
of incidence or mortality data, depending on the number of joinpoints and the number of
iterations necessary. To permute 378 observations takes about 75 times longer than
permuting 28 observations. Since the fit of the JPSM’s are nested within the permutations,
the computing time for fitting a PTB survival model is therefore from (1000%75)=75,000 to
(5000%75)=375,000 times longer than for an analogous incidence or mortality model. For a
typical problem, it takes 5 seconds for incidence or mortality data to select from 0-3
joinpoints using a PTB approach with 4499 permutations using a Pentium (R) 4 3.00GHz
CPU and 1.00G RAM, and it would take about 22 days to fit the analogous survival model.
Hence, the permutation test is not practical for fitting JPSMs.

Alternatively, BIC is often used as a model selection criterion in frequentist settings
(Burham and Anderson, 2004). Based on an empirical study, Kim et al. (2006) compared the
BIC with the PTB approach and found that, although liberal, the BIC approach is much less
computationally intensive and is a strong competitor of the PTB approach. The AIC is even
more liberal, and tends to pick a higher number of joinpoints. Therefore, we use the BIC for
model selection. Let My denote a K-joinpoint model and let £k be the maximum
loglikelihood value of model M as defined in (6) or (7), then

BIC(M )= —2{,+p,logn, (9)

where n is the total number of follow-up years for all diagnosis years and p is the number
of parameters under model M. For JPSM My with a maximum J years of follow-up, px =J
+ 1 + 2K. If the possible range of the number of joinpoints is from 0 to, a pre-defined value,
Kmax, the BIC approach selects the model My with the minimum BIC as the final model.
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4. SIMULATION STUDY

The purpose of the simulation study is to evaluate how well the proposed JPSM picks the
correct number of joinpoints during a long study period. The grouped survival data are
simulated with various combinations of the number of new cancer incidences diagnosed
each year, severity of the cancer, number of joinpoints, locations of the joinpoints and the
APC of the death rates. The simulation study may provide a general reference of the
performance of the method before proceeding to an analysis of the population-based
survival data in practice. To avoid the use of the expected survival, we assume that the cause
of death is known and use cause-specific analysis in the simulation. The results can be
generalized to the relative survival case.

4.1. Simulation settings

We consider the range of the diagnosis year asx =0, 1, ..., 27, representing 1975 to 2002 in
the SEER data. The study cutoff year is the end of the 27th year, so the maximum follow-up
time is 27 years. After examining the new cancer cases diagnosed in each year in period
1975-2002 from the real SEER data, we found that the average numbers of new cases each
year are over 5000 for the most common cancer sites, are around 1000-2000 for the
common cancer sites and are in hundreds for the rare cancer sites. To simulate the grouped
survival data, we assume that in each calendar year, there are 5000, 1000 and 500 new
cancer cases diagnosed, representing the most common, moderately common, and rare
cancer sites in the SEER 9 registries. These numbers correspond to nyq, the number of
people alive in the beginning of the first interval |1 for each calendar year x. The nhumber of
people dying from other causes in the interval j is generated as a binomial variable ly; ~
Bin(nij, poj), where pgj are the probabilities of dying from other causes from the US life
tables (Anderson, 1999) for the people with age (65+j), which is approximate the average
age of cancer diagnosis. Hence the adjusted humber of people at the risk of cancer death is
ro=ny = s The numbers of cancer deaths dyj, j = 1, -, 27, are generated using the
binomial distributions for cause-specific survival data described in Section 2.1, where the
death rate 4j(x) is calculated from (3). The number of people alive at the beginning of the
interval j + 1is Ny:j+1 = Nyj — lyj — dyj.

Cure becomes a possibility for certain cancers if diagnosed early. The mixture cure models
(Boag 1949; Farewell 1982; Gamel et al. 2000; Yu et al. 2004), which postulate that a
fraction of the patients are cured from the disease of interest, are widely used to model the
survival data from clinical studies as well as population-based cancer survival studies. In the
simulation study, we use the mixture cure model and the exponential model without cure as
the baseline survival function Sy(t). The baseline survival function Sp(t) = ¢ + (1 — c) exp(-t/
1), where c is the cure fraction and x is the mean survival time in years for uncured patients.
When ¢ = 0, it reduces to an exponential model. For the purpose of illustration, the
parameters (c, u) are set to be (0, 60), (0, 20) and (0, 4) for the exponential model and (0.7,
10), (0.4, 5) and (0.1, 2) for the mixture cure model to represent cancer with best, moderate,
and poor survival rates, respectively. The corresponding survival curves are shown in Figure
1. Notice that the population of patients with (c =0, « = 60) or (c = 0.7, u = 10) have the best
chance of survival and can live for a longer time, thus leaving not much room for the
improvement in survival. For the patients with (c =0, u =4) or (c = 0.1, u = 2), the survival
is poor, so if there is a big treatment improvement of the disease, it is easier to observe an
increase in survival and to detect a significant joinpoint in the trend.

