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Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particu-
larly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established ap-
proaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the
implicit solvent theory. Recently, we have introduced differential geometry based solvation models
which allow the solvent-solute interface to be determined by the variation of a total free energy func-
tional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends
on existing molecular mechanical force field software packages for partial charge assignments. As
most force field models are parameterized for a certain class of molecules or materials, the use of
partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial
charges do not account for the charge rearrangement during the solvation process. The present work
proposes a differential geometry based multiscale solvation model which makes use of the elec-
tron density computed directly from the quantum mechanical principle. To this end, we construct
a new multiscale total energy functional which consists of not only polar and nonpolar solvation
contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange
variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-
Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the
solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an
iterative procedure to solve three coupled equations and to minimize the solvation free energy. The
present multiscale model is numerically validated for its stability, consistency and accuracy, and is
applied to a few sets of molecules, including a case which is difficult for existing solvation models.
Comparison is made to many other classic and quantum models. By using experimental data, we
show that the present quantum formulation of our differential geometry based multiscale solvation
model improves the prediction of our earlier models, and outperforms some explicit solvation model.
© 2011 American Institute of Physics. [doi:10.1063/1.3660212]

I. INTRODUCTION

One cannot imagine life without water. Indeed, 65–90%
of cellular mass is water. Under physiological conditions, al-
most all important biological processes, such as protein ligand
binding, ion transport, signal transduction, gene regulation,
transcription, and translation, occur in aqueous environments.
Therefore, the first step toward a quantitative description and
analysis of the above-mentioned biological processes is a
detailed understanding of the solvation process, which refers
to the immersion of a molecule from its lowest energy state in
vacuum, to an equilibrium state in an aqueous environment.
The solvation process involves the mechanical work of
inserting a molecule into the solvent, and solvent-solute
(intermolecular) interactions at the solvent-solute interface,
which is associated with the structural reconstruction of the
solvent and solute near the interface. The most important
physical observable of a solvation process is the solvation
free energy, which is typically modeled as polar and nonpolar
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contributions. Nonpolar solvation energy involves the surface
area effect, the mechanical work and some solvent-solute in-
teractions. The polar solvation energy can be theoretically es-
timated by a wide variety of approaches ranging from simple
phenomenological modifications of Coulomb’s law, explicit
solvent models that treat the solvent in molecular or atomic
details,55 to complex quantum mechanical methods.34, 39, 46, 56

However, for macromolecules, an ab initio description of the
solvation process by a full quantum mechanical description
of all relevant elemental particles, i.e., electrons and nuclei,
and their dynamics, is intractable at present and may still
remain unfeasible in the near future. That is due to the
excessively large number of degrees of freedom. Multiscale
methods, which are able to reduce the number of degrees
of freedom, are indispensable in solvation analysis and in
the quantitative description of other biological processes in
general.76

Based on a mean field approximation for the solvent,
implicit solvent models describe the solvent as a dielectric
continuum, while the solute molecule is modeled with an
atomistic description.5, 24, 32, 38, 59, 62 There are many such two-
scale implicit solvent models for the electrostatic analysis of
the solvation, including generalized Born (GB) (Refs. 8, 25,
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and 72) and Poisson-Boltzmann (PB) models.24, 26, 41, 62

Generalized Born methods are very fast but provide only
heuristic estimates for polar solvation energies. PB methods
can be formally derived from basic theories12, 31, 50 and offer
a more accurate method for computing the polar solvation
energy.8, 23, 52 In most solvation analysis, the polar solvation
energy is complemented by the nonpolar one, which includes
contributions from surface tension at the solvent-solute
interface, mechanical work of inserting solute molecules
into the solvent, and solvent-solute interactions. The reader
is referred to two recent papers for review-style elaborated
descriptions of the solvation process, solvation models and
various applications of solvation methods.16, 17

All implicit solvent models require an interface definition
to separate the solute domain from the solvent domain. The
solvent-solute interface is typically represented by the van der
Waals surface, the solvent accessible surface,42 or the molec-
ular surface (MS) (Ref. 58) in the literature. These definitions
are ad hoc in nature and do not account for the interfacial free
energy minimization during the solvation process.

Recently, we proposed differential geometry based
solvation models to address the above mentioned modeling
deficiency in solvation analysis.16, 17, 76 In our approach, the
surface free energy is described via the differential geom-
etry of surfaces either in the Eulerian representation,16, 76

or in the Lagrangian representation.17 The solvent-solute
interface profile is determined by the first variation of
a total free energy functional, which includes polar and
nonpolar contributions. The variation based formulation of
biomolecular surfaces was introduced by us to construct the
minimal molecular surface in 2006.10, 11 Such a formulation
makes use of the mean curvature flow. Our geometric flow
approach introduced the differential geometry of surfaces to
the biomolecular surface analysis. This approach was further
extended to potential driven geometric flows, which allow
solvent-solute interactions in the surface formation.9 Gener-
alized Laplace-Beltrami equations are derived for generating
biomolecular surfaces by the Euler-Lagrange variation. In
addition, one of the first partial differential equation (PDE)
based biomolecular surface constructions was introduced by
us in 2005.77 Our method is conceptually different from PDE
based surface smoothing techniques which require a priori
given surface. In contrast, our PDE based surface construction
does not require a surface to begin with; instead, only atomic
information, i.e., atomic coordinates and radii, is needed.

The above mentioned differential geometry based solva-
tion models are important examples of differential geometry
based multiscale models.76 Such multiscale models differ
conceptually from other conventional multiscale models.
Essentially, when there is a real physical separation between
two different materials, such as the division between oil and
water, and the splitting between protein and solvent, it is
natural to incorporate the differential geometry of surfaces to
describe the material interface. For this class of systems, it is
advantageous to reduce the number of degrees of freedom by
describing the material of interest at a fine scale, such as the
atomic or the quantum scale, while modeling other materials
at a coarse scale, such as the continuum approach. In this
way, we have established a general variational framework, in

which the total energy functional of a system includes energy
contributions from the interface and two materials.

In our earlier differential geometry based solvation
models,16, 17, 76 the solute is described as a collection of
fixed atomic point charges, which, together with the charge
described in the continuum approximation of the surrounding
medium, give rise to the total charge source for the Poisson-
Boltzmann equation. Fixed point charge models can provide
inexpensive approximations, as well as good predictions of
many physical and chemical properties. However, it neglects
the explicit treatment of polarization effects so that it cannot
cover the whole range of properties of interest. In particular,
the charge rearrangement in the solute molecule during the
solvation process has not been taken into account in the
calculation of solvation free energies. It is well-known that
the charge rearrangement plays an important role in the sol-
vation process of proteins in various cases.30 Consequently,
the highly accurate analysis of solvent-solute surfaces is dis-
counted by the estimation of charge rearrangement during the
solvation process. Additionally, our earlier solvation models
with fixed charges depend on parameters from the existing
molecular mechanical force field parameters,6, 35, 37, 45 which
are typically parameterized for certain class of (macro-)
molecular systems and may not be appropriate for other
classes of molecules. These reasons call for the develop-
ment of coupling highly accurate solute potentials with a
continuum treatment of the solvent.

For computational savings, researchers also proposed po-
larizable force field (PFF) models combined with a continuum
solvent model to treat polarization effects explicitly, such as
polarizable multipole Poisson-Boltzmann (PMPB) models,60

fluctuating charge models of generalized-Born calculations,81

etc. The PFF models benefit from the purely classical rep-
resentation so that the study of large systems can be facil-
itated. They offer a classical approximation to many-body
polarizations.

Generally speaking, a quantum mechanical (QM) de-
scription of solute molecules is an ab initio approach to
achieve a highly accurate, self-consistent and force field
independent charge arrangement during the solvation pro-
cess. Consequently, the QM description has been incorpo-
rated into the classical implicit solvent theory in the past
few decades.15, 22, 70, 71 The resulting QM version of contin-
uum model, called quantum mechanical continuum model or
polarizable continuum model,7, 14, 18, 20, 36, 68, 70 offers the pos-
sibility of carrying out highly accurate quantum calculations
in the solute and near the interface. Quantum mechanical con-
tinuum model provides a framework to describe the QM ef-
fect explicitly in solvent analysis.69 Recently, Mei et al. have
proposed a remarkable conductorlike polarizable continuum
model to deal with large molecules, such as proteins.47 No-
tably, Wang et al. have introduced the QM description of so-
lute molecules to the Poisson model for solvation analysis.75

Their results show a good agreement with experimental data.
To integrate a continuum model with a QM description,

reaction field potential, i.e., the electric field induced by the
polarized solvent, has been introduced as a unifying concept.
It is obtained from the electrostatic computation in the frame-
work of continuum models. It also exists in the Hamiltonian
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of the solute in the quantum calculation.15, 69, 74 Therefore,
the quantum formulation of the continuum model involves
two problems: (1) the classical electrostatic problem of de-
termining the solvent reaction field potential with the quan-
tum mechanically calculated charge density; (2) the quan-
tum mechanical problem of calculating the electron charge
density with fixed nucleus charges in the presence of the
reaction field potential. These two problems need to be re-
solved simultaneously. To carry out these computations, an
intuitive self-consistent iterative procedure can be constructed
to resolve the quantum problem for the electron distribution
and the classic electrostatic problem for the reaction field
potential.15, 30, 69, 70, 74

After computing the QM charge density, there are at least
two ways to implement the solvation analysis. The first ap-
proach is to apply the continuous QM charge density di-
rectly to the Poisson-Boltzmann equation as a source term.
The second approach is to fit the QM charge density into
the atomic point charges, and alternatively use the point
charges as the source term.33, 63 Various schemes have been
proposed to compute atomic partial charges with certain ef-
ficiency and convenience. The simplest way for atomic par-
tial charge assignments is the Mulliken analysis method.49 In
Mulliken’s approach, the charge is distributed according to
the orbital occupation. Many other schemes have also been
proposed, including the natural bond orbital analysis, the dis-
tributed multipole analysis (DMA), the wavefunction map-
ping “Class IV” model, the electrostatic potential expansion
and analysis, etc.57, 64, 67 At the present time, the most widely
used method for estimating atomic partial charges is the least-
squared electrostatic potential (ESP) fitting approach. It was
first proposed by Momany and has subsequently been imple-
mented in different ways with different choices of grid points
where the electrostatic potentials are calculated.48 Examples
of such potential-based methods are CHELP, CHELPG, and
the Merz-Kollman scheme.13, 19, 21, 65

