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The self-guided Langevin dynamics (SGLD) is a method to accelerate conformational searching.
This method is unique in the way that it selectively enhances and suppresses molecular motions based
on their frequency to accelerate conformational searching without modifying energy surfaces or rais-
ing temperatures. It has been applied to studies of many long time scale events, such as protein fold-
ing. Recent progress in the understanding of the conformational distribution in SGLD simulations
makes SGLD also an accurate method for quantitative studies. The SGLD partition function provides
a way to convert the SGLD conformational distribution to the canonical ensemble distribution and to
calculate ensemble average properties through reweighting. Based on the SGLD partition function,
this work presents a force-momentum-based self-guided Langevin dynamics (SGLDfp) simulation
method to directly sample the canonical ensemble. This method includes interaction forces in its
guiding force to compensate the perturbation caused by the momentum-based guiding force so that
it can approximately sample the canonical ensemble. Using several example systems, we demon-
strate that SGLDfp simulations can approximately maintain the canonical ensemble distribution and
significantly accelerate conformational searching. With optimal parameters, SGLDfp and SGLD sim-
ulations can cross energy barriers of more than 15 kT and 20 kT, respectively, at similar rates for LD
simulations to cross energy barriers of 10 kT. The SGLDfp method is size extensive and works well
for large systems. For studies where preserving accessible conformational space is critical, such as
free energy calculations and protein folding studies, SGLDfp is an efficient approach to search and
sample the conformational space. [doi:10.1063/1.3662489]

INTRODUCTION

The self-guided molecular dynamics (SGMD) (Refs. 1
and 2) and the self-guided Langevin dynamics (SGLD)
(Ref. 3) simulation methods were developed for efficient
conformational searching and have found many applications
for the study of rare events such as protein folding,4–12 lig-
and binding,13 docking,14 conformational transition,15–17 and
surface absorption.18–21 While SGMD/SGLD can accelerate
slow events to an affordable time scale, the perturbation in
conformational distribution due to the self-guiding force was
not quantitatively understood until recently.22 A common
practice for SGMD or SGLD simulations is to limit the guid-
ing factor to a small range so that the effect on conformational
distribution is very small and can be neglected.3

For quantitative studies, it is important to obtain correct
conformational distributions while accelerating conforma-
tional searching. Andricioaei et al. proposed a Monte Carlo
procedure called the momentum-enhanced hybrid Monte
Carlo method to include the benefit of the guiding force while
preserving the ensemble average properties.23 In molecular
dynamics simulations, the difficulty in characterizing the ef-
fect of the guiding force on ensemble distributions is mainly
due to the lack of quantitative definition for the low-frequency
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motion enhanced in SGLD simulations. Recently, a quantita-
tive understanding of the guiding effect on the conformational
distribution has been achieved.22 The low-frequency proper-
ties are defined with the local averaging mechanism used for
the guiding force calculation. The partition function of the
SGLD ensemble is derived based on the separation of the
low-frequency properties and the high-frequency properties.
Based on the SGLD partition function, the conformational
distribution obtained in SGLD simulations can be converted
to the canonical ensemble distribution, and ensemble aver-
age properties can be calculated from the SGLD simulations
through reweighting.

Based on the SGLD partition function, we find that the
perturbation due to the momentum based guiding force can be
corrected with the force-based guiding force previously used
in the SGMD simulation method.1, 2 Therefore, by combin-
ing the force-based guiding force with the momentum-based
guiding force, this work developed a simulation method to
achieve rapid conformational sampling while maintaining ap-
proximately the canonical ensemble. For the convenience of
reference, we designate this simulation method as the force-
momentum-based self-guided Langevin dynamics, abbrevi-
ated as SGLDfp. The details of the derivation are described
in the Theory and Method section. Some demonstrations and
applications of this method are provided in the Results and
Discussions section.
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THEORY AND METHOD

Most of simulation methods improve conformational
searching and sampling through either modifying energy sur-
faces or raising temperatures so that energy barriers can be
crossed easily. The SGLD method is unique in the way that it
selectively enhances and suppresses molecular motions based
on their frequency to accelerate conformational searching
without modifying energy surfaces or raising temperatures.
The concept of the low-frequency and high-frequency proper-
ties plays a central role in understanding the SGLD method.
Even though this work is to present the SGLDfp method, we
feel it is necessary to provide a brief description of this con-
cept and how it lead to the SGLD partition function.22

The low-frequency and high-frequency properties

Thermal motion in a molecular system makes all dy-
namic behaviors possible, such as diffusion, protein folding,
and signal transduction. Thermal motion has a distribution
of frequencies, from high-frequency motions such as chem-
ical bond vibrations to low-frequency motions such as protein
folding. High-frequency motions can repeat in a short time
scale and are often easy to study in molecular simulations.
Low-frequency motions are important for many macroscopic
behaviors such as protein folding and ligand binding, but are
often beyond the time scale accessible by molecular simula-
tions with current computing resources.

Corresponding to the low-frequency motion and the high-
frequency motion there are the low-frequency conformational
space, �lf, and the high-frequency conformational space, �hf.
The total conformational space is a combination of the two:
� = �lf · �hf. A simple example is that in a box of wa-
ter, water molecules diffuse around the box while their bonds
stretch and bend quickly. The diffusion motion occurs in the
box space while the bond vibrations cover the bond length
and bond angle ranges. It is reasonable to separately consider
the slow diffusion and the fast vibrations and in many prac-
tices, the fast vibrations are completely removed with con-
straint methods such as SHAKE (Ref. 24) or the semi-flexible
constraint dynamics.25

Assume the potential energy surfaces in the low- and
high-frequency conformational spaces are Elf and Ehf, respec-
tively. If we assume the temperatures of the low- and high-
frequency motions are Tlf and Thf, which normally equal to
the system temperature, T, we can write the partition func-
tions in the low- and high-frequency conformational spaces
separately:

�lf(N,V, Tlf) =
∑
�lf

exp

(
− Elf

kTlf

)
, (1)

�hf(N,V, Thf) =
∑
�hf

exp

(
− Ehf

kThf

)
. (2)

Here, k is the Boltzmann constant. By neglecting the coupling
between the two conformational distributions, the total parti-

tion function can be expressed as

�(N,V, T ) = �lf(N,V, Tlf)�hf(N,V, Thf)

=
∑
�lf

exp

(
− Elf

kTlf

)∑
�hf

exp

(
− Ehf

kThf

)

=
∑
�

exp

(
− Elf

kTlf
− Ehf

kThf

)
. (3)

In the canonical ensemble, temperatures in all conforma-
tional spaces are the same, Tlf = Thf = T, and the total poten-
tial energy of the system is a sum of the two, Ep = Elf + Ehf.
Therefore, the partition function from Eq. (3) becomes

QNVT =
∑
�

exp

(
−Elf

kT
− Ehf

kT

)
=

∑
�

exp

(
− Ep

kT

)
. (4)

A slow conformational searching in molecular simulation
is often related to a weak low-frequency motion. The central
idea behind the SGMD/SGLD simulation method is to accel-
erate conformational searching through enhancing the low-
frequency motion. In other words, in SGMD/SGLD simula-
tions, temperatures in the low-frequency and high-frequency
conformational space are no longer the same. Unlike high
temperature simulations which accelerate motions in all fre-
quencies, SGMD/SGLD simulations increase the temperature
of the low-frequency motion, Tlf, and reduce the temperature
of the high-frequency motion, Thf, to achieve efficient confor-
mational searching and sampling. The overall temperature in
SGMD/SGLD simulations remains unchanged.