The performance of the JPSM is also associated with the number and the locations of
joinpoints. The total number of joinpoints K is selected to be 0, or 1, or 2. There are a total
of 13 cases of joinpoint models as specified in Table 1. For example, there is no joinpoint in
Case 1, one joinpoint at varying locations in Cases 2—7, and two joinpoints for Cases 8-13.
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In order to see whether the JPSM can detect the change occurring close to the end of study,
some joinpoints are set to the year 23. For Case 2, there is one joinpoint at z; = 10 with
APC=-5% before, and APC=0% after, the year 10. The difference of the APC in the two
segments 0-10 and 10-27 is 5%. When the difference of the APCs in two consecutive
segments is big, we expect to detect that joinpoint, but when the difference is small, there is
less chance to detect the joinpoint.

4.2. Performance of the model selection method using BIC

The percentages of picking the correct number of joinpoints for 0-1 joinpoint models and 2-
joinpoint models are presented in Table 2.A and Table 2.B, respectively. The specifications
of the 13 cases of joinpoint models are shown in the top rows of each subsection. The first
column is the value of (c, x). The next four columns show the percentages of selecting a k-
joinpoint model My (k =0, 1, 2, 3) for a common cancer site with new cancer cases n = 5000
each year. The middle four columns and the last columns correspond to n = 1000 and n =
500, respectively.

The effects of different parameter specifications are summarized below:

»  Effect of sample size: For common cancers with the number of new cases n = 5000
every year, the JPSM finds the correct number of joinpoints most of the time. As
the number of new cases decreases to n = 1000, the estimated number of joinpoints
K tends to be less than the true K. For n = 500, the model tends to find no joinpoint.

»  Effect of cancer prognosis: The JPSMs select a lower number of joinpoints for less
severe cancer with high survival rates. For the same value of APC, the higher
baseline death rate 4j(x) implies a larger absolute difference in death rates 4j(x + 1)
= 4j(x). For example, if APC=—20%, then the referent death rate 4;(x) = 50%
induces an absolute reduction of 10% in death rates, while the 4;(x) = 10% only
leads to a 2% decrease in death rates. Thus, JPSMs have more capability to detect a
joinpoint when the baseline death rates are high.

»  Effect of the number of joinpoints: The chance of capturing the correct total
number of joinpoints is higher for smaller K. When the true model is Mg, the
percentages of selecting the correct model are close to 100% for all the data with
different size and severity status, which implies that the false alarm rate of a
significant improvement in survival is very low if the there is no trend variation.
For the Cases 2—7 where the number of joinpoints K > 1, there is a tendency to
underestimate the total number of joinpoints, i.e., the JP'SMs tend to be
conservative.

»  Effect of the locations of joinpoints: As the people diagnosed more recently have
less follow-up, the JPSMs are not able to detect a joinpoint when the true joinpoint
is very close to the end of the study period. See, e.g., Cases 6 and 7 with joinpoint
located at 23, which is only 4 years away from the last year in the study. Even
though, there exist some improvements in trend, there is not enough follow-up time
to allow the model to detect the difference. Therefore, the closer are the joinpoints
to the beginning or to the end of the study period, the harder it is to detect the
joinpoints. These issues are worse near the end of the study period since the follow-
up time is shorter.

o  Effect of the change in APC on death rates: The model selection method tends to
select a lower number of correct models when the APCs for the two consecutive
segments are —5% and —2% (with absolute difference 3%) compared with APC=
—5% and 0% or APC=0% and —5% (with absolute difference 5%). So larger
changes in APC lead to better performance of the model for detecting the joinpoint.
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»  Effect of cure fraction c: The difference is minor between the standard survival
model and the mixture cure model when the survival level is the same. For
example, the percentage of correctly selecting one joinpoint is 99.4% for data with
(c, w) = (0.7, 10) and 99.1% for data with (c, «)=(0, 60) when n = 5000 for Case 2.
From Figure 1, the outcomes of these two cases are very close.