The quantum mechanical problem of determining the
electron charge density can be solved by a variety of theo-
ries and algorithms. One of the simplest ab initio approaches
is the Hartree-Fock (HF) method, which replaces instan-
taneous Coulombic electron-electron repulsion interactions
with a mean-field average. A variational procedure is used to
minimize the energy. An alternative of the HF method is the
density functional theory (DFT), which is originated from the
Thomas-Fermi model. DFT represents the electronic struc-
ture (principally the ground state) of a many-body system as a
functional of a single electron density. As usual in many-body
electronic structure calculations, the nuclei of the molecule of
interest are treated by the Born-Oppenheimer approximation
(i.e., as fixed) in DFT to generate a static external potential in
which the electrons are moving. The self-consistent iterations
are utilized to minimize the total energy of the system. Re-
cently, DFT has become one of the most popular and versatile
methods available in computational physics, computational
chemistry and computational biology. In all previous QM
based implicit solvent models, pre-determined solvent-solute
interface models, such as solvent accessible surfaces and MSs
are utilized to separate the solvent domain from the solute do-
main. Since the prediction of implicit solvent models is very

sensitive to the definition of solvent-solute interfaces, in many
cases, pre-determined solvent-solute interfaces compromises
the highly accurate QM description of the solute molecule.

The objective of the present work is to incorporate a
quantum mechanical description of charge densities into our
earlier differential geometry based solvation models.16, 17 By
using this approach, we wish to develop a more accurate and
self-consistent multiscale approach for the solvation analy-
sis of both small and large molecules. The advantages of
the present quantum formulation of the differential geometry
based multiscale solvation model are as follows. First, com-
pared with our earlier solvation models, the present model
is able to provide more accurate descriptions of charge re-
arrangement during the solvation process and leads to a more
accurate prediction of the solvation free energies, under the
same set of parameters. Note that the accuracy of implicit con-
tinuum salvation models relies on parameters such as atomic
radii and dielectric constants. Additionally, the present mul-
tiscale model reduces the dependence of our earlier solvation
models on the existing molecular mechanical force field pa-
rameters, which are typically parameterized for certain class
of (macro-) molecular systems and may not be appropriate
for other class of molecules. Therefore, the present model
can be applied to a wider class of problems. Moreover, com-
pared with other existing QM based solvation models,70, 74 the
present model avoids the use of unphysical solvent-solute in-
terfaces. The solvent-solute boundary in use is described by
the differential geometry of surfaces. Finally, a systematical
framework is established to incorporate the polar, nonpolar
and quantum energies into a total energy functional. The op-
timization of the total energy functional leads to coupled gov-
erning equations for a set of important state functions, such
as the electrostatic potential, the electronic density, and the
solvent-solute boundary profile. This set of state functions
gives rise to theoretical predictions of the solvation free en-
ergy, the electrostatic profile and the solvent-solute interface
of the solvent-solute complex.

The rest of this paper is organized as follows. Section II
is devoted to the theoretical formulation of our differential
geometry based quantum model of solvation. We provide a
detailed description of various solvation free energy function-
als. Three governing equations, i.e., the generalized Poisson-
Boltzmann equation, the potential driven geometric flow (i.e.,
generalized Laplace-Beltrami) equation, and the Kohn-Sham
equation are derived from the total energy functional via the
Euler-Lagrange variation. Numerical methods and algorithms
are presented in Sec. III, which offers detailed schemes for
the solution of the three governing equations. The dynami-
cal coupling of these three equations is achieved by an ef-
ficient iterative procedure. A formula for the solvation free
energy estimation is also derived from the multiscale total en-
ergy functional. The present multiscale model is validated by
numerical tests using a number of molecules in Sec. IV. To
establish a valid approach, we have examined consistency of
the electron density with the PB equation. The unit conver-
sion between conventions used in our PB solver and those
in a DFT software package is discussed. The results from the
present multiscale mode are compared with those in our previ-
ous methods and those in the literature. Applications to three
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FIG. 1. The cross section of S profile for a diatomic system.

sets of molecules are given in Sec. IV. Some of these sets are
computationally challenging. We demonstrate that the present
model performs well in the prediction of solvation free ener-
gies. This paper ends with a conclusion.

II. THEORY AND MODEL

A. Solute-solvent boundary

In our model, the solute molecule is described in atomic
detail while the solvent molecules are treated as a continuum
dielectric medium. As such, the interface between the discrete
domain and the continuum domain is naturally described
by the differential geometry of surfaces. The computational
domain � ∈ R3 is essentially divided into two (types of)
regions, i.e., aqueous solvent domain �s and macromolecular
domain �m. However, from the physical point of view,
because electron wavefunctions of the solvent overlap with
those of the solute at the atomic scale, �s and �m should over-
lap with each other at the boundary of molecules and solvent.
As proposed in our previous work,16, 76 we use a character-
istic function S : R3 → R to characterize this overlapping
solvent-solute boundary. Furthermore, the value of function
S is one (S = 1) inside the biomolecule domain and zero (S
= 0) in the aqueous solvent domain. However, S admits a
value between zero and one at the solvent-solute boundary
region. The profile of S is illustrated in Fig. 1 for a simple
diatomic system. It is clear that there is a smooth transition
region at the solvent-solute boundary. Consequently, S is a
description function or characteristic function of the solute
domain, while (1 − S) is a description function of the solvent
domain. In our multiscale model, the evaluation of all the
solvent-solute properties should depend on S, which can be
deduced from the principle of energy optimization. To this
end, we construct a total energy functional to determine all
behaviors of the solvation system, which includes the profile
of characteristic function S. Sections II B–II E are devoted
to the description of various components of the total energy
functional.

B. Polar free energy functional

The solvation process involves both intermolecular and
intramolecular interactions. Solvation analysis has been
following certain convention, which may not be precisely
consistent with that in other fields. Typically, solvation inter-
actions are classified into the polar type and the nonpolar type.

The polar type is often modeled by the Poisson-Boltzmann
(PB) equation with appropriate point charges at atomic central
positions. In the original electromagnetic theory, the charge
source of the electric potential is “free charges.” However,
in biophysics, due to their atomistic nature, the point charges
are obtained by fitting the electron density distribution of ei-
ther a charged molecule or a charge-neutral molecule into
its atomic centers. Such point charge information is often
stored in the database of popular software packages, such
as CHARMM.44 Therefore, the polar interactions include both
charge and polarization effects inside the molecule. Note that
the effect of the rearrangement of electron charges during the
solvation process needs to be computed twice, once before
and once after the solvation. Polar interactions are also called
electrostatic interactions. However, not all electrostatic inter-
actions are described by the PB equation. Strictly speaking,
the electrostatic potential solved from the PB equation repre-
sents Coulombic type of interactions between charges. How-
ever, many other intermolecular interactions, such as London
dispersion interactions, Debye (induced dipole) interaction,
ion-dipole interactions and dipole-dipole interactions are also
electrostatics in origin, and are not directly represented by the
PB equation.1, 3, 4, 40, 60

Sharp and Honig,61 and Gilson et al.28 have given a for-
mulation for the electrostatic free energy functional. However,
their formulation is based on a given static sharp solvent-
solute interface. In the present work, we follow our earlier
definition of differential geometry based electrostatic free en-
ergy functional16, 76

Gp =
∫

�

{
S

[
ρtotalφ − 1

2
εm|∇φ|2

]
+ (1 − S)

[
−1

2
εs |∇φ|2

− kBT

Nc∑
i=1

n0
i (e−Qiφ/kBT − 1)

]}
dr, (1)

where Qi is the charge of ith ionic species, Nc is the total
number of ionic species, kB is the Boltzmann constant, T is
the temperature, and n0

i is the bulk concentration of the ith
ionic species. Here, εs and εm are the permittivity, or dielec-
tric constants of the solvent and solute domains, respectively.
The permittivity ε is one in vacuum, but assumes different
values in different environments. In solvation analysis, ε is
usually set to 1 or 2 in the solute domain and to 80 in the sol-
vent domain. In Eq. (1), ρ total is the total charge density of the
molecule and is given by

ρtotal = qn(r) − qnn(r)

= qn(r) − q
∑

I

ZI δ(r − RI ), (2)

where q is the unit charge of an electron, n(r) is the elec-
tron density, nn(r) is the nucleus density, and ZI and RI

are the atomic number and the position vector of nucleus I,
respectively.

In Eq. (1), the term associated with S is the electrostatic
free energy of the solute and that associated with (1 − S) is
the electrostatic free energy of the solvent. In our model, the
surface function S will be determined by the total energy op-
timization.



194108-5 Differential geometry based solvation J. Chem. Phys. 135, 194108 (2011)

C. Nonpolar free energy functional

In the solvation model, the polar free energy functional is
complemented by the nonpolar free energy functional. To re-
duce the degrees of freedom of the solvation system, solvent
molecules are treated implicitly. Consequently, many well-
known intermolecular interactions, such as London disper-
sion interactions, Debye (induced dipole) interaction, dipole-
dipole interactions and van der Waals interactions, are mod-
eled as surface energy, mechanical work, and additional
solvent-solute interactions16, 73, 76

Gnp = γA + p(Vol) +
∫

�s

ρ0Ussdr (3)

where A is the surface area, γ is the surface tension, Vol repre-
sents the volume occupied by the molecule of interest, p is the
hydrodynamic pressure, ρ0 is the solvent density and Uss(r)
is a solvent-solute interaction potential. In general, the solvent
density can be a function of position (ρ0 = ρ0(r)) to describe
the solvent response to the macromolecule near the solvent-
solute boundary. In the present work, we assume a constant
bulk solvent density for simplicity. In Eq. (3), the first term is
the surface energy. It measures the disruption of intermolec-
ular binding and/or intramolecular bonds that occurs when
the surface of a molecule is created in the solvent. The sec-
ond term is the mechanical work of creating the vacuum of a
biomolecular size in the solvent. Both surface energy and me-
chanical work are hydrophobic in nature. These hydrophobic
terms are partially compensated by the third term, an interac-
tion potential, which represents the attractive dispersion and
other possible effects near the solvent-solute interface. In our
differential geometry based solvation models, this interaction
is modeled by the van der Waals potential. However, many
other potential forms can be used as well.