To quantitatively describe the conformational distribution
of a SGLD simulation, we proposed previously to define a
low-frequency property by a method we designated as the lo-
cal averaging.22 Let us consider a system of N particles de-
scribed by their positions, qi, and momenta, pi. For any con-
formation, � = {qi}, we define L as its local conformational
space where all conformations are within a certain distance
from �. For a canonical ensemble at temperature T, a local
average is an ensemble average over the local conformational
space

〈P 〉L = 1

QL

∑
�∈L

P (�)e−Ep/kT ≈ 1

tL

t∑
t−tL

P (τ )

≈
(

1 − δt

tL

)
P̃ (t − δt) + δt

tL
P (t) = P̃ (t). (5)

Here, P represents any conformational property. Ep is the po-
tential energy at conformation �. QL = ∑

�∈L e−(Ep/kT ) is
called the local partition function. As shown in Eq. (5), for
computational feasibility, this local ensemble average is ap-
proximately calculated as a time average over a local aver-
age time, tL, which is further approximately calculated as an
evolving average. This evolving average is denoted with a
“∼” cap: P̃ . Because all local averages in this work are calcu-
lated as the evolving averages, we also use “〈P〉L” to represent
evolving averages when the cap “∼” is not easy to print.

Through the local averaging, high-frequency compo-
nents are suppressed and low-frequency components re-
main. Therefore, P̃ represents the low-frequency portion of
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property P. Correspondingly, the high-frequency property is
the deviation from the low-frequency property, P − P̃ .

With the evolving averaging, many low-frequency prop-
erties can be obtained efficiently in a molecular simulation,
for example, low-frequency forces

f̃i(t) =
(

1 − δt

tL

)
f̃i(t − δt) + δt

tL
fi(t), (6)

low-frequency momenta

p̃i(t) =
(

1 − δt

tL

)
p̃i(t − δt) + δt

tL
pi(t), (7)

and low-frequency potential energies

Ẽp(t) =
(

1 − δt

tL

)
Ẽp(t − δt) + δt

tL
Ep(t). (8)

We can calculate some derived low-frequency quanti-
ties from these low-frequency properties, such as the low-
frequency temperature,

T̃ = 1

NDFk

〈∑ p̃2
i

mi

〉
. (9)

Here, NDF is the number of degrees of freedom in all con-
formational spaces. mi is the mass of particle i and the sum-
mation runs over all atoms in the system. The low-frequency
temperature, T̃ , measures the kinetic energy of the low-
frequency motion in the temperature unit, K. Similarly, T − T̃

measures the kinetic energy of the high-frequency motion.
Please note that T̃ is not Tlf. T̃ is calculated with the total
number of degrees of freedom, NDF, while Tlf should be cal-
culated with only the number of degrees of freedom in the
low-frequency space. A ratio of T̃ to T reflects the ratio of the
kinetic energy of the low-frequency motion to the total kinetic
energy.

The self-guided Langevin dynamics

The equation of motion for the self-guiding Langevin
dynamics3 has the following form:

ṗi = fi + gi − γipi + Ri , (10)

where ṗi and fi are the time derivative of momentum and the
interaction force of particle i, respectively. Ri is a random
force, which is related to mass, mi, the collision frequency,
γ i, and simulation temperature, T, by the following equation:

〈Rj (0)Ri(t)〉 = 2mikT γiδ(t)δij , (11)

where δij = { 1, i=j
0, i �=j

. The random force is independent in each

direction.
In Eq. (10), gi is called the guiding force. When gi = 0,

Eq. (10) reduces to the equation of motion for the Langevin
dynamics. In SGLD simulations, gi is calculated from the
momentum

gi(t) = gp
i (t) = λ

p
i γi(p̃i(t) − ξ ppi(t)). (12)

Here, we use gp
i to represent the momentum-based guiding

force to be distinct from the force-based guiding force, gf
i ,

which will be introduced later. The parameter, λ
p
i , is the mo-

mentum guiding factor. A subscript “i” indicates that λ
p
i can

be set differently for different atoms. The parameter, ξ p, is
an energy conservation factor used to cancel any energy input
from the guiding force∑

i

gi · ṙi =
∑

i

λ
p
i γi p̃i · ṙi − ξ p

∑
i

λ
p
i γipi · ṙi = 0. (13)

Here, the summation runs over all particles in a simulation
system. From Eq. (13), we have

ξ p =
∑

i λ
p
i γi p̃i · ṙi∑

i λ
p
i γipi · ṙi

. (14)

The guiding forces defined by Eqs. (12) and (13) produce
no net work to a simulation system. They act in a direction
orthogonal to the velocities. The λ

p
i γi p̃i(t) term accelerates

the low-frequency motion, and the −λ
p
i γiξ

ppi(t) term dumps
the high-frequency motion. Overall, the thermal temperature
is maintained.

Conformational distribution in SGLD

In SGLD simulations, the guiding force has two effects
in both the low-frequency conformational space and the high-
frequency conformational space. First, it may correlate with
the energy surface to have certain bias effects. The effec-
tive energy surfaces can be expressed as Elf = λlf〈Ep〉L and
Ehf = λhf(Ep − 〈Ep〉L). The factors, λlf and λhf, are called
the low-frequency energy factor and the high-frequency en-
ergy factor, respectively. Second, the guiding force enhances
motions in the low-frequency conformational space and re-
duces motions in the high-frequency conformational space.
These effects cause changes in the effective temperatures in
the two conformational spaces: Tlf = T/χ lf and Thf = T/χhf.
The factors,χ lfand χhf, are called the low-frequency collision
factor and the high-frequency collision factor, respectively.
Therefore, according to Eq. (3), the configurational partition
function of a SGLD simulation has the following form:

�SGLD =
∑
�

exp

(
−λlfχlf

〈Ep〉L

kT
− λhfχhf

Ep − 〈Ep〉L
kT

)

≈
∑
�

exp

(
−λlfχlf

Ẽp

kT
− λhfχhf

Ep − Ẽp

kT

)
. (15)

Here, the summation is over all microscopic states. For com-
putational feasibility, the local average potential energy is ap-
proximated with the evolving average calculated with Eq. (8).
This approximation makes it computationally feasible to esti-
mate conformational distributions in the SGLD simulations.