To assess the sensitivity of the results to the specification of baseline survival function, we
used a lognormal baseline survival function Sg(t) = 1 — ®[log(t) — «]. The values of a were
chosen such that the mean survival times x = exp(a + 0.5) as specified in Section 4.1. We
selected Cases 2 and 8 for comparison. For Case 2 with 1-joinpoint model, the results
remained similar that the true model M1 was selected most of the times. For Case 8 with 2-
joinpoint model, when (c, «) = (0, 60) or (0.4, 5), the BIC method picked the correct model
M, more times when baseline survival is lognormal than when the baseline is exponential.
This is probably due to the different tails of the lognormal and the exponential distributions.
Overall, the results for the lognormal and exponential survival functions are similar.

Generally, the JPSMs are conservative with low false alarm rate or Type | error, especially
when the patient’s survival prognosis is good (less severe) and the cancer is rare.

4.3. Performance of the selection method using permutation tests

In modeling the trends of cancer incidence and mortality rates, the permutation tests have
been used to select the correct number of joinpoints. Simulation studies (Kim et al. 2008)
showed that the permutation-test based (PTB) model selection procedure is generally more
conservative than the BIC method for incidence rates. We conducted a small scale
simulation to examine the performances of the PTB procedure for survival data.

Table 4 presents the percentages of selecting a k-joinpoint model for Cases 2 and 8. Because
the results for n = 1000 or 5000 for Case 2 are similar, so is that for n = 1000 or 500 for
Case 8, we conducted new simulations using the PTB procedure for n = 1000, 500 for Case
2 and for n = 5000, 1000 for Case 8. Due to the constraint of computation time, we set the
maximum number of joinpoints Kmax = 2. The results in Table 4 were based on 1000
permutations for each simulated dataset. When we compared the results in Table 4 and
Tables 2.A and 2.B, we found that:

» Case 2: When there is a cure for the cancer (¢ > 0), the PTB method picked the
correct model My more times than the BIC method did, especially for rare cancer
with n = 500. When the cure rate is 0, the PTB method could be liberal and picked
the 2-joinpoint model 37% and the BIC method performed much better by pick My
above 98%.

»  Case 8: When there is a cure, the PTB method performed better than the BIC
method and picked the correct model M, more times, especially for n = 1000.
However, when there is no cure, the BIC method performed better.

When Kpyax = 3, the PTB method is almost impossible for model selection. Overall, the BIC
method is preferred for model selection when we model the trends of survival. Based on the
simulation, the performances of the BIC method and the PTB method were comparable. The
BIC method is much less computationally intensive and it is conservative.

5. APPLICATION

Because of the long history of the SEER 9 registries, we apply the JPSM to the survival data
from the SEER 9 registries from 1975 to 2002, which was the most recent year with
complete follow-up information at the time that the analysis was initiated. To avoid the
inaccuracy of the cause of death information, we use the relative survival data.
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We start by presenting the survival trends for all cancer sites combined for males and for
females (Figure 2a, b). The estimates of the joinpoints and APC are shown in Table 5. The
standard errors of the APCs are not reported. Instead, the significant differences of the APC
values are marked with asterisks. For men, the trend in survival is divided into four
segments demarcated by joinpoints in 1988 (95% ClI, 1987-1990), 1992 (95% CI, 1991-
1993) and 1995 (95% ClI, 1994-1996). The slopes of the four segments reveal that the APC
in mortality was decreasing significantly by 2.1% in the first segment, by 8.5% in the second
segment, and was not significantly different from zero with APC=0.7% and —2.5% for the
last two segments. The joinpoints for 1988 and 1992 are suggestive of changes that were
taking place in prostate cancer screening and diagnosis. The large and significant changes in
prostate cancer incidence in 1989 and 1992 appear to be responsible for the major details of
the overall survival curve for males. Because the prostate cancer contribution to the overall
survival curve is related to several factors including PSA screening, a more detailed analysis
and discussion is needed to address the organ specific details that contribute to the blended
composite. With prostate cancer incidence included in the overall model, it is difficult to
interpret what portion of the trend is artificial, or in other words generated by well
recognized sources of bias. The introduction of screening in a population causes survival to
improve, since the time of diagnosis is shifted to an earlier time point, even if the time of
death is unchanged (lead time bias). In addition, screening can detect some cancers that
never would have produced symptoms, if screening had not detected the cancer (over-
diagnosis bias). Consequently, we elected to obtain a survival progress measure independent
of prostate cancer, by generating a survival model for all male cancer excluding prostate. In
this model, a single joinpoint remained for 1993 (95% ClI, 1990-1995), with a steady
significant improvement in survival through 1993 (APC=-1.3%) and with an acceleration of
the improvement after that (APC=—1.9%). While screening influences cancers sites other
than prostate cancer, factors that artificially increase survival are influenced mostly by the
rapid introduction of screening, where prostate cancer is by far the prime example.