In our differential geometry based solvation models, we
recast the nonpolar free energy formulation in terms of the
surface function S(x). In particular, for the surface area term,
we introduce the concept of mean surface area of a family
of isosurfaces, which is a set of points {r|S(r) = c, 0 ≤ c
≤ 1}. Meanwhile, we make use of the coarea formula from
the geometric measure theory to convert the area integral into
a global volume integral.76 Finally, the mean surface area can
be described by a volume integral and the nonpolar free en-
ergy functional can be given as

Gnp =
∫

�

γ |∇S(r)|dr +
∫

�

pS(r)dr

+
∫

�

ρ0(1 − S(r))Ussdr. (4)

The reader is referred to our earlier work for mathematical
details.16, 17, 76

D. Quantum mechanical energy functional

In the present multiscale model, we need to evaluate
the total charge density ρ total(r) by quantum mechanical
principles or ab initio approaches. However, the ab initio
calculation of the electronic structure of a macromolecule
is intractable at present due to the large number of degrees

of freedom. A vast variety of theories and algorithms have
been developed in the literature to reduce the dimensionality
of this many-body problem. Here we incorporate the DFT
description of the electronic structure of the solute molecule
into our differential geometry based solvation model.

Despite the improvement in computer hardware and
software for the quantum mechanical calculation, computa-
tional costs are still a major concern for the QM simula-
tion of large molecules of interest. Therefore, so-called order-
N algorithms,29, 54 in which the computer time and memory
scale linearly with the simulated system size, become increas-
ingly important. Though the plane wave basis set has advan-
tages over local basis sets in terms of avoiding basis-set su-
perposition error as well as convergence concerns, it is dif-
ficult to be used in the implementation of the O(N) method
in DFT. As such, a localized basis set is normally taken to
develop fully self-consistent O(N) DFT algorithms. Along
this line, a software package named SIESTA (Spanish Ini-
tiative for Electronic Simulations with Thousands of Atoms)
was developed.2, 66 It is based on a flexible linear combina-
tion of atomic orbitals (LCAO) basis set and essentially per-
fect O(N)scaling when the system is sufficiently large. There-
fore, it allows very fast simulations using minimal basis sets
and very accurate calculations with complete multiplezeta and
polarized bases.53, 54 Moreover, the pseudopotential is used
in SIESTA to avoid the calculation of core electrons and to
achieve the expansion of a smooth (pseudo-) charge density
on a uniform spatial grid domain, which further accelerates
the speed of quantum calculations.

1. Kinetic energy

Combining DFT with our differential geometry based
solvation formulation, we define the kinetic energy functional
as

Gkin[n] =
∑

j

∫
S(r)
¯2

2m
|∇ψj (r)|2dr (5)

where m(r) is the position-dependent electron mass, ¯ = h
2π

with h being the Planck constant, and ψ j(r) are the Kohn-
Sham orbitals. Here, the total electron density n is given by

n(r) =
∑

i

|ψi |2, (6)

where the summation is over all the Kohn-Sham orbitals. Note
that orbitals {ψ j} are subject to the orthonormality constraint∫

Sψ∗
i (r)ψj (r)dr =

{
1 i = j

0 i �= j.
(7)

Obviously, Eq. (7) is an approximation which is valid as long
as the boundary represented by the characteristic function
S is sufficiently far away from atomic centers of the solute
molecule. This is true in our model.

2. Potential energy

Without external potentials, the electrostatic potential
energy of nuclei and electrons can be represented by the
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Coulombic interactions among the electrons and nuclei. There
are three groups of electrostatic interactions: interactions
between nuclei, interactions between electrons and nuclei,
and interactions between electrons. Because of the Born-
Oppenheimer approximation, interactions between nuclei do
not directly have a impact on the structure of electrons in DFT.

According to the Coulombic law, the repulsive interac-
tion between electrons can be expressed as the Hartree term

Uee[n] = 1

2

∫
q2n(r)n(r′)
ε(r)|r − r′|dr′, (8)

where q is again the unit charge of an electron, ε(r) is the posi-
tion dependent electric permittivity, and r and r′ are positions
of two interacting electrons. Equation (8) gives rise to a non-
linear function in terms of electron density n. Therefore, the
problem of solving the electronic structure has to be resolved
by self-consistent iterations.

Additionally, the attractive interactions between elec-
trons and nuclei are given by

Uen[n] = −
∑

I

q2n(r)ZI

ε(r)|r − RI | . (9)

Finally, we write the total potential energy functional as

Gpotential =
∫

�

S(r) (Uee[n] + Uen[n] + EXC[n]) dr, (10)

where the last term EXC is the exchange-correlation po-
tential, which includes all the many-particle interactions
in the solute molecule. In general, the exact form of the
exchange-correlation potential is not known. There are
good approximations in the practical applications, such
as the local-density approximation, the local spin-density
approximation, and generalized gradient approximations. A
detailed elaboration of the exchange-correlation potential is
beyond the scope of the present work.

E. Total free energy functional

Intuitively, it appears that the total free energy functional
is the summation of the polar, nonpolar, kinetic and poten-
tial energy. However, such a summation will lead to some
double counting because of the coupling among different en-
ergy terms. For example, the electrostatic energy depends on
the charge density, which, in turn, depends on the kinetic and
potential energies of electrons. Additionally, the electrostatic
potential serves as a variable in the polar energy functional,
meanwhile it serves as a known input in the potential energy
of electrons. To see this connection, we need to solve the Pois-
son equation in vacuum (ε = 1)

− ∇2φv(r) = ρv
total(r), (11)

where φv is the electrostatic potential in vacuum and ρv
total

= nv + nn with nv(r) being the electron density in vacuum.
The solution of Eq. (11) is

φv(r) =
∫

qnv(r′)
|r − r′|dr′ −

∑
I

qZI

|r − RI | . (12)

Note that Eq. (12) is the exact total Coulombic potential
of electron-electron interactions and electron-nucleus interac-
tions. As such, we do not need to include Uee[n] and Uen[n]
terms in the total free energy functional.

Finally, we propose a multiscale total free energy func-
tional for biomolecules at equilibrium

Gtotal[S, φ, n]

=
∫

�

⎧⎨
⎩γ |∇S(r)| + pS(r) + (1 − S(r))ρ0Uss

+ S(r)

[
ρtotalφ − 1

2
εm|∇φ|2

]
+ (1 − S(r))

×
[
−1

2
εs |∇φ|2 − kBT

Nc∑
i=1

n0
i (e−Qiφ/kBT − 1)

]

+ S(r)

⎡
⎣∑

j

¯2

2m
|∇ψj |2 + EXC[n]

⎤
⎦

⎫⎬
⎭ dr, (13)

where the first row is the nonpolar energy functional, the
second and third rows account for the electrostatic energy
functional and the last row is the electronic energy func-
tional. As discussed above, the term ρ totalφ also contributes
to the Coulombic potentials of electron-electron and electron-
nucleus interactions. This total free energy functional pro-
vides a starting point for the derivation of governing equations
and a basis for the evaluation of solvation free energies.

F. Governing equations

The total free energy functional (13) is a function of
characteristic function S, electrostatic potential φ and elec-
tron density n. The governing equations of these quantities
can be obtained by the first variation of the total free energy
functional (13). From the mathematical point of view, there
should exist optimal functions S(r), φ(r) and a set of orbitals
{ψ j} at the equilibrium state in which the solvation free en-
ergy is optimized. The variational procedure for S(r), φ(r) and
{ψ j} is described below.

First, by the variation of Eq. (13) with respect to the elec-
trostatic potential φ, we have

δGtotal

δφ
= 0

⇒ Sρtotal + ∇ · ([(1 − S)εs + Sεm]∇φ)

+ (1 − S)
Nc∑
i=1

n0
i Qie

−Qiφ/kBT = 0. (14)

The Euler-Lagrange equation is used in the above variation.
Equation (14) is the generalized Poisson-Boltzmann (GPB)
equation16, 76

−∇ · (ε(S)∇φ) = Sρtotal + (1 − S)
Nc∑
i=1

n0
i Qie

−Qiφ/kBT ,

(15)



194108-7 Differential geometry based solvation J. Chem. Phys. 135, 194108 (2011)

where the dielectric function is given by

ε(S) = (1 − S)εs + Sεm. (16)

This is a smooth function. It is clear that the GPB equation
utilizes a smooth dielectric profile. There is a smooth tran-
sition region for the dielectric function to change from εs

to εm. Therefore, the solution procedure of the present GPB
equation (15) avoids many numerical difficulties of solving
elliptic equations with discontinuous coefficients79, 80, 82, 84, 85

in the classical PB equation. Furthermore, in a solvent with-
out salt, the GPB equation is simplified to be the generalized
Poisson equation

− ∇ · (ε(S)∇φ) = Sρtotal. (17)

Both Eqs. (15) and (17) are similar to our earlier results.16, 76

However, in the present multiscale model, the charge source
ρ total is to be determined by solving the Kohn-Sham equa-
tions, rather than by the fixed charges ρfix = ∑

jqjδ(r − rj),
with qj being the total fixed charge of the jth solute atom.

Additionally, by the variation of Eq. (13) with respect to
the surface function S, we have

δGtotal

δS
= 0 ⇒ −∇ ·

(
γ

∇S

|∇S|
)

+ p − ρ0Uss − 1

2
εm|∇φ|2

+ 1

2
εs |∇φ|2 + kBT

Nc∑
i=1

n0
i (e−Qiφ/kBT − 1)

+ ρtotalφ +
∑

j

¯2

2m
|∇ψj |2 + EXC[n] = 0.