The factors, λlf, λhf, χ lf, and χhf, are related to the guid-
ing force and the simulation systems. Their direct relations
with simulation conditions are difficult to derive. Instead,
based on their definitions, we can calculate them from quan-
tities observable in the SGLD simulations. Through the local
averaging, the equation of motion (Eq. (10)) can be separated
into that in the low-frequency conformational space,

˙̃pi = f̃i + g̃i − γi p̃i + R̃i , (16)

and that in the high-frequency conformational space,

ṗi − ˙̃pi = fi − f̃i + gi − g̃i − γi(pi − p̃i) + Ri − R̃i . (17)
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These two equations correspond to motions on energy
surfaces Elf and Ehf, respectively. Based on the force-energy
relation, we have

f̃i + g̃i − γi p̃i ≈ − d

dri

Elf ≡ −λlf
d

dri

Ẽp ≈ λlff̃i , (18)

fi − f̃i +gi −g̃i −γi(pi −p̃i) ≈ − d

dri

Ehf ≡ −λhf
d

dri

(Ep−Ẽp)

≈ λhf(fi − f̃i). (19)

To achieve numerical stability, we multiply both sides of
Eq. (18) by f̃i and both sides of Eq. (19) by fi − f̃i . After sum-
ming over all particles and all simulation conformations, we
obtain the following expressions:

λlf = 1 +
〈∑

i (g̃i − γi p̃i) f̃i
〉

〈∑
i f̃i f̃i

〉 , (20)

λhf = 1 +
〈∑

i (gi − g̃i − γi(pi − p̃i)) (fi − f̃i)
〉

〈∑
i (fi − f̃i)(fi − f̃i)

〉 . (21)

From Eqs. (20) and (21), we can see that λlf represents
the average projections of the total low-frequency force onto
the low-frequency interaction forces and λhf represents the av-
erage projections of the total high-frequency force onto the
high-frequency interaction forces.

The factors, χ lf and χhf, describe the temperature change
in low- and high-frequency conformational spaces

χlf = T

Tlf
= T̃0

T̃
, (22)

χhf = T

Thf
= T − T̃0

T − T̃
. (23)

Here, we assume the temperatures in the low-frequency and
high-frequency conformational spaces are proportional to the
low-frequency and high-frequency temperatures. T̃0 is the
low-frequency temperature when λ

p
i = 0, i.e., in a LD simula-

tion. We call T̃0 the reference low-frequency temperature. To
calculate χ lf and χhf with above equations, one need to know
T̃0 from a separate SGLD simulation with λ

p
i = 0 which is

actually a LD simulation. Based on the definition, we know
T̃0 depends on the simulation conditions and the local average
time, tL.

Alternatively, we can calculate χ lf and χhf directly
from a SGLD simulation. From Eq. (11), we know
that the temperature is inversely proportional to the
collision frequency, if the random forces remain the
same. Therefore, a change in temperature indicates a
change in the effective collision frequency. For the low-
frequency motion, a change in temperature from T to Tlf

= T/χ lf corresponds to a change in the collision frequency
from γ i to χ lfγ i. Similarly, for the high-frequency motion,
a change in temperature from T to Thf = T/χhf corresponds
to a change in the collision frequency from γ i to χhfγ i. The
guiding forces in the equations of motion (Eqs. (16) and (17))
behave like a modification in the collision frequency

g̃i − γi p̃i ≈ −χlfγi p̃i , (24)

gi − g̃i − γi(pi − p̃i) ≈ −χhfγi(pi − p̃i). (25)

To achieve numerical stability, we multiply both sides of
Eq. (24) by γi p̃i and both sides of Eq. (25) by γi(pi − p̃i).
After summing over all particles and all simulation confor-
mations, we obtain the following expressions:

χlf ≈ 1 −
〈∑

i γi g̃i · p̃i

〉
〈∑

i γ
2
i p̃i · p̃i

〉 , (26)

χhf ≈ 1 −
〈∑

i γi(gi − g̃i) · (pi − p̃i)
〉

〈∑
i γ

2
i (pi − p̃i) · (pi − p̃i)

〉 . (27)

It is more accurate to estimate χ lf and χhf from T̃0 and
T̃ using Eqs. (22) and (23), if T̃0 is available from a separate
SGLD simulation with λ

p
i = 0. Otherwise, they can be esti-

mated from Eqs. (26) and (27) without knowing T̃0.
From the SGLD partition function (Eq. (15)), we can cal-

culate the weighting factor, wSGLD, for each conformation

wSGLD = exp

(
(λlfχlf − 1)

Ẽp

kT
+ (λhfχhf − 1)

Ep − Ẽp

kT

)
.

(28)

Any canonical ensemble average, 〈P〉, can be calculated
in a SGLD simulation as a weighted average

〈P 〉 = 〈PwSGLD〉SGLD

〈wSGLD〉SGLD
. (29)

In SGLD simulations, the thermal motions in the low-
frequency and high-frequency conformational spaces are
scaled by χ lf and χhf, respectively. The conformational
searching ability increases with the thermal temperature in the
low-frequency conformational space. Because SGLD simula-
tions do not change the simulation temperature, the thermal
motion in the high-frequency conformational space decreases
as the low-frequency conformational space increases. There-
fore, the conformational searching ability can approximately
be expressed as inversely proportional to χ lf and directly pro-
portional to χhf. To describe the conformational searching
ability of a SGLD simulation, we define the self-guiding tem-
perature as the following form:

Tsg = χhf

χlf
T = T̃ (T − T̃0)

T̃0(T − T̃ )
T . (30)

The self-guiding temperature, Tsg, provides a qualitative
measure of the conformational searching ability in the unit of
temperature. An SGLD simulation with a self-guiding tem-
perature of Tsg has a conformational searching ability compa-
rable to that in a high temperature simulation at T = Tsg. As
can be seen from Eq. (30), for a LD simulation, based on the
definition, T̃ = T̃0, we have Tsg = T. For an SGLD simula-
tion with λ > 0, we have an increased low-frequency motion,
T̃ > T̃0 ; therefore, Tsg > T. And with λ < 0, we have T̃ < T̃0;
thus, Tsg < T. Tsg can be used as a guidance to choose the
value of λ, which lacks physical meaning. For example, it is
reasonable to choose a value of λ to reach Tsg = 2T. However,
when λ is large and Tsg is too large as compared to T, it is dif-
ficult to obtain an accurate canonical ensemble through the
reweighting with Eqs. (28) and (29). Therefore, λ should be
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chosen to balance the acceleration in conformational search-
ing and the accuracy in conformational reweighting.

Force-momentum-based self-guided
Langevin dynamics

The SGMD method utilizes the local average forces,
while the SGLD method uses the local average momentum
to calculate the guiding force to achieve accelerated confor-
mational searching. These two types of guiding forces have
opposite bias effects on the low-frequency energy surface.
The low-frequency force favors low Ẽp states, just as normal
forces do, while the low-frequency momentum favors high
Ẽp states, just as temperature does. These two types of low-
frequency properties can be combined in such a way that the
bias effects cancel each other. We call this kind of SGLD sim-
ulation as the SGLDfp.