We used a similar approach to examine the survival of females from cancer at all sites. The
trend in overall survival for women was marked by joinpoints in 1982 (95% CI, 1979-1983)
and 1986 (95% ClI, 1984-1990), with the largest APC amounting to —2.9% in the middle
segment, and a slowing of the improvements after that (APC=—1.4%) (Table 5). Major
advances in adjuvant endocrine and multi-agent chemotherapy for breast cancer treatment
influenced survival over this period. However, screening mammography undoubtedly
affected trends in breast cancer incidence during the 1980s, introducing some level of
artifact into the survival trends. When breast cancer cases were removed, the model showed
significant improvements from 1981 (95% ClI, 1979-1983) through 1994 (95% ClI, 1992-
1998) with APC=—0.6% and an acceleration after that (APC=—1.5%). The approach that we
have used shows that it is preferable to examine joinpoints in organ specific survival curves
when looking for their connection to patterns of care.

To illustrate the utility of the JPSM and certain characteristics of our results, we have
selected three additional organ site examples: distant testicular cancer, distant pancreatic
cancer, and regional melanoma (Figure 3). For distant testicular cancer in Figure 3a, two
joinpoints observed in 1977 (95% CI, 1976-1979) and 1993 (95% CI, 1988-1997) separate
3 phases of survival improvement for distant testicular cancer. Distant testicular cancer is
highlighted because the circumstances surrounding changes in survival of testicular cancer
patients are particularly well documented. In the earliest time period, the APC of death rates
is decreasing 32.2% each year. This period of dramatic survival improvement stabilizes in
1977 followed by a period of moderate but consistent gains in late stage survival from 1977
to 1993. Then in the period following 1993, the survival for late stage disease ceases to
improve. In Figure 3b the data for distant pancreatic cancer also reveal a single joinpoint,
indicating a modest change in survival in this subgroup starting in 1995 (95% CI, 1993—
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1998) and corresponding to a 2.9% annual improvement. For regional melanoma in Figure
3c, a single joinpoint is observed in 1998 (95% ClI, 1996-1999). This joinpoint heralds a
large improvement in survival corresponding to an APC of 14.8%.

Our confidence in the JPSM approach is strengthened by the data for testicular cancer.
Changes in survival for testicular cancer are closely linked with the introduction of platinum
therapy in 1974, a development which enabled a dramatic improvement in the survival of
distant stage testicular cancer patients prior to 1977. The gain in survival in these patients
was largely related to an increased cure fraction (Huang et al. 2007). From 1977 to 1993, the
more modest gains in survival correspond to the optimization of platinum-based, multi-agent
therapy. The decline in survival for distant stage testicular cancer after 1993 is probably
associated with an increase of biologically aggressive disease in the distant stage category,
as observed in other study populations. (Sonneveld et al. 1999) Over time, the stage
distribution of testicular cancer has changed so that more Stage 1 cancer is diagnosed in
conjunction with less of all other stages combined. This evidence of earlier detection is
consistent with a shift to earlier stages of more indolent tumors with their extended
opportunity for detection, leaving the more virulent and rapidly progressing forms of the
disease to be diagnosed in the late stage setting.