(18)

In Eq (18), ∇ · (γ ∇S
|∇S| ) is a generalized Laplace-Beltrami

operator, which is a generalization of the usual Laplacian
operator to a smooth manifold of macromolecular surface.9, 76

In general, γ can be a function of the position γ = γ (r) to
account for the surface hydrophobicity at different locations
of the macromolecule. For simplicity, it is treated as a
constant in our present computation. By solving Eq. (18), we
obtain a “physical solvent-solute boundary” (S). As discussed
in earlier work,9, 11, 16, 76 the solution of this elliptic partial dif-
ferential equation (PDE) can be attained via a parabolic PDE

∂S

∂t
= |∇S|

[
∇ ·

(
γ

∇S

|∇S|
)

+ V

]
, (19)

where the generalized “potential” V is defined as

V = −p + ρ0Uss + 1

2
εm|∇φ|2 − 1

2
εs |∇φ|2

− kBT

Nc∑
i=1

n0
i (e−Qiφ/kBT − 1)

− ρtotalφ −
∑

j

¯2

2m
|∇ψj |2 − EXC[n] (20)

where the electronic potentials in the last row do not con-
tribute much to V at equilibrium. This is due to the fact that
they are essentially confined inside the solute molecular
domain. Note that Eq. (19) has the same structure as the

potential driven geometric flow equation defined in our
earlier work.9, 16, 76 As t → ∞, the initial profile of S evolves
into a steady state solution, which solves the original Eq. (18)
with an optimal surface function S.

Finally, to derive the equation for the electronic wave-
functions, we need to incorporate the constraint as shown
in Eq. (7) into the total energy functional. This can be
done easily with a family of Lagrange multipliers

∑
i Ei(δij

− ∫
Sψi(r)ψ∗

j (r)dr). Therefore, by the variation of Eq. (13)
with respect to the wavefunction ψ∗

j (r) and applying the con-
straint, we have

δ
[
Gtotal + ∑

i Ei

(
δij − ∫

Sψi(r)ψ∗
j (r)dr

)]
δψ∗

j

= 0 ⇒
(

− ¯
2

2m
∇2 + Ueff

)
ψj = Ejψj , (21)

where the Lagrange multiplier constants Ei have been in-
terpreted as energy expectation values. Equation (21) is the
Kohn-Sham equation in which the effective Kohn-Sham po-
tential is defined as

Ueff(r) = qφ + VXC[n], (22)

where VXC[n] = dEXC[n]
dn

and qφ is the potential contribution
from Coulombic interactions. It is to be calculated by the
GPB equation (14) with a given total charge density. Ap-
parently, Eq. (21) does not directly depend on the surface
function S, so that existing DFT packages can be used in
our computations with a minor modification as described in
Sec. III C.

It seems that the generalized Poisson-Boltzmann equa-
tion (15), the generalized Laplace-Beltrami equation (19) and
the Kohn-Sham equation (21) are strongly coupled to each
other. Therefore, these three equations have to be solved by
appropriate iterative procedures. This aspect is discussed in
Sec. III.

III. NUMERICAL METHODS AND ALGORITHMS

A. Solution of the generalized Laplace-Beltrami
equation

The solution of the generalized Laplace-Beltrami equa-
tions has been studied and used in our earlier work,11, 16 in-
cluding detailed discretization schemes. Here, we give a brief
description of the solution procedure for Eq. (19). First of
all, to solve the Laplace-Beltrami equation, the expression of
solvent-solute interaction potential Uss must be prescribed ex-
plicitly. Although Uss includes many unspecified interactions,
we consider the following form:

Uss(r) =
∑

i

Ui(r), (23)

where Ui(r) is the potential due to the ith atom in the so-
lute molecule. One possible choice of Ui(r) is the following
Lennard-Jones (L-J) 6-12 pair potential

ULJ
i (r) = εi

[(
σi + σs

|r − ri |
)12

− 2

(
σi + σs

|r − ri |
)6

]
(24)
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where εi is the well-depth parameter, and σ i and σ s are so-
lute atomic and solvent radii, respectively. Here r is the point
of interest and ri is a position vector of an atom in the so-
lute molecule. The L-J potential can be divided into attractive
term Uatt and repulsive term Urep in different ways. It can be a
“6-12” decomposition as follows:

U
att,6/12
i (r) = −2εi

(
σi + σs

|r − ri |
)6

,

(25)

U
rep,6/12
i (r) = εi

(
σi + σs

|r − ri |
)12

.

Alternatively, it can also be a “WCA” decomposition based
on the original WCA model43

U
att,WCA
i (r) =

{−εi(r) 0 < |r − ri | < σi + σs

ULJ
i (r) |r − ri | ≥ σi + σs,

(26)

U
rep,WCA
i (r) =

{
ULJ

i (r) + εi(r) 0 < |r − ri | < σi + σs

0 |r − ri | ≥ σi + σs.

(27)

As indicated in our earlier work,16 the WCA attractive po-
tential provides good results for solvation. Therefore, all the
calculations in the present study are carried out by using the
WCA decomposition.

Additionally, a necessary step in solving Eq. (19) is to de-
termine all the physical parameters involved. Because of the
choice of the polar and nonpolar separation and the contin-
uum representation of solvent in our model, not all parameters
from the literature are suitable. In particular, surface tension
γ serves as a fitting parameter in our model due to its am-
biguity in atomic-scale models.43, 51, 73 Therefore, we rewrite
the generalized potential driven geometric flow equation as

∂S

∂t
= |∇S|

[
∇ ·

(
γ

∇S

|∇S|
)

+ V

]

= |∇S|γ
[
∇ ·

( ∇S

|∇S|
)

+ Vγ

]
(28)

where Vγ = V/γ . Then, in addition to the Lennard Jones pa-
rameters εi , σ s and σ i, other parameters including p/γ , ρs/γ ,
εs/γ , and εm/γ need to be pre-determined in the solution of
the generalized potential driven geometry flow equation.

Equation (28) is solved with the Dirichlet boundary
condition S(r, t) = 0, ∀r ∈ ∂�. For the initial value of S,
we consider

S(x, y, z, 0) =
{

1, (x, y, z) ∈ Dsa

0, otherwise
(29)

where we define the domain enclosed by the solvent ac-
cessible surface to be Dsa = ⋃Na

i=1{r : |r − Ri | < ri + rp},
with ri and rp being atomic van der Waals radius and the
probe radius, respectively. Here, Ri is the atomic center
position vector of the ith solute atom and Na denotes the
total number of atoms for a given macromolecule. To protect
the van der Waals surface and make the computation more
efficient, we only update the values of S(x, y, z, t) at the points

in between the domains of van der Waals surface and the
solvent accessible surface; i.e., (x, y, z) ∈ Dsa/DvdW, where
DvdW is the domain enclosed by the van der Waals surface
DvdW = ⋃Na

i=1{r : |r − Ri | < ri}. Numerically, to avoid
possible zeros in the denominator of Eq. (28) we add a very
small number, i.e., 10−7, into the denominator expression,
which does not affect results in practice.

For simplicity, the widely used explicit Euler scheme can
be applied to the solution of the generalized Laplace-Beltrami
equation for the time integration. The Euler scheme can be
combined with the second order central difference scheme for
the spatial discretization.11 Nevertheless, this algorithm is not
very efficient, because a very small time stepping size is re-
quired to guarantee the stability of the time integration. An
alternative direction implicit (ADI) scheme was constructed
in our earlier work.9, 16 The ADI scheme is second order in
both spatial and time discretizations. It builds in a fast O(N)
Thomas algorithm to solve the tridiagonal linear system and
thus is very efficient. The ADI algorithm is unconditionally
stable and allows a much larger time stepping size than that
of the explicit Euler scheme. In the present work, the ADI al-
gorithm is adopted for the solution of the generalized potential
driven geometric flow equation (19).

Note that from Eq. (19) we know that the surface evolu-
tion depends on the electron charge density, which spreads
over a large area wherever the electronic distribution is
nonzero. In principle, this implies that the solution of the
generalized Laplace-Beltrami equation requires the input of
wavefunctions and the charge density. However, since the
electron density decays rapidly away from atomic centers,
non-neglected values can only be found in the region inside
the solute van der Waals surface. As such, the terms associ-
ated with charge density ntotal and wavefunctions do not have
significant contributions to the time evolution of surface func-
tion S, which occurs outside the van der Waals surface. As
such, the terms associated with the electron density or wave-
functions are neglected in the numerical simulation of the
Laplace-Beltrami equation. Moreover, in the present study,
we only consider a solvent environment without mobile ions.
Therefore, the term associated with mobile ions is omitted in
the present numerical simulation.

B. Solution of the generalized Poisson-Boltzmann
equation

In solvation analysis, the generalized PB equation (17) is
subject to the Dirichlet boundary condition27

φ(r) =
Na∑
j

qj

εs |r − rj | , ∀r ∈ ∂�, (30)

where qj is the total fixed charge of the jth solute atom. One
option is to use the point charges from a force field model such
as CHARMM. However, in the present work, we consider the
following Dirichlet boundary condition:

φ(r) =
∫

ρtotal(r′)
εs |r − r′|dr′, ∀r ∈ ∂�, (31)
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where the boundary condition is nonlinear—it depends on the
electron density n and thus needs to be implemented itera-
tively.