In SGLDfp, the guiding force, gi, is a combination of
forces and momentums in the following form:

gi(t)=gf
i(t) + gp

i (t) = λff̃i(t)−ξ ffi(t)+λ
p
i γi(p̃i(t)−ξ ppi(t)).

(31)

Here, λf is defined as the force guiding factor and ξ f is defined
as the force damping factor. The energy conservation factor,
ξ p, is calculated according to Eq. (13) with the guiding force
defined by Eq. (31)

ξ p =
∑

i

(
λff̃i − ξ ffi + λ

p
i γi p̃

)
i
· ṙi∑

i λ
p
i γipi · ṙi

. (32)

According to Eqs. (20) and (21), the parameters λlf and
λhf have the following relation to λf and ξ f:

λlf = 1 +
〈∑

i

(
g̃p

i − γi p̃i

)
f̃i
〉

〈∑
i f̃i f̃i

〉 +
〈∑

i 〈f̃i〉L f̃i
〉

〈∑
i f̃i f̃i

〉 λf − ξ f

= λ
p
lf + κlfλ

f − ξ f, (33)

λhf = 1 +
〈∑

i

(
gp

i − g̃p
i − γi(pi − p̃i)

)
(fi − f̃i)

〉
〈∑

i (fi − f̃i)(fi − f̃i)
〉

+
〈∑

i 〈fi − f̃i〉L(fi − f̃i)
〉

〈∑
i (fi − f̃i)(fi − f̃i)

〉 λf − ξ f = λ
p
hf + κhfλ

f − ξ f.

(34)

Here, λ
p
lf = 1 + 〈∑i (g̃p

i − γi p̃i)f̃i〉/〈
∑

i f̃i f̃i〉, λp
hf = 1 + 〈∑i

(gp
i − g̃p

i − γi(pi − p̃i))(fi − f̃i)〉/〈
∑

i (fi − f̃i)(fi − f̃i)〉, κlf

= 〈∑i 〈f̃i〉L f̃i〉/〈
∑

i f̃i f̃i〉, and κhf = 〈∑i〈fi − f̃i〉L(fi − f̃i)〉/
〈∑i (fi − f̃i)(fi − f̃i)〉. These quantities can be estimated
from simulations.

We can adjust the values of λf and ξ f to make

χlfλlf = 1 (35)

and
χhfλhf = 1. (36)

Equation (35) will result in a canonical-like conforma-
tional distribution in the low-frequency space, and Eq. (36)
will result in a canonical-like conformational distribution in
the high-frequency space. When both Eqs. (35) and (36) are

satisfied, the partition function reduces to that of the canoni-
cal ensemble

�SGLDfp =
∑

exp

(
−χlfλlf

Ẽp

kT
− χhfλhf

Ep − Ẽp

kT

)

=
∑

exp

(
− Ẽp

kT
− Ep − Ẽp

kT

)
= QNVT. (37)

From Eqs. (33) and (34), we can solve

λf ≈ 1

κlf − κhf

(
1

χlf
− 1

χhf
− λ

p
lf + λ

p
hf

)
, (38)

ξ f ≈ κlf

κlf − κhf

(
λ

p
hf − 1

χhf

)
− κhf

κlf − κhf

(
λ

p
lf − 1

χlf

)
. (39)

This solution is approximate because λ
p
lf, λ

p
hf, χ lf, and χhf

also depend on λf and ξ f. In many cases, Eqs. (38) and (39)
can further be simplified with approximations κ lf ≈ 1 and
κhf ≈ 0.

By using λf and ξ f calculated from Eqs. (38) and (39),
we can obtain a conformational distribution similar to that of
the canonical ensemble as shown by Eq. (37). Therefore, en-
semble average properties can be directly estimated from a
SGLDfp simulation

〈P 〉 ≈ 〈P 〉SGLDfp.

Four parameters, λ
p
i , ξ p, λf, ξ f, are used to define the

guiding force in Eq. (31). To maintain a canonical ensem-
ble, only one parameter, e.g., λ

p
i , is independent while the

others depend on it. If we are interested in maintaining a
canonical distribution only in the low-frequency conforma-
tional space, in addition to λ

p
i , we can adjust either λfor ξ f to

satisfy Eq. (35) and at the same time to achieve an optimal
efficiency in conformational searching. In this work, we only
focus on the case of maintaining a full canonical ensemble. A
leap-frog Verlet simulation algorithm of the SGLDfp method
is described in the Appendix. The force guiding parameters
λf and ξ f, as well as λ

p
lf, λ

p
hf, χ lf, and χhf, are estimated dur-

ing simulation according to Eqs. (26) and (27), and (33)–(39),
with the ensemble average properties in these equations re-
placed by long evolving averages calculated in the following
way:

P̄ (t) =
(

1 − δt

test

)
P̄ (t − δt) + δt

test
P (t). (40)

Here, P(t) represents an instantaneous value of any prop-
erty, and P̄ (t) represents its estimated average. The estima-
tion time, test, determines the estimation accuracy. Typically,
we set test = 10tL.

To run a SGLDfp simulation, one can either set λ
p
i and let

λf and ξ f be calculated from Eqs. (37) and (38), or set a tar-
get self-guiding temperature,22 T 0

sg, and adjust λ
p
i to makeTsg

→ T 0
sg. Because an increase in λ

p
i always results in an increase

in T̃ , and so in Tsg, λ
p
i can be adjusted in the following way to

make Tsg approach T 0
sg:

λ
p
i (t) = λ

p
i (t − δt) + δt

test

T 0
sg − Tsg

T
. (41)
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Then, λf and ξ f will be calculated according to
Eqs. (37) and (38) in the same way as when λ

p
i is set. Because

Tsg is a derived quantity, its value range is limited by the sim-
ulation temperature, system size, and other SGLDfp parame-
ters. The value of T 0

sg must be set within its Tsg limits to pro-
duce a converging, λ

p
i . For example, one may set T 0

sg = 1.2T

for a SGLDfp simulation. For systems of unknown Tsg limits,
it is suggested to set λ

p
i instead of T 0

sg.

SIMULATION DETAILS

To demonstrate the application of the SGLDfp simula-
tion method, we report the results for several simple sys-
tems. A leap-frog Verlet algorithm for the SGLDfp simulation
shown in the Appendix has been implemented into CHARMM

(Refs. 26 and 27) version 36. Because a SGLDfp simulation
involves extra calculation only in the propagation of the equa-
tion of motion as compared to a normal LD simulation, the
cost of SGLDfp simulation is almost identical to a LD simula-
tion for the same number of time steps. SGLDfp simulations,
as well as SGLD simulations, do use additional memory due
to the need to store the guiding forces, as well as some arrays
for the weighting factor calculation. In all SGLD and SGLDfp
simulations reported here, we set the momentum guiding fac-
tor, λp

i , instead of a target self-guiding temperature, T 0
sg, for an

easy comparison. Because only λ
p
i is set and is the same for

all particles, in the following description the guiding factor, λ,
represents the momentum guiding factor, λ

p
i .