Moving away from diagnoses where evolving patterns of care and their impact are relatively
well characterized, it could not have been anticipated that J’'SM would uncover a
statistically significant joinpoint in the survival profile for regional melanoma or for distant
pancreatic cancer. For regional melanoma, our results suggest that a change in practice
somewhat prior to 1998 started a trend for a sizable increase in the survival of patients with
a diagnosis of regional melanoma. This result underscores the difficulty in understanding a
trend that is premised on data from a limited number of cases (259) subject to uncontrolled
factors. From a review of clinical trials for patients receiving systemic adjuvant therapy for
melanoma, there is no clear cut evidence that a breakthrough has been achieved or that long-
term survival has been extended (Verma et al. 2006). However, after a landmark trial of
high-dose Interferon alfa-2b (IFN alpha-2b) in 1996, (Kirkwood et al. 1996) a case can be
made that increasing use of IFN alpha-2b may have contributed to improved survival.
Indeed, a meta-analysis of 12 randomized trials suggested that recurrence free survival was
improved by IFN alpha-2b with a statistically significant benefit associated with increasing
dose (Wheatley et al. 2003). Based on this kind of information, it might be useful to return
to the records for the regional melanoma cases involved in this study, to look for a trend of
increasing interferon use in this cohort. In addition, alternative hypotheses for an apparent
improvement in survival could also be considered.

A change in surgical practice associated with regional melanoma might also be a factor that
could influence survival. Lymphatic mapping with sentinel node biopsy was the basis for the
Multi-center Selective Lymphadenectomy Trial (MSLT-1) that started in 1994 and
completed accrual in 2002 (Morton et al. 2006). The participants in this trial were
individuals with relatively advanced lesions (Clark level 1V, V, or level 111 with intermediate
thickness). With randomization to observation versus sentinel node biopsy with immediate
clearing of the lymphatic basin for a positive sentinel node, the MLST-1 showed that
immediate lymphadenectomy increases the survival of patients with nodal metastases. The
five year survival for immediate lymphadenectomy was 72% vs. 52% for delayed
lymphadenectomy. However, it is debatable whether 1998 is a milestone in the use of
sentinel node biopsy for melanoma patients. Nevertheless, the possibilities for explaining a
survival trend of this magnitude starting in 1998 are limited in number. This experience
highlights the potential for JPSM to improve cancer surveillance. When unrecognized trends
are identified, there is an opportunity to return to the registries to collect additional data that
may explain the trend and support wider application of beneficial interventions.
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In the case of distant pancreatic cancer, JP'SM has identified a trend in survival improvement
starting in 1995. This result highlights another surveillance issue. Using SEER data from
1988 to 1999, investigators were able to appreciate survival improvements in distant
pancreatic cancer when comparing 2-year survival rates for the years after 1992 compared
with the years before 1991 (Riall et al. 2006). However, the authors noted that even though
the trend they observed was statistically significant, they doubted that it was clinically
significant. Using the more precise data obtained with JPSM, attention can be focused on
identifying a change in treatment that could account for an improvement in survival starting
around 1995. After many years when single agent 5-fluorouracil (5-FU) was the standard
systemic treatment for unresectable pancreatic cancer, gemcitabine was approved for this
indication by the FDA in May, 1996 (Storniolo et al. 1999). The introduction of this drug
into practice is a likely explanation for a modest improvement in survival for patients with
advanced pancreatic cancer. In a randomized clinical trial comparison of gemcitabine with
5-FU, patients treated with gemcitabine experienced a median survival extension of 5 weeks
(Burris et al. 1997). The details of this example show that a relative improvement in survival
for a cohort that experiences short survival can be pinpointed and identified as statistically
significant; however, further information is needed to provide a scale to the benefit.
Otherwise, large numbers of patients may serve as the basis for identifying statistically
significant events of small magnitude without much insight as to benefit. In this event, the
value of a more complex decision making model (Tennvall and Wilking, 1999) can be
invoked, attempting an assignment of cost-effectiveness with the attendant risks of that
process.

6. DISCUSSION

The JPSM is useful to describe the progress of cancer survival and to gain understanding
about the effect of changes in medical practice. Although we used relative survival data in
our application, it is also possible to use cause-specific survival data when the information
on cause of death is more reliable. The JPSM can serve as a tool to find a potential change
point in cancer survival. Compared to the cancer incidence or mortality trends, survival
trends usually improve gradually, and there tends to be a smaller number of joinpoints.