The standard second order center difference scheme is
applied in this study to solve Eq. (17). An accurate solution
can be obtained due to the continuous dielectric definition
ε(S). Let the pixel (i, j, k) represent the position (xi, yj, zk).
The discretized form of Eq. (17) is[

ε

(
xi + 1

2
hx, yj , zk

)
[φ(i + 1, j, k) − φ(i, j, k)]

+ ε

(
xi − 1

2
hx, yj , zk

)
[φ(i − 1, j, k) − φ(i, j, k)]

]
1

h2
x

+
[
ε

(
xi, yj + 1

2
hy, zk

)
[φ(i, j + 1, k) − φ(i, j, k)]

+ ε(xi, yj − 1

2
hy, zk)[φ(i, j − 1, k) − φ(i, j, k)]

]
1

h2
y

+
[
ε

(
xi, yj , zk + 1

2
hz

)
[φ(i, j, k + 1) − φ(i, j, k)]

+ ε

(
xi, yj , zk − 1

2
hz

)
[φ(i, j, k − 1) − φ(i, j, k)]

]
1

h2
z

= −S(i, j, k)ρtotal(i, j, k), (32)

where hx, hy and hz are the grid spacings at x, y and z direc-
tions, respectively. Here, ρ total(i, j, k) is the charge density at
grid point (xi, yj, zk), which is calculated from the electronic
charge density n(r) and nucleus density nn. The implementa-
tion of ρ total will be discussed in the next paragraph. As such,
the discretized PB equation can be converted into the standard
linear algebraic equation system of the form AX = B, where
X is the solution of interest, A is the discretization matrix and
B is the source term associated with the charge density. It has
been shown previously that the PB solver is able to deliver the
designed second-order accuracy.16

On the right hand side of Eq. (32), the charge density
at each grid point should be given. As an efficient approach,
atomic charges have been widely used to approximate the
charge density of electrons and nuclei, especially for large
molecules of general interest. Therefore, the point charge
approach has gained much popularity in PB solvers as well
as PB applications.6, 35, 37, 45 Nevertheless, charge assignment
at atomic centers is a nontrivial issue. The deficiencies of
the atomic point charge approach have been discussed in the
Introduction. The direct implementation of the quantum me-
chanical charge density can avoid errors caused by the atomic
point charge approximation. Moreover, this approach frees
us from the electrostatic potential fitting process. To carry it
out in the finite difference scheme, the total charge density
ρ total(i, j, k), which consists of the electron density n(r)
and nucleus density nn, needs to be prescribed at each grid
point of the computational domain. In particular, the nucleus
density nn(r), which is considered as stationary and located
at the center of atoms, can be distributed to the nearest eight
neighboring grid points by the second order interpolation
(i.e., the trilinear mapping). The distributed nucleus core
point charges are converted into the nucleus charge density

by dividing point charges with the volume of the unit grid. Fi-
nally, the total charge density at each grid point is obtained by
the summation of nucleus density and the electronic charge
density which is directly taken from the quantum mechanical
calculation.

However, a new issue arises from the above treatment of
nuclei. Since each nucleus core charge is split into its eight
neighboring grid points, it is easy to find out that short range
interactions are biased and self-interaction energies are ar-
tificially introduced. This is due to the interactions of grid
charges within one single atom. It exists even in the absence
of solvent and any other charges. Apparently, this is a pure ar-
tifact due to the finite difference approach and must be elim-
inated. Within the partial charge approach the artifact can be
canceled out mainly by calculating the PB equation twice,
one in vacuum and the other in the solvent. It turns out that
this strategy also works well here. Numerical tests regard-
ing this cancellation of self-interaction energies are demon-
strated later. It is important to point out that numerically if
one implements the quantum mechanical calculation with a
non-frozen core method, the remaining error from the self-
interaction cancellation is still too large to be neglected. In
other words, the above cancellation strategy may fail when
one applies a non-frozen core approach. Therefore, frozen
core approaches, such as pseudopotential methods, must be
applied in our quantum calculations here. Because frozen core
approaches dramatically reduce the number of charges in each
nucleus and thus implicitly decease implementation errors.

The biconjugate gradient method is a good choice
in solving the PB equation. However, as we have
demonstrated in our previous work,16 the combination
of stabilized biconjugate gradient method (BiCG) and
the blocked Jacobi preconditioner (BJAC) from PETSc
(http://www.mcs.anl.gov/petsc/petsc-as/), as well as the
combination of the orthomin method (OM) and the incom-
plete LU factorization preconditioner (ILU) from SLATEC
(http://people.sc.fsu.edu/∼burkardt/f_src/slatec/slatec.html),
speeds up the process of the PB solution. In this study, we
apply the combination of ILU and OM from SLATEC. In
our iteration procedure, the prior electrostatic potential is
taken as a good initial guess for the followed linear system
solving procedure. It turns out that this treatment makes the
generalized PB solver converge much faster than simply set-
ting the initial guess to be 0.16 Additionally, the convergence
tolerance is set to be 10−4 as a good balance between the
accuracy and efficiency.

C. Solution of the generalized Kohn-Sham equation

The generalized Kohn-Sham equation (21) admits all-
electron and all-nucleus potentials. The direct solution of
Eq. (21) is very expensive for macromolecules. Therefore,
further simplifications are necessary. In particular, because
classical DFT methods have been developed in the past few
decades, the solution of Eq. (21) needs to make use of exist-
ing DFT methods.

Note that the Coulombic potential functionals shown in
Eqs. (8) and (9) involve spatially varying dielectric constants,

http://www.mcs.anl.gov/petsc/petsc-as/
http://people.sc.fsu.edu/~burkardt/f_src/slatec/slatec.html
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which reflect the solvation process. The related spatially
varying electrostatic potential is built in the generalized
Poisson-Boltzmann equation (15), whose solution gives rise
to the electrostatic potential energy qφ used in the gener-
alized Kohn-Sham equation (21). In contrast, the standard
Kohn-Sham equation is for a molecular system in vacuum
and its Coulombic potentials are of the form of qφv where
φv is given by Eq. (12) with the total charge density in
vacuum described in Sec. III D. The effective potential in the
generalized Kohn-Sham equation (21) can be written as

Ueff[n] = qφ + VXC[n] = qφRF + U 0
eff(r), (33)

where

φRF = φ − φ0 (34)

is called the reaction field potential. Here φ0 is the solution of
the Poisson equation in the homogeneous medium with the
charge source ρ total(r)

− ∇ · ε0∇φ0(r) = ρtotal(r), (35)

where ρ total(r) is obtained from the generalized Kohn-Sham
equation (21). In Eq. (33), U 0

eff(r) is the Kohn-Sham potential

U 0
eff(r) = qφ0 + VXC[n]. (36)

In the present work, U 0
eff(r) is represented by the traditional

Kohn-Sham potential. Consequently, a variety of computa-
tional techniques developed for the traditional Kohn-Sham
DFT can be utilized in the present work. What we need to
do for solving the generalized Kohn-Sham equation (21) is to
add a reaction field potential qφRF to an existing Kohn-Sham
DFT solver.

The most important issues in the solution of the Kohn-
Sham equation are the selection of the exchange-correlation
potential and the use of the pseudopotential. The pseudopo-
tential approach eliminates the complicated effects of core
electrons and allows the expansion of a smooth (pseudo-)
charge density on a uniform spatial grid. In this approach, the
chemically active valence electrons are dealt with explicitly,
while the core electrons are ‘frozen’ and considered together
with the nuclei as fixed nonpolarizable ion cores. With the
pseudopotential approximation, the formalism of the total en-
ergy functional needs to be modified, which leads to the fol-
lowing expression of a Kohn-Sham effective potential66

U 0
eff(r) =

∑
I

V local
I (r) +

∑
I

V nonlocal
I + V H (r) + VXC(r)

(37)

where VH(r) and VXC(r) are total Hartree and exchange-
correction potentials, respectively. Here, V local

I and V nonlocal
I

are the local part and the nonlocal part of the pseudopotential
of atom I. For elaborated discussions of the above potentials,
we refer the reader to an excellent review.66

In the present work, SIESTA (Spanish initiative for the
electronic structure of thousands of atoms), a quantum me-
chanical package of high efficiency, is utilized for solv-
ing our generalized Kohn-Sham equation (21). SIESTA pos-
sesses the ability to perform DFT simulations of more than
a thousand atoms. The details of the package have been ex-
tensively described.66 It develops a self-consistent density

functional method using the standard norm-conserving pseu-
dopotential and a flexible numerical linear combination of
atomic orbital (LCAO) basis sets with an essentially per-
fect O(N) scaling, in which the computer CPU time and
memory scale linearly with the simulated system size. Note
that normally linear scaling kicks in when the system is
sufficiently large. The exchange and correlation are treated
within the Kohn-Sham DFT. Both the local density approxi-
mation and local spin density approximation (LDA/LSDA),
as well as the generalized gradient approximation (GGA)
are allowed. Moreover, SIESTA permits very fast simula-
tions by using minimal basis sets and very accurate calcu-
lations with complete multiple-zeta and polarizable bases.
Therefore, it can provide a general scheme to perform quan-
tum calculations with requirements ranging from being very
fast to being very accurate. For all of the simulations in the
present work, the default double-ζ plus single polarization
(DZP) bases are used. The MeshCutoff is set as 125 Ryd-
berg and the LDA is applied. The SolutionMethod is set to be
“diagon.”’

D. Evaluation of the solvation free energy

The solvation free energy is the energy required or re-
leased from the transfer of a unit of solute molecules from
vacuum to a solvent. By definition, it is calculated by the dif-
ference between the total energies in solution and in vacuum,

�Gtotal = Gtotal[S, φ, n] − Gvacuum[φv, nv], (38)

where φv is the electrostatic potential in vacuum and nv is the
solute electronic density in vacuum, which is defined in terms
of the electronic wavefunctions of the solute in vacuum ψv

j (r)

nv(r) =
∑

j

|ψv
j (r)|2. (39)

In Eq. (38), Gtotal[S, φ, n] is given in Eq. (13) and Gvacuum[φv,
nv] denotes the total energy functional in vacuum

Gvacuum[φv, nv] =
∫ [

ρv
totalφv − 1

2
ε|∇φv|2

+
∑

j

¯2

2m
|∇ψv

j |2 + EXC[nv]

⎤
⎦ dr (40)

where ρv
total = qnv − qnn is the total charge density in vac-

uum. For simplicity, we have omitted the ionic density
kBT

∑Nc

i=1 n0
i (e−Qiφv/kBT − 1) in Eq. (38). Note that the varia-

tion of Gvacuum[φv, nv] gives rise to the standard Poisson equa-
tion (11) and the standard Kohn-Sham equation(

− ¯
2

2m
∇2 + Uv

eff

)
ψv

j = Ev
j ψ

v
j , (41)

where Ev
j and ψv

j are appropriate eigenvalues and eigenfunc-

tions of Hamiltonian Hv = − ¯2

2m
∇2 + Uv

eff.
However, there is a technical difficulty in the direct

evaluation of Gtotal[S, φ, n]. Namely, the integration of the
quantum mechanical terms in Eq. (13) requires the S function
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profile, which is not involved in most Kohn-Sham DFT soft-
ware packages. Therefore, in the present work, we evaluation
the solvation free energy by the following approximation

�Gtotal = Gnp + �Gp + �GQM (42)

where Gnp, �Gp and �GQM are the nonpolar, polar and quan-
tum mechanical contributions, respectively. The nonpolar
solvation free energy does not exist in vacuum, and its form
in solution is given by

Gnp[S] =
∫ [

γ |∇S(r)| + pS(r) + ρ0(1 − S(r))Uss

]
dr.