RESULTS AND DISCUSSIONS

The SGLDfp method includes forces in its guiding force
to compensate the perturbation on the conformational distri-
bution caused by the momentum-based guiding force. As de-
scribed in the Theory and Method section, a series of approxi-
mations is introduced to make a SGLDfp simulation possible.
To validate these approximations and to demonstrate the con-
formational searching efficiency of this method, we present
the simulation results of three model systems.

The skewed double well system

A skewed double well system represents the simplest sys-
tem with an energy barrier to cross. This system has only one
particle, and the particle moves on a skewed double well en-
ergy surface of the following function:

εp(x, y, z) = a(x2 + z2) + by2(y − w)2 + cy. (42)

In this work, we chose a = 500 kcal/(molÅ2), b
= 1 kcal/(molÅ4), c = 0.25 kcal/(molÅ), and w = 2 Å.
Figure 1 shows the energy surface of this double well
potential. This energy surface is designed in such a way
that it restricts the particle to move near the y axis with two
energy minimums of different depths, −0.0038 kcal/mol and
0.4960 kcal/mol, along the y axis at (0, −0.0299 Å, 0) and
(0, 1.9672 Å, 0), respectively. The potential is symmetric
about the y axis with a strong dependence on the distance,
rxz, from the y axis, where rxz = √

x2 + z2. The minimum
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FIG. 1. The energy surface of the skewed double well potential. The poten-
tial is symmetric about the y axis and rxz = √

x2 + z2 is the distance to the y
axis.

transition energy from one well to the other well is 1.2578
kcal/mol at (0, 1.0627 Å, 0) between the two wells. Such a
design forces the particle to have a high-frequency motion
in the x–z direction and a low-frequency motion in the y
direction. An argon atom was used to represent the particle.
The simulations were carried out with a local average time,
tL = 0.2 ps. A time step of 1 fs was used and the simulation
length was 1000 ns for each simulation. The collision
frequency was 10/ps unless otherwise noted.

This system was simulated at 80 K with different guiding
factors to examine the ensemble distributions from the SGLD
and SGLDfp simulations. At 80 K, the average y-energy
of the system is 0.107 kcal/mol. The energy barrier height
from the average y-energy to the transition energy is 7.24 kT
and the energy difference between the two wells is 3.14 kT.
Figure 2 compares the potential energy distributions in the
SGLD simulations and the SGLDfp simulations. To illustrate
the deviations from the LD result, we show the SGLD and
SGLDfp results with λ up to 2, far beyond the recommended
range of λ < 1. In the SGLD simulations, as can be seen in
the top panel of Fig. 2, as λ increases, the distribution de-
creases in the low energy region and increases in the high en-
ergy region. The middle panel of Fig. 2 shows the reweighted
energy distributions.22 Clearly, all curves converge fairly well
to the one with λ = 0, except for the case when the guiding
factor is very large, λ = 2, validating the SGLD reweight-
ing mechanism (Eqs. (28) and (29)) and in turn, validating
the SGLD partition function (Eq. (15)). The bottom panel
of Fig. 2 shows the results from the SGLDfp simulations.
The densities with different guiding factors converge together,
even with λ = 2, proving that the SGLDfp simulations can
preserve the energy distribution to a reasonable degree of ac-
curacy.

To further demonstrate the preservation of conforma-
tional distributions in SGLDfp simulations, we plot the con-
formational density as a function of the y coordinates in Fig. 3
at different guiding factors and in Fig. 4 at different local
averaging times. The top panel of Fig. 3 shows the SGLD
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FIG. 2. The potential energy distributions of the skewed double well system
at different guiding factors. The collision frequency is 10/ps and the temper-
ature is 80 K.

distributions at different guiding factors. There are two peaks
with different heights, corresponding to the two skewed dou-
ble wells. As λ increases, the left peak (the higher peak) de-
creases, while the right peak (the lower peak) grows. The
middle panel of Fig. 3 shows the reweighted SGLD distribu-
tions. All distributions converge fairly well to the one with λ

= 0, except for the one with λ = 2, validating the reweighting
mechanism. The SGLDfp distributions are shown in the bot-
tom panel of Fig. 3. The densities at different guiding factors
almost overlap with each other, except for the one with λ = 2,
proving that the SGLDfp simulation preserves the conforma-
tional distribution fairly well with λ < 1. When the guiding
factor is too large, here, λ = 2, the approximation error be-
comes significant. Therefore, λ < 1 is recommended for the
SGLD reweighting or the SGLDfp simulation.

In addition to the guiding factor, λ, the local average time,
tL, is another important parameter for SGLD and SGLDfp
simulations. The local average time tL determines the sep-
aration of the low-frequency and high-frequency properties.
Figure 4 examines the distributions at various tL values. The
guiding factors are all set to λ = 1, except for the LD sim-
ulation which corresponds to a SGLD simulation with λ

= 0. Again, as compared to the SGLD results (top panel),
the reweighted SGLD results (middle panel) and the SGLDfp
results (bottom panel) have much improved agreements with
the LD result.

One should keep in mind that there are certain approxi-
mations in the SGLD reweighting and the SGLDfp method.
The major approximations are the use of evolving averages
(Equations (5) and (40)) to replace local averages in partition
functions (Eqs. (15) and (37)), and to replace ensemble aver-
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FIG. 3. The y-coordinate distributions of the skewed double well system
with different guiding factors. The local average time, tL = 0.2 ps, is used
for all SGLD and SGLDfp simulations. The collision frequency is 10/ps and
the temperature is 80 K.

ages in the parameter calculations (Eqs. (26), (27), (33), (34),
(38), and (39)). These approximations break down and cause
significant errors when the guiding factor exceeds a certain
range. To quantitatively compare the LD, SGLD, and SGLDfp
results, we plot their root-mean-square deviations (RMSDs)
in Fig. 5. The upper panel and the lower panel of Fig. 5 show
the RMSDs of the energy distributions, δρE, and the RMSDs
of the y distributions, δρy, respectively. The RMSDs of
the SGLD results are much larger than that of the reweighted
SGLD results and the SGLDfp results. The deviations of the
SGLD and SGLDfp results increase with the guiding factor.
These results confirm that λ < 1 is a recommended range for a
reasonable accuracy to calculate ensemble average properties.

While the SGLDfp simulation preserves the ensemble
distribution, it is interesting to see by how much it enhances
conformational searching. Figure 6 shows the trajectories of
the particle in the LD, SGLD, and SGLDfp simulations. Both
the SGLD and SGLDfp simulations were run with a guiding
factor, λ = 1. Clearly, both the SGLD and SGLDfp simula-
tions increased transition rates as compared with the LD sim-
ulation. However, the SGLDfp simulation shows fewer tran-
sitions than the SGLD simulation.