Here we focus on the joinpoints in the year of cancer diagnosis, which is surrogate of
treatment progress. The proposed JPSM assumes that the new treatment decreases
(increases) the baseline hazard rate proportionally. A joinpoint can also be incorporated into
the baseline hazard function in order to examine the effect of a new treatment versus the
conventional treatment if the new treatment changes the shape of the baseline survival by
transforming it to a different disease. If joinpoints are considered in both the baseline
survival function and the diagnosis year, there might be different joinpoints for 5-year and
10-year survival and this possibility adds to the complexity of the model. Based on the
application (see Figures 2 and 3), it is reasonable that the 1-, 3- and 5-year survival rates are
proportional and share the same joinpoints. Thus, the JPSM with joinpoints only in the
diagnosis year is appropriate for modeling the survival trends in our application.

When evaluating survival, one must be aware of various biases introduced by screening and
new diagnostic technologies, e.g., lead time, length bias and over diagnosis. For instance,
screening mainly influences survival by detecting earlier, either earlier stage or event at a
smaller size within stage, and this shift to earlier disease is hard to control. Hanin et al.
(2006) presented a biologically motivated model of breast cancer development and
detection, and examined the effect of screening schedules and clinical covariates at the time
of diagnosis on survival. It is useful to incorporate the models for screening effect in the
change point modeling. Thus JPSM can be used when we have confidence in the effect of
medical breakthroughs on survival or we are interested in the identification of possible
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change in trends. However, we need to be cautious about the possible biases due to
screening or selection. It is not advised that one use the JPSM directly to evaluate the
benefits of treatment using the population-based cancer survival data since the data are not
from a randomized trial where the treated and untreated group are balanced in confounders.
That is why we should look at population level data in a JP'SM. By developing the JPSM to
population data, the comparison of population level findings with the outcomes of clinical
trials should allow use to refine our understanding of survival trends.

The simulation studies presented here evaluate the performance of the JPSM in picking the
correct number of joinpoints. The model selection criterion used for the JPSM is the BIC,
which tends to detect a lower number of joinpoints, especially when the sample size is small.
An alternative model selection criterion such as AIC, which is more sensitive to changes in
the trend could also be used. The focus of this paper is on the description of current survival
trends and the identification of change points. However, the JPSM can also be used for the
survival prediction. The standard survival models, such as the proportional hazards models,
have been used to predict the survival rates for the newly diagnosed cancer patients
(Mariotto et al. 2006). It is useful to compare the accuracy of the predictions resulting from
the standard survival models with those from the JPSM.

As treatments progress, more and more patients are cured and become long-term survivors
for certain types of cancers. The major medical breakthroughs can significantly increase the
probability of cure as well as prolong the survival time for the uncured patients favoring the
use of the mixture cure model. It is possible to include joinpoints in the mixture cure model
to evaluate the change in trend for both cure fraction and the survival times for the uncured
patients. Even though the JPSM described is primarily for cancer survival data, it can be
applied to other similar survival data. Adding change points to the baseline hazard for
relative survival data is useful to examine the survivals of cancer patients and general
population, for example, whether the patients and general population have the same survival
rates.
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Fig. 3.

Diagnosis year

The trends of t-year relative survival rates S(t) by the year of diagnosis for three selected

cancer sites (t =1, 3, 5)
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Locations of the joinpoints and APC values in the simulation for the K-joinpoint models

Case | K | (r1 im0 | (APC, ..., APCY)(%)
1 o] | -2

2 1 10 (-5, 0)

3 1 10 (-5,-2)
4 1 15 (-5, 0)

5 1 15 (-5,-2)
6 1 23 (-5, 0)

7 1 23 (-5,-2)
8 2 (10, 15) (0, -5, 0)
9 2 (10, 15) (0, -5, -2)
10 |2] @o,23 (0, -5, 0)
11 2 | @023 (0, -5, -2)
12 2| (15 23 (0, -5, 0)
13 | 2] @529 (0, -5, -2)
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Table 5

Estimates of the joinpoints and the APC of annual death (hazard) rates for selected cancer sites

Cancer site New cases per year K  Estimated Joinpoints APC

Male/All Sites 43173 3 (88,92, 95) (—2.1*,-8.5%,0.7, —2.4)
Female/All Sites 40396 2 (82, 86) (0.5, —2.9%, —1.4%)
Male/Non-prostate 31470 1 93 (-1.3*,-1.9%)
Female/Non-breast 28039 2 (81,94 (0.9*%, —0.6*,—1.5%)
Distant Testicular 69 2 (77,93) (—-32.2*,-4.2,4.2)
Distant Pancreatic 1043 1 95 (-0.3*, —2.9%)

Regional Melanoma 261 1 98 (-1.1*,-14.8%)
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