(43)

By using the Gauss’ divergent theorem and integration by
parts, it is easy to show that the polar solvation energy is
given by

Gp[S, φ, n] = 1

2

∫
�s

ρtotalφdr. (44)

Similarly, the polar solvation energy in vacuum is
1
2

∫
ρv

totalφvdr. Therefore, one may compute the change of
the polar solvation energy by 1

2 (
∫
�s

ρtotalφdr − ∫
ρv

totalφvdr).
However, this expression leads to a situation that the quantum
mechanical contribution �GQM cannot be evaluated in
SIESTA because of the lack of required potential terms.
Additionally, such an expression is inconsistent with the
conventional electrostatic solvation free energy of the form

�Gp = 1

2

∫
�s

ρtotal [φ − φ0] dr = 1

2

∫
�s

ρtotalφRFdr. (45)

Therefore, in the present solvation analysis �Gp is calculated
by Eq. (45), which leads to two remaining electrostatic
potential terms 1

2 (
∫
�s

ρtotalφ0dr − ∫
ρv

totalφvdr). These terms
are combined with the rest of the quantum energy functionals
to compute the change of the quantum mechanical energy as

�GQM =
∑

j

[〈ψj |H 0|ψj 〉 − 〈ψv
j |Hv|ψv

j 〉]. (46)

where H 0 = − ¯2

2m
∇2 + U 0

eff. Note that wavefunctions {ψ j}
are computed with the full Hamiltonian in the solution. The
main advantage of the quantum mechanical energy change
given in Eq. (46) is that it can be easily computed by using
existing DFT software packages as discussed in Sec. III C.

The current formula of the solvation free energy is sys-
tematically derived from the framework of the differential ge-
ometry based solvation model. It consists of the nonpolar en-
ergy Gnp, the electrostatic solvation free energy �Gp, and the
change of the solute self-energy �GQM due to the redistribu-
tion of electrons in the solvation process. It is of interest to
see that the formulation of the present solvation analysis is
consistent with that in the literature,69, 74, 75 which is basically
computed by using a good chemical intuition. The reliability
and accuracy of the current model are further validated by a
comparison between the present prediction and experimental
data, as well as that in the literature in Sec. IV.

E. Dynamical coupling of involved PDE equations

As described in Sec. II F, on the one hand, the total
charge density in the solution is obtained by solving the Kohn-
Sham equation in the presence of the reaction field poten-
tial φRF = φ − φ0, which is computed by solving the PB
equation and the Poisson equation, i.e., Eqs. (15) and (35). On
the other hand, the solution of the PB equation requires the
quantum mechanically calculated charge density, the surface
profile S, and the dielectric profile ε(S), which are generated
by solving the generalized Laplace-Beltrami equation (LBE).
Moreover, the potential in the generalized Laplace-Beltrami
equation contains the terms associated with the electrostatic
potential from the PB equation and the charge density from
the Kohn-Sham equations. In principle, the Laplace-Beltrami
equation, the generalized PB and Kohn-Sham equations need
to be solved simultaneously until the convergence is reached,
i.e., the solvation energy of two runs agrees with each other
within a prescribed tolerance. This can be achieved via a self-
consistent iteration procedure.

In practice, we adopt an inner-outer iterative strategy to
implement the self-consistent procedure. The inner iterations
concern the solution of the coupled generalized PB equa-
tion and the Laplace-Beltrami equation. These iterations have
been carried out in our previous work,16 except for the dif-
ferent representation of the continuous charge density. In the
present work, the inner iterations are combined with the so-
lution of the Kohn-Sham equation during the outer iterations.
More details are described in the following and can be seen
from a work flow chart in Fig. 2 as well.

Step 0: (Generation of the solute quantum energy in vac-
uum and initialization of the charge density): We carry out a
quantum mechanical calculation in vacuum with SIESTA to
obtain an initial total charge density. The solute quantum en-
ergy in vacuum is recorded for computing �GQM in the output
step.

Step 1: (Inner iteration of the coupled PB and Laplace-
Beltrami equations): Given a total charge density distribution,
as described previously,16 a temporary electrostatic potential
φ can be generated by solving the generalized PB equation
with a temporary S. It is followed by the evolution of time-
dependent generalized Laplace-Beltrami equation for a num-
ber of time iterations. With the updated intermediate S, one
can update the electrostatic potential via the PB equation. This
cycle repeats until the electrostatic solvation energy converges

FIG. 2. Flowchart of the numerical solution of the coupled PDEs.
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within a pre-determined criterion. Note that the relaxation al-
gorithm should be used to guarantee the convergence.16

Step 2: (Generation of a reaction field potential): Solve
the PB equation in a homogeneous medium with the same to-
tal charge density as that in the previous step. Then the reac-
tion field potential φRF is obtained by the difference between
the electrostatic potential from the previous step and the cur-
rent Poisson calculation in the homogeneous medium.

Step 3: (Solution of the Kohn-Sham equation): Run the
SIESTA program again to obtain a new total charge density
by incorporating the computed reaction field potential into the
Kohn-Sham Hamiltonian.

Step 4: (Calculation of the solvation energy and conver-
gence check): Calculate the total solvation free energy with
the resulting φ, S and {ψ j}. Go back to Step 1 until it con-
verges. When convergence is reached, one ends the iteration
and outputs the solvation free energy.

To output the charge density in SIESTA, one needs to
set SaveRho to be true in the input fdf file, while SpinPolar-
ized is false according to the fact that all tested molecules in
this work are neutral and that most of neutral molecules pos-
sess zero net spin. Eventually, SIESTA generates an XV file
to store lattice vectors and atomic positions, together with an
RHO file to record the values of the charge quantity on the
grid points. However, the standard input for our PB solver is
a Gaussian CUBE format file which contains the origin, grid
spacing, atomic coordinates and charge densities. Therefore,
a CUBE formate file must be created based on the information
from the XV file and RHO file to transfer the charge density
data from SIESTA to the PB solver. It can be carried out by
a subroutine grid2cube.x, which is included in the SIESTA
package. During the translation, the coordinates of the origin
are shifted to make the molecule roughly appear at the center
of the computational domain.

After the reaction field potentials are obtained by the PB
solver, they are regarded as an external solvent potential ef-
fect and must be incorporated into the Kohn-Sham quantum
calculation in SIESTA. As such, reaction field potentials have
to be passed into SIESTA during the self-consistent iteration
process. It can be done by adding them into the variable of
total potential named Vscf in the subroutine file dhscf.F un-
der “Siesta-3.0-b/Src”. Therefore, a data translation procedure
is required to pass the reaction field potential from the PB
solver into SIESTA. Furthermore, attention needs to be paid
to the unit conversion. In particular, the unit of distance used
in SIESTA is Bohr, while it is Angstrom in the PB solver.
The units of potential are ec/Angstrom and Rydberg/ec in the
present PB solver and in SIESTA, respectively. Here ec de-
notes the fundamental charge used as the unit of a point charge
in both the PB solver and SIESTA.

IV. VALIDATION AND APPLICATIONS

This section provides validation and applications for
the proposed model and computational algorithms. The
performance of SIESTA has been tested and described in the
literature.66 The generalized Laplace-Beltrami equation (19)
has the same differential operator as our earlier mean cur-
vature flow11 except for the extra source terms. Previously,

we have numerically proved that the explicit Euler algorithm
delivers the reliability and convergence of the solution of the
Laplace-Beltrami equation, and the finite central difference
scheme is of second-order convergence in space.9 For the PB
solver, given the partial charges, it has also been numerically
proved to be of second-order convergence.16 However, here
the source term in the PB equation is no longer represented
by the partial charges adopted from existing molecular me-
chanical force fields, such as AMBER or CHARMM. In this
work, the source term is represented by the charge density
obtained directly from the quantum calculation. There are
new concerns from this different charge strategy. First of all,
regarding the distribution of nucleus charges, which are much
larger than partial charges, it is crucial to know whether the
self-interaction energy artifact within a single atom leads to
non-neglected bias even after the treatment of the energy
cancellation. Secondly, it is important to check whether the
implementation is correct in terms of the data translation
and unit conversion between different solvers during the
self-consistent iteration procedure. Based on these consid-
erations, we examine the cancellation of self-interaction
artificial energy and continue to check the data translation
and unit conversion between the PB solver and SIESTA in
the Appendices. In this section, we demonstrate the overall
accuracy of our model in the calculation of solvation free
energies, as well as the solvent effect on the solute electronic
structure, by a comparison with experimental data.

We consider three types of applications in this section.
First, we apply our new multiscale model to a set of 24
small molecules. Then, a challenging set of 16 molecules
is studied. Finally, three larger molecules are taken for effi-
ciency and robustness test. The Dirichlet boundary condition
is used for both the generalized Poisson-Boltzmann equation
and the generalized Laplace-Beltrami equation as in our pre-
vious calculations.11, 27, 78, 83

A. Accuracy of solvation free energies computed
by the present model

Besides the data translation and unit conversion, the over-
all accuracy of the present model still needs to be further ver-
ified by comparing with experimental data. In particular, it
is of crucial importance to check the accuracy of the total
solvation energy as well as the solvent effect on the solute
electronic structure. The contribution of the solvation free en-
ergy from the polarization of electron cloud can be decom-
posed into two parts. As shown in Table I, prior to the po-
larization, the solvent interacts with the solute based on its
vacuum electronic distribution which gives rise to the elec-
trostatic solvation energy �Gv

p using the vacuum charge den-
sity. When the polarization takes place, the electron cloud is
redistributed to reach a more favorable interaction with the
solvent. This generates a gain for the solvation free energy
��Gp = �Gp − �Gv

p. However, the redistribution of the
electron cloud leads to the change of the interactions between
electrons and nuclei and those between electrons. It causes an
unfavorable decrease in the solvation energy (�GQM). There-
fore, the total energy contribution of the polarization is calcu-
lated by the sum of �GQM and ��Gp. Table I summarizes the
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TABLE I. Solvation free energy (kcal/mol) and its decomposition.