The collision frequency, γ , plays an important role in
Langevin dynamics. It also plays an important role in SGLD
and SGLDfp because it directly determines the strength of the
guiding force (see Eqs. (12) and (31)). Through this skewed
double well system, we can examine its effect on SGLD and
SGLDfp simulations.
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FIG. 4. The y-coordinate distributions of the skewed double well system
with different local average times. The guiding factor, λ = 1, is used for
all SGLD and SGLDfp simulations. The collision frequency is 10/ps and the
temperature is 80 K.

We performed a series of SGLD and SGLDfp simula-
tions with λ = 1 at various γ and T, and the transition rates
are shown in Fig. 7. For the convenience of plotting in a log-
arithm scale, the transition count starts with 1. A transition
of 1 means that the particle has never crossed the energy
barrier. The collision frequency controls the diffusion and
the temperature controls the relative energy barrier heights.
At T = 100 K, 60 K, and 40 K, the average y-energies are
0.152, 0.0793, and 0.0561 kcal/mol, respectively. The en-
ergy differences between the global minimum and the tran-
sition barrier are 6.35 kT, 10.58 kT, and 15.87 kT, and the
relative barrier heights from the average y-energies to the
transition barrier are 5.56 kT, 9.89 kT, and 15.1 kT at T
= 100 K, 60 K, and 40 K, respectively.

In Fig. 7, we can see that the transition rates of the
LD simulations generally decrease with γ at all tempera-
tures. At 40 K, only a few transitions or no transitions at
all are observed in the LD simulations. Higher γ reduces
diffusion and slows down all events in LD simulations, re-
gardless of their energy barriers. The transition rates of both
the SGLD and SGLDfp simulations are higher than that in
the LD simulations, except at T = 40 K and γ ≤ 10/ps
where fewer than three transitions are observed for LD and
SGLDfp and it is hard to tell the difference between LD and
SGLDfp simulations. The accelerations increase with γ be-
cause the guiding force is proportional to γ , as shown in
Eqs. (12) and (31). Comparing the SGLD and the SGLDfp
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FIG. 5. Root-mean-square deviations of the SGLD and SGLDfp distribu-
tions from the LD distributions. The upper panel shows the deviations in the
potential energy distributions shown in Fig. 2 and the lower panel shows the
deviations in the y distributions shown in Fig. 3.

results, we can see that the SGLDfp simulations have much
fewer transitions than the SGLD simulations. These results
show that the SGLDfp method sacrifices the enhancement in
conformational searching to maintain correct conformational
distributions.

In Fig. 7, there are maximums in the transitions∼γ

curves from the SGLD and SGLDfp simulations. These max-
imums are due to the competition of two control effects on
the transition. One is the energy barrier effect and the other is
the diffusion effect. An increase in γ will increase the guid-
ing force, as well as the friction force. At low γ , the energy
barrier controls the transition and an increase in the guiding
force helps energy barrier crossing more than the slow down
by the increase in the friction force. Therefore, an increase in
γ results in more transitions. At high γ , the diffusion effect
controls the transition and an increase in γ will result in fewer
transitions. At γ max, the energy barrier effect is balanced by
the diffusion effect.

Alanine dipeptide

Alanine dipeptide is the simplest molecule that is rele-
vant to proteins. The conformation of this molecule is mainly
characterized by two dihedral angles, φ: C–N–Cα–C and ψ :
N–Cα–C–N. The CHARMM all-atom force field28 was used
to describe the interactions. A distance-dependent dielectric
constant of 4r was used to represent a solvent screening effect
to simplify the example. The cutoff distance was set to 100
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used for the SGLD and SGLDfp simulations. The collision frequency is 10/ps
and the temperature is 80 K.

angstroms to avoid any cutoff effect in non-bonded interac-
tion calculation within this small molecule.

All simulations were performed with a time step of 2
fs, and the SHAKE algorithm24 was employed to fix bond
lengths. Each simulation was 200 ns in length and conforma-
tions of every 2 ps were saved for post analysis. The SGLD
and SGLDfp simulations were performed with a local average
time of tL = 0.2 ps and a temperature of 300 K. A collision
frequency of 10/ps was used for all these simulations.

Figure 8 compares the φ–ψ dihedral angle distributions
of the alanine dipeptide in the LD, SGLD, and SGLDfp sim-
ulations. To show the details in low density area, the contours
are drawn in an exponential scale. For this small molecule
at the simulation condition, LD can well sample the confor-
mational space. There is a major peak at (−90◦, 170◦), and
a secondary peak near (−90◦, −70◦). There is also a trace
region around (70◦, −120◦). Comparing the LD and SGLD
distributions, we can see the major peak from the SGLD sim-
ulation is significantly lower, while the trace region is much
higher. The SGLD distribution has a broader baseline and the
valley around ψ = 30◦ is less deep. After the reweighting,
all characteristics of the LD distribution are recovered: the
major peak is elevated, the trace region is reduced, and the
baseline shrinks, which again, demonstrating that the SGLD
distribution can be converted to the LD distribution through
the reweighting. Comparing the φ–ψ distributions from the
SGLDfp simulation and the LD simulation, we can clearly
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FIG. 7. Transitions of the particle on the skewed double well potential at
different collision frequencies and temperatures. A guiding factor of λ = 1
is used for all simulations. The transition count starts with 1. The simulation
length is 1000 ns. The energy barrier heights from the y-average energies are
5.56kT at T = 100 K, 9.89kT at T = 60 K, and 15.1kT at T = 40 K.

see that they agree with each other fairly well. The root-
mean-square differences from the LD distribution are 1.08,
0.574, and 0.380 for the SGLD distributions before and after
reweighting, and for the SGLDfp distribution, respectively.

To demonstrate the conformational searching ability, we
compare the SGLD and SGLDfp simulations with high tem-
perature LD simulations. To quantitatively compare the con-
formational searching ability, we calculated the transition rate
for the dihedral angles, (φ, ψ), to transfer from one local min-
imum at (−90◦,−70◦) to another local minimum at (−90◦,
170◦). One transfer is counted when (φ, ψ) changes from
within 40◦ of one local minimum to within 40◦ of the other
local minimum.

Figure 9 shows the average potential energies as a func-
tion of the transition rate in the high temperature LD simula-
tions as well as in the SGLD and SGLDfp simulations. The
average potential energy reflects the conformational distribu-
tion to a certain degree. A change in the average energy indi-
cates a change in the conformational distribution. As can be
seen from Fig. 9, the high-temperature simulation not only in-
creases the transition rate, but also significantly increases the
average potential energy. In the SGLD and SGLDfp simula-
tions, the average potential energy experiences little change
except for the SGLD simulations with λ = 1. The transi-
tion rate increases significantly with λ in both the SGLD and
SGLDfp simulations, even though the SGLDfp simulations
have fewer transitions as compared to the SGLD simulations
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Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5 Cluster 6

FIG. 10. The representative conformations of the six major clusters of the
pentamer peptide. Backbone atoms are shown as thick sticks and side-chain
heavy atoms are shown as thin sticks. Hydrogen atoms are not shown for clar-
ity. Atoms are colored grey, blue, and red for carbon, nitrogen, and oxygen,
respectively.

with the same λ. It is also clear from Fig. 9 that the SGLDfp
simulation preserves the average energy better.