Compound �Gv
p �Gp ��Gp �GQM ABS(�GQM/��Gp) �Gtotal Exptl74

Water −6.25 −7.55 −1.30 0.86 0.66 −6.31 −6.30
Methanol −5.18 −6.18 −1.00 0.63 0.63 −4.98 −5.11
NH3 −3.86 −5.12 −1.26 0.87 0.69 −3.79 −4.29

numerical results of the total solvation free energy and the de-
composition for three small molecules. Here, �Gtotal = �Gp

+ Gnp + �GQM. As demonstrated in the table, the total sol-
vation energies fit experimental data74 very well. Moreover, it
is expected from the classical linear response theory that the
loss from the distortion of electron cloud is equal to about half
of the gain from the solute-solvent interaction energy.69 It is
evident that our results are quantitatively in accord with the
theory. The slightly higher ratio (about 0.6) may be caused by
the change in the exchange-correction energy term within the
DFT calculations.

B. Solvation free energies of 24 small molecules

Encouraged by the successful reproduction of the
solvation free energies for the above three small molecules,
we apply the present differential geometry based multiscale
model and algorithms to the solvation analysis of an extended
set of 24 small neutral organic molecules. In this applica-
tion, all geometric structures are taken from the Pubchem
database (http://pubchem.ncbi.nlm.nih.gov). The required
pseudopotential input files for SIESTA in the psf format are
conveniently produced through a pseudopotential generator
web (http://www.tddft.org/programs/octopus). Atomic radii
for the LB equation are adopted from a new parametrization
of ZAP-9 used by Nicholls51 and in our previous studies.16

Specifically, the radii of hydrogen, carbon, oxygen, nitrogen,
chlorine, fluorine and sulfur are set to be 1.1 Å, 1.87 Å,
1.76 Å, 1.40 Å, 1.82 Å, 2.4 Å and 2.15 Å, respectively. Note
that different surface definitions in implicit solvent models
should have their own optimal radii set.73 In particular, it
is found numerically that a continuous dielectric definition
based model is supposed to have radii of slightly larger values
than those of a sharp interface based model.16 Therefore, we
multiply the radii from ZAP-9 by a factor. In practice, a factor
of 1.1 is used for all atomic radii in a molecule of more than
14 atoms. However, if a molecule has less than 15 atoms, the
factor is given by a formula 1.02 + (Max(0, Na-5))*0.008,
where Na represents the total number of atoms. Numerically
it turns out that the solvation energy predictions are sensitive
to the radii factor for small molecules with less than 15
atoms. In this case, the fewer atoms, the smaller factor.

In our calculation, since the polarization is treated ex-
plicitly with the quantum mechanical calculation, we set the
dielectric constant in the solute region as εm = 1, while εs

= 80 for the solvent region. Other parameters are set in
a similar way as in our previous work:16 We choose ρ0/γ
= 2 and take into account the pressure by setting p/γ =
0.2. Note that in the numerical simulation, all ratio param-
eters here are treated as dimensionless. For L-J parameters,
σ s is chosen to be 0.65 Å and σ i is the solute atomic radii.73

Due to the continuum representation of solvent in our model,
the 6-12 Lennard Jones potential formula (24) differs from
the standard version—the distance used in our formula is no
longer the distance between the centers of solute atoms and
the centers of solvent atoms but the distance between a spe-
cific position in the solvent region and the centers of solute
atoms. Therefore, the setting of well depth εi differs from the
ones taken from AMBER or OPLS force fields. As we did in
the previous work,16 it is determined by an equality, that is,
εi[(

σi+σs

|r−ri | )
12 − 2( σi+σs

|r−ri | )
6] = Di if r is on the vdW surface of

the atom. Here the constant Di should have different values
for various types of atoms. For simplicity we use a uniform
constant D = 1.0 to determine the value of εi. The grid di-
mension is the same in both the PB solver and SIESTA, and
it depends on the MeshCutoff energy value in SIESTA, which
is 125 Rydberg in current simulations. The time stepping of
τ = h2

x/4.5 is used, where hx is the grid spacing at the x di-
rection. Finally, γ = 0.0065 kcal/(mol Å2) obtained from the
previous work16 is applied to compute the total nonpolar sol-
vation energy.

Table II summarizes the numerical results of the solva-
tion free energies of 24 molecules. The root mean square error
(RMS) of 1.31 kcal/mol is obtained, which indicates a very
good agreement between the present prediction and experi-
mental data.74 The agreement can also be seen from Fig. 3.
Moreover, to examine the consistency, the ratio of ��Gp and
�GQM is computed and listed in Table III. It is evident that the
numerical ratio is always about 0.6. Therefore, the reliability
and consistency of the present model have been illustrated.

C. Solvation free energies of 16 molecules

Application of the set of 24 small molecules has
shown that the proposed solvation model works well for the
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FIG. 3. Correlation between experimental data and the present optimized
surface model with quantum correction (OSMQ) in solvation free energies of
24 small molecules.
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TABLE II. Comparison of solvation free energies (kcal/mol) obtained from
the present model and experimental data for 24 small molecules.

Compound Na Gnp �Gp �GQM �Gtotal Exptl74 Error

Ethanol 9 0.74 −6.33 0.61 −4.98 −5.01 0.03
Propionamide 12 1.02 −12.19 2.14 −9.03 −9.41 0.38
H2O 3 0.39 −7.55 0.86 −6.31 −6.30 −0.01
Phenol 13 1.21 −7.88 1.01 −5.66 −6.60 0.94
Methanethiol 6 0.7 −4.29 0.50 −3.08 −1.24 −1.84
Propionic acid 11 1.02 −7.73 0.87 −5.84 −6.47 0.63
Acetamide 9 0.82 −14.23 2.65 −10.76 −9.71 −1.05
Acetonitrile 10 0.87 −8.23 1.36 −5.99 −3.9 −2.09
Ethanethiol 9 0.87 −4.53 0.47 −3.19 −1.3 −1.89
Aniline 14 1.23 −9.34 1.15 −6.97 −5.49 −1.48
Methanol 6 0.57 −6.18 0.63 −4.98 −5.11 0.13
Acetic acid 8 0.83 −8.67 1.03 −6.81 −6.7 −0.11
1-methylcytosine 16 1.32 −23.9 5.96 −16.62 −18.4 1.78
Pyridine 11 0.98 −7.61 1.49 −5.14 −4.7 −0.44
9-methyladenine 18 1.45 −18.5 3.17 −13.88 −13.6 −0.28
1-methyluracil 15 1.28 −15.35 2.78 −11.29 −14.0 2.72
NH3 4 0.46 −5.12 0.87 −3.79 −4.29 0.50
4-cresol 16 1.35 −7.94 1.00 −5.58 −6.13 0.55
4-Methylimidazole 12 1.04 −15.88 3.84 −11.00 −10.25 −0.76
Methylethyl sulfide 12 1.03 −4.83 0.55 −3.25 −1.49 −1.76
n-Butylamine 16 1.08 −7.19 0.81 −5.29 −4.29 −1.00
3-Methylindole 19 1.42 −10.40 1.66 −7.32 −5.91 −1.41
Methylamine 7 0.54 −7.70 1.07 −6.09 −4.5 −1.59
Benzene 12 1.20 −4.69 0.51 −2.98 −0.9 −2.08
RMS error 1.31
Average error 1.06

solvation free energy calculation of small molecules. One
motivation for developing the present optimized surface
model with the quantum charge density is to deal with a
relatively challenging set of compounds, which was studied
by Nicholls et al.51 and in our earlier work16 where the
PB theory and fixed partial charges were used. This set is

TABLE III. Solvation free energy (kcal/mol) decomposition for a set of
21 molecules.

Compound �Gv
p �Gp ��Gp �GQM ABS(�GQM/��Gp)

Ethanol −5.42 −6.33 −0.91 0.61 0.67
Propionamide −8.84 −12.19 −3.35 2.14 0.64
Phenol −6.30 −7.88 −1.58 1.01 0.64
Methanethiol −3.44 −4.29 −0.85 0.50 0.59
Propionic acid −6.31 −7.73 −1.42 0.87 0.62
Acetamide −10.13 −14.23 −4.10 2.65 0.65
Acetonitrile −6.04 −8.23 −2.19 1.36 0.62
Ethanethiol −3.77 −4.53 −0.76 0.47 0.62
Aniline −7.52 −9.34 −1.82 1.15 0.63
Acetic acid −7.01 −8.67 −1.66 1.03 0.62
1-methylcytosine −14.68 −23.90 −9.22 5.96 0.65
Pyridine −5.3 −7.61 −2.31 1.49 0.64
9-methyladenine −13.42 18.50 −5.08 3.17 0.62
1-methyluracil −10.88 −15.35 −4.47 2.78 0.62
4-cresol −6.40 −7.94 −1.54 1.00 0.65
4-Methylimidazole −10.03 −15.88 −5.85 3.84 0.66
Methylethyl sulfide −3.94 −4.83 −0.89 0.55 0.62
n-Butylamine −5.96 −7.19 −1.23 0.81 0.66
3-Methylindole −7.80 −10.40 −2.60 1.66 0.64
Methylamine −6.10 −7.70 −1.60 1.07 0.67
Benzene −3.72 −4.69 −0.97 0.52 0.53

challenging to compute because of the existence of poly-
functional or interacting polar groups, which lead to strong
solvent-solute interactions. The challenge has been illustrated
numerically in the previous work.16, 51 In particular, with the
OpenEye-AM1-BCC v1 charge and corresponding optimized
ZAP 9 radii, the root mean square error (RMS) obtained by
Nicholls et al. is 1.71 ± 0.05 kcal/mol via an explicit solvent
model. The smallest RMS error of their single - conformer
Poisson-Boltzmann approach is 1.87 ± 0.03 kcal/mol.51 By
using our previous optimized surface model (OSM) with
OpenEye-AM1-BCC v1 charges, a better performance in the

TABLE IV. Comparison of free energies (kcal/mol) for 16 compounds.