Folding of a pentamer peptide

Protein folding is a major challenge for conformational
searching. Due to many degrees of freedom of proteins, the
conformational space of a protein is extremely large and an
exhaustive conformational search is impossible. To reach the

folded state, we believe the accessible conformational space
for a protein is limited and the protein can find its folded
state quickly by moving through this accessible conforma-
tional space. Many methods, such as high-temperature simu-
lations, not only accelerate conformational searching but also
increase the accessible conformational space. An increase in
the accessible conformational space not only makes the con-
formational searching problem worse, but also may alter the
global minimum and make it harder to identify the folded
state. The ability to preserve the conformational distribution
makes SGLDfp a suitable means to study problems where the
preservation of conformational distribution is critical.

To demonstrate the application of the SGLDfp method in
a protein folding study, we performed folding simulations for
a pentamer peptide9, 29 which forms a type II turn according to
the experimental observation. The sequence of the pentamer
peptide is: Tyr-Pro-Gly-Asp-Val. To simplify the demonstra-
tion, all simulation conditions were the same as those for the
alanine dipeptide simulations described above. A temperature
of 300 K and a collision frequency of 1/ps were set for all the
simulations. The guiding factor was λ = 0.5 for the SGLD
simulation and was λ = 1 for the SGLDfp simulation, so both
the simulations have similar conformational searching ability.
All simulations were started from an extended conformation
and were 200 ns in length.

Because a large number of conformations were visited
during these simulations, in order to simplify the description,
we clustered the conformations to six major clusters using
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the local maximum clustering method.30 The distances be-
tween conformations are calculated as the sum of the dif-
ference square of the backbone dihedral angles. Figure 10
shows the representative structures of these six major clus-
ters. Clusters 1 and 4 have a broad turn involving Pro-Gly-
Asp wherein the proline carbonyl oxygen points up and points
down, respectively. Clusters 2 and 3 have a tight turn involv-
ing Pro-Gly wherein the proline carbonyl oxygen points up
and points down, respectively. Clusters 5 and 6 form a heli-
cal coil wherein the C-terminal points up and points down,
respectively.

Figure 11 compares the conformational distributions
obtained from the LD, SGLD, and SGLDfp simulations. The
conformational distributions are shown in two-dimensional
contour plots with the distances to the center conformations
of clusters 1 and 2 as x coordinates and y coordinates, respec-
tively. Even though the peptide has only five residues, the
conformational space is extremely large and the LD simula-
tion of 200 ns may not necessarily properly sample the whole
conformational space. All six major clusters can clearly
be identified in these simulations, even though the SGLD
and SGLDfp simulation results have some trace amounts of
other clusters. The density from the SGLD simulation shows
broader peaks than those in the LD and SGLDfp results.
After reweighting, the SGLD result has peaks as sharp as
the LD result. The SGLDfp result resembles the LD result
fairly well, again demonstrating that the SGLDfp method can
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FIG. 12. Conformational transitions between the clusters in the first 2000 ps
of the LD, SGLD, and SGLDfp simulations. A distant dependent dielectric
constant, ε = 4r, is used to describe solvation effect. All simulations are done
with γ = 1/ps and T = 300 K. The guiding factors are λ = 0.5 for SGLD and
λ = 1 for SGLDfp.

eliminate the perturbation of the SGLD method. Due to the
approximations in the SGLD reweighting and in the SGLDfp
method, certain deviations from the LD result still remain,
especially when the guiding factor is exceptionally large, e.g.,
larger than 1. The RMSDs from the LD result are 1.44, 1.59,
and 0.81 for the SGLD results before and after reweighting
and for the SGLDfp result, respectively. The large RMSD
for the reweighted SGLD result is caused by a significant
fluctuation produced by the reweighting process.

Figure 12 plots the cluster transitions during the first
2000 ps simulations. As can be seen, the LD simulation did
not reach cluster 1 during the first 2000 ps simulation and the
transitions between clusters were not as frequent as that in the
SGLD and SGLDfp simulations. The most frequency transi-
tions occurred between cluster 2 and cluster 5. This agrees
with Fig. 11, which shows clusters 2 and 5 are two high den-
sity clusters and they are near each other. There are also a sig-
nificant number of transitions between cluster 2 and cluster 3,
but not between cluster 2 and cluster 4, agreeing with Fig. 11
where clusters 2 and 4 are separated by clusters 3, 5, and 6.
This example further demonstrates that the SGLDfp method
is a suitable approach for protein folding studies in term of
its ability to accelerate conformational searching while main-
taining the conformational distribution.

CONCLUSIONS

Based on the understanding of the conformational dis-
tribution in the SGLD simulation,22 we developed a force-
momentum-based self-guided Langevin dynamics simulation
method, abbreviated as SGLDfp, to approximately maintain
the canonical ensemble distribution while accelerating con-
formational searching. This method is a general simulation
method and can be applied to any studies where a LD sim-
ulation can be applied. This method does not need to prede-
termine important degrees of freedom to achieve accelerated
conformational searching. Even though SGLDfp accelerates
conformational searching to a less degree than SGLD, it is
more convenient than SGLD since it does not require a post-
processing step to reweight the visited conformations. In ad-
dition, SGLDfp is size extensive, i.e., it can be applied regard-
less of the system sizes. By contrast, the SGLD reweighting
mechanism is difficult to converge for large systems or with
large guiding factors. Because SGLDfp does not have such
a size limitation, it, therefore, has a wider range of applica-
bility. Since the guiding force is proportional to the collision
frequency, the enhancement in conformational searching in-
creases with the collision frequency. For systems with large
energy barriers, SGLDfp, as well as SGLD, performs better
with large collision frequency. In practical terms, with optimal
parameters, SGLD can be used to routinely cross barriers of
20 kT, whereas SGLDfp can be used to cross barriers of 15 kT
at a rate LD crosses barriers of 10 kT. Simulation results with
a skewed double well system indicate that the guiding fac-
tor of 1 or less is recommended to keep acceptable deviations
from a canonical ensemble. More details on this will be the
subject of a subsequent report. Because SGLDfp can produce
approximately the canonical ensemble distribution directly
without reweighting, it is more convenient for quantitative
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simulation studies. For studies requiring a preserved confor-
mational distribution, such as protein folding simulation and
the free energy calculation, SGLDfp is a suitable choice to
accelerate conformational searching, especially for larger sys-
tems where other methods fail. The SGLDfp method can be
combined with many other free energy calculation methods,
such as the adaptive biasing force method by Darve et al.31

and the orthogonal-space-random-walk method by Zheng
et al.,32–34 to achieve increased accuracy and efficiency.
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APPENDIX: SGLDFP SIMULATION ALGORITHM

To help understand and implement the SGLDfp method,
we describe a leap-frog Verlet SGLDfp simulation algorithm
below. Assuming the momentum guiding factor, λp, is input,
a SGLDfp simulation is performed in the following steps:

(i) Initiate the force guiding factors: λf(0) = 0, ξ f(0) = 0,
and the low-frequency variables: f̃i(0) = 0, p̃i(0) = 0,
g̃p

i (0) = 0, and g̃i(0) = 0.
(ii) At time step, t, calculate interaction forces, fi(t), ran-

dom forces, Ri(t), and the partial guiding forces,
g′

i(t) = λf(t)f̃i(t) − ξ f(t)f̃i(t) + λ
p
i γi p̃i(t). The interac-

tion forces, fi(t), must include any constraint forces as
described later in Eq. (A20). Random forces, Ri(t), are
generated from a Gaussian distribution with zero mean

ρ(Ri) = 1√
4πγimikT

e
− R2

i
4γimi kT .

The low-frequency momentum is calculated using the
momentum at the previous half step, pi(t − (δt/2)),

p̃i(t) =
(

1 − δt

tL

)
p̃i(t − δt) + δt

tL
pi

(
t − δt

2

)
.

(A1)

The low-frequency force is calculated using the force
at current step, fi(t),

f̃i(t) =
(

1 − δt

tL

)
f̃i(t − δt) + δt

tL
fi(t). (A2)

(iii) Calculate the energy conservation factor, ξ p. The half
step velocity, ṙi(t), can be expressed in the following
form:

ṙi(t) = ṙi

(
t − δt

2

)
+ δt

2mi

(fi(t) + g′
i(t) + Ri(t))

−δt

2

(
1 + ξ pλ

p
i

)
γi ṙi(t) (A3)

,
calculate the friction-free velocity at the half step

ṙ′
i(t) = ṙi

(
t − δt

2

)
+ δt

2mi

(fi(t) + g′
i(t) + Ri(t)).

(A4)

From Eqs. (A3) and (A4), we have

ṙi(t) = ṙ′
i(t)

1 + (1+ξ pλ
p
i )γiδt

2

≈ ṙ′
i(t)

1 + γiδt

2

− ṙ′
i(t)(

1 + γiδt

2

)2

ξ pλ
p
i γiδt

2
. (A5)

Based on the energy conservation relation (Eq. (13))
and neglecting the higher power term of ξ p, we can
solve for the energy conservation factor,

ξ p =
∑N

i g′
i(t)ṙ

′
i(t)

(
1 + γiδt

2

)−1

∑N
i λ

p
i γimi ṙ′2

i (t)
(

1 + γiδt

2

)−2
+ δt

2

∑N
i λ

p
i γig′

i(t)ṙ
′
i(t)

(
1 + γiδt

2

)−2 . (A6)

The actual guiding force is

gp
i (t) = λ

p
i γi(p̃i(t) − ξ ppi(t))

= λ
p
i γi

(
p̃i(t) − ξ pmi ṙ′

i(t)

1 + (1+ξ pλ
p
i )γiδt

2

)
, (A7)

gi(t) = λff̃i(t) − ξ ffi(t) + gp
i (t). (A8)

(iv) Update low-frequency variables and accumulators for
the calculation of the force guiding factors.

Low-frequency potential energy

Ẽp(t) =
(

1 − δt

tL

)
Ẽp(t − δt) + δt

tL
Ep(t). (A9)

Low-frequency guiding forces

g̃p
i (t) =

(
1 − δt

tL

)
g̃p

i (t − δt) + δt

tL
gp

i ((t), (A10)

g̃i(t) =
(

1 − δt

tL

)
g̃i(t − δt) + δt

tL
gi((t). (A11)
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From the low-frequency momentums, we can calculate
the low-frequency temperature

T̃ (t) = 1

NDF

∑
i

p̃2
i (t)

mi

. (A12)

Update averages for the calculation of the collision fac-
tors and energy factors

FLF =
(

1 − δt

test

)
FLF + δt

test

N∑
i

f̃i(t) · f̃i(t),

(A13a)

FHF =
(

1 − δt

test

)
FHF + δt

test

N∑
i

(fi(t) − f̃i(t))

·(fi(t) − f̃i(t)), (A13b)

GLF =
(

1− δt

test

)
GLF + δt

test

N∑
i

(
g̃p

i (t)−γi p̃i(t)
) · f̃i(t),

(A13c)

GHF =
(

1 − δt

test

)
GHF + δt

test

N∑
i

(
gp

i (t) − g̃p
i (t)

−γi(pi(t) − p̃i(t))
) · (fi(t) − f̃i(t)), (A13d)

PPLF =
(

1 − δt

test

)
PPLF + δt

test

N∑
i

γ 2
i p̃i(t) · p̃i(t),

(A13e)

GPLF =
(

1 − δt

test

)
GPLF + δt

test

N∑
i

g̃i(t) · γi p̃i(t).

(A13f)

The collision and energy factors are calculated with
the averages

λ
p
lf = 1 + GLF

FLF
, λ

p
hf = 1 + GHF

FHF
,

(A14)

χlf = T̃0

T̃
= 1 − GPLF

PPLF
.

When T̃0 is available from a previous SGLD simu-
lation with λ = 0, χlf = T̃0/T̃ is recommended, other-
wise, χlf = 1 − GPLF/PPLF has to be used. From
χ lf, we can calculate the high-frequency collision fac-
tor: χhf = T − χlfT̃ /T − T̃ .

The force guiding factors are calculated according to
Eqs. (38) and (39) with the approximations κ lf ≈ 1 and
κhf ≈ 0:

λf(t + δt) =
(

1 − δt

test

)
λf(t) + δt

test

×
(

1

χlf
− 1

χhf
− λ

p
lf + λ

p
hf

)
, (A15)

ξ f(t + δt) =
(

1 − δt

test

)
ξ f(t) + δt

test

(
λ

p
hf − 1

χhf

)
.

(A16)

(v) Advance velocities to the next half time step

ṙi

(
t + δt

2

)
= (2χi − 1) ṙi

(
t − δt

2

)
+ χi

δt

mi

(fi(t) + g′
i(t) + Ri(t)). (A17)

Here, the scaling parameter, χ i, is calculated as

χi =
(

1 + (1 + ξ pλ
p
i )γiδt

2

)−1

. (A18)

Then, advance positions to the next time step

ri(t + δt) = ri(t) + ṙi

(
t + δt

2

)
δt. (A19)

If internal coordinates need to be constrained, ap-
ply constraining algorithms, such as SHAKE (Ref. 24)
or semi-flexible constraint dynamics,25 to obtain con-
strained positions, rCON

i (t + δt), from ri(t + δt). The
constraint forces must be included in the low-frequency
force calculation. The constraint forces are calculated
by the following equation:

fCON
i (t + δt) = 2mi

δt2

(
rCON
i (t + δt) − ri(t + δt)

)
.

(A20)

(vi) Continue to step (ii) with t = t + δt until the end of the
simulation.
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