Compound Gnp �Gp �GQM �Gtotal Exptl51 Error

glycerol triacetate 2.24 −12.73 1.35 −9.13 −8.84 −0.29
benzyl chloride 1.35 −6.29 0.82 −4.11 −1.93 −2.19
m-bis(trifluoromethyl)benzene 2.24 −2.63 0.36 −0.03 1.07 −1.10
N,N-dimethyl-p-methoxybenzamide 1.97 −11.24 1.85 −7.42 −11.01 3.58
N,N-4-trimethylbenzamide 1.86 −9.79 1.52 −6.41 −9.76 3.35
bis-2-chloroethyl ether 1.45 −6.34 0.55 −4.34 −4.23 −0.11
1,1-diacetoxyethane 1.65 −8.47 0.92 −5.90 −4.97 −0.93
1,1-diethoxyethane 1.50 −6.22 0.52 −4.20 −3.28 −0.92
1,4-dioxane 1.00 −6.00 0.66 −4.35 −5.05 0.70
diethyl propanedioate 1.81 −9.08 0.89 −6.38 −6.00 −0.38
dimethoxymethane 1.03 −5.11 0.48 −3.59 −2.93 −0.66
ethylene glycol diacetate 1.59 −9.00 1.03 −6.38 −6.34 0.04
1,2-diethoxyethane 1.54 −6.85 0.61 −4.70 −3.54 −1.16
diethyl sulfide 1.22 −4.32 0.41 −2.69 −1.43 −1.26
phenyl formate 1.37 −6.91 0.89 −4.65 −4.08 −0.57
imidazole 0.95 −14.10 3.29 −9.86 −9.81 −0.05
RMS error 1.50
Average error 1.08
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TABLE V. Free energies (kcal/mol) for 16 compounds using structures from Pubchem data.

Compound Gnp �Gp �GQM �Gtotal Exptl51 Error

glycerol triacetate 2.33 −13.01 1.44 −9.23 −8.84 −0.39
benzyl chloride 1.34 −6.10 0.81 −3.94 −1.93 −2.01
m-bis(trifluoromethyl)benzene 2.22 −3.29 0.41 −0.66 1.07 −1.73
N,N-dimethyl-p-methoxybenzamide 1.94 −12.00 2.04 −8.02 −11.01 2.99
N,N-4-trimethylbenzamide 1.85 −10.59 1.77 −6.97 −9.76 2.79
bis-2-chloroethyl ether 1.44 −5.85 0.58 −3.82 −4.23 0.41
1,1-diacetoxyethane 1.66 −8.51 0.90 −5.94 −4.97 −0.97
1,1-diethoxyethane 1.53 −6.07 0.58 −3.96 −3.28 −0.68
1,4-dioxane 1.05 −5.13 0.49 −3.59 −5.05 1.46
diethyl propanedioate 1.83 −11.78 1.62 −8.33 −6.00 −2.33
dimethoxymethane 1.06 −4.61 0.34 −3.21 −2.93 −0.28
ethylene glycol diacetate 1.68 −9.63 1.4 −6.91 −6.34 −0.57
1,2-diethoxyethane 1.72 −5.68 0.44 −3.52 −3.54 −0.02
diethyl sulfide 1.22 −4.57 0.51 −2.84 −1.43 −1.41
phenyl formate 1.35 −6.61 0.90 −4.36 −4.08 −0.28
imidazole 0.82 −13.16 2.97 −9.28 −9.81 −0.53
RMS error 1.50
Average error 1.18

solvation calculation could be attained. However, RMS er-
ror was still 1.76 kcal/mol. Large errors from benzamides
can not be avoided if both OpenEye-AM1-BCC v1 charge
and ZAP 9 radii are used in the PB approaches. Errors from
the calculation of benzamides were still between 3.5 and
4.0 kcal/mol.

Therefore, aiming at possible improvements, we intro-
duce quantum mechanical corrections to take care of the
charge density. As we did before, structure data of this set
of 16 molecules is taken from the paper of Nicholls et al.51

In particular, atomic coordinates are taken from their support-
ing information, which have already been optimized by using
Gaussian03 package in vacuum with B3LYP/6-31G**. The
atomic radii are still based on their new parametrization ZAP-
9 and multiplied by a common factor 1.1. All other parameters
needed in current model are set in the same way as described
for the above set of 24 molecules. Note that in the previous
papers,16, 51 the set contains 17 molecules. Here we remove
a compound (benzyl bromide) because it has atomic species
Br for which we can not obtain a proper pseudopotential
file from the mentioned pseudopotential generator website.
Since errors from the calculation of benzyl bromide was about

1 kcal/mol which is much lower than RMS, exclusion of ben-
zyl bromide should make the RMS increase.

The results are summarized in Table IV which lists the
values of solvation free energies for different components and
gives a comparison of total solvation free energies between
calculated and experimental values.51 One can also see the
correlation between calculated and experimental data from
Fig. 5. It shows that the RMS error of 16 molecules from
the present model is 1.50 kcal/mol, which is much better than
that from the explicit method of 1.71 kcal/mol.51 It is also
better than our earlier OSM result of 1.76 kcal/mol.16 There-
fore, a conclusion can be reached that nontrivial improve-
ment is made using the charge density directly computed from
quantum mechanical calculations. Figure 4 depicts the surface
electrostatic potentials of four compounds at their correspond-
ing isosurfaces S = 0.50. These surface potential profiles cor-
relate with the surface electron density distribution and chem-
ical properties of the molecules.

Unfortunately, as shown in Table IV, errors from two
amide compounds are still quite large. This problem leads
us to further explore the source of their errors. Note that
in this work, structural parameters are pre-determined and

FIG. 4. Illustration of surface electrostatic potentials of four small compounds at their corresponding isosurfaces S = 0.50. (a) Glycerol triacetate; (b) 1,1-
diethoxyethane; (c) bis-2-chloroethyl ether; (d) dimethoxymethane.
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FIG. 5. Correlation between experimental data51 and the present optimized
surface model with quantum mechanics (OSMQ) in solvation free energies
of 16 compounds.

have not been optimized during the quantum calculation of
the electronic density profile. Therefore, the aforementioned
large errors must be due to the structural parameters. To
prove this we carry out the present solvation analysis of the
16 compounds based on the structural data provided from
the Pubchem database (http://pubchem.ncbi.nlm.nih.gov/).
Our new results are listed in Table V. Indeed, errors from
two amide compounds are significantly reduced. However,
the RMS error of the set (i.e., 1.50 kcal/mol) is exactly the
same as that generated from the computation by using ZAP-9
structural parameters,51 because of larger errors from other
compounds.

Note that our approach belongs to the so called “blind
test”51 in which the same set of atomic parameters is used for
all compounds. Certainly, our errors can be further reduced
if atomic parameters are chosen based on molecular informa-
tion. As such, one is allowed to use different atomic parame-
ters based on the chemical constitution and function groups of
a molecule. For example, carbons within the same molecule
can have different atomic radii. However, such approaches
can no longer be called a “blind test” as discussed by Nicholls
et al.51

D. Solvation free energies of 3 larger molecules

The overall accuracy of the proposed model has been ex-
amined by the above two sets of small molecules. Reliability,

robustness and consistency have been shown numerically. As
far as efficiency is concerned, the proposed model is expected
to be slower than traditional continuum models in the solva-
tion analysis due to the additional QM calculations. However,
the computational cost of the present model can be much
less than that of the traditional QM calculation and existing
quantum mechanical continuum solvation models. This is
due to the following three reasons. First, implicit description
of the solvent is adopted to dramatically reduce the number
of degrees of freedom. Second, the time-consuming quantum
calculation has been accelerated by the pseudopotential and
minimum basis set in the framework of a linear scaling
density functional theory in SIESTA. Furthermore, EPS
charge fitting process, which depends on the definition of
partial charges and the choices of sampling points, is avoided
in this model, we directly use charge density instead. There-
fore, it is believed that with powerful computer facilities,
the current model can be a good choice to handle complex
systems such as large drug molecules, amino acids as well
as moderately large proteins. To examine the performance
of this model for larger molecules, three molecules are
chosen, including phorbol (54 atoms), Staurosporine (66
atoms, a potent protein kinase C inhibitor which enhances
cAMP-mediated responses in human neuroblastoma cells),
and phorbol12,13-dibutyrate (71 atoms, an effective activator
of calcium-activated, phospholipid-dependent protein kinase
C). Solvation free energies of these molecules are computed
and the computational cost is recorded with two quad-core
Xeon 2.3 GHz processors. Our results are listed in Table VI.
It is also shown that the ratios of ��Gp and �GQM are still
about 0.6, which is consistent with those in smaller molecule
calculations. In Figure 6, we illustrate the surface electro-
static potentials for the three compounds. The isosurface S
= 0.50 is chosen for the plot. As shown in our earlier work,16

different isosurfaces may exhibit different electrostatic
characteristic.

V. CONCLUSION

Solvation itself is an elementary process in nature, that
has a great impact on other more sophisticated physical,
chemical, and biological processes. The importance of the
understanding of solvation cannot be overemphasized. In a

FIG. 6. Illustration of surface electrostatic potentials of three compounds at their corresponding isosurfaces S = 0.50. (a) Phorbol; (b) Phorbol12,13-dibutyrate;
(c) Staurosporine.

http://pubchem.ncbi.nlm.nih.gov/
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TABLE VI. Solvation free energies (kcal/mol) of 3 large molecules and corresponding CPU time.

Compound �Gv
p ��Gp �GQM ABS(�GQM/��Gp) Gnp �Gtotal Time (hour)

phorbol −17.69 −3.02 1.94 0.64 3.24 −15.53 0.44
phorbol12,13-dibutyrate −20.00 −4.94 2.91 0.59 4.60 −17.43 0.97
Staurosporine −18.71 −8.39 4.78 0.57 3.79 −18.53 0.82

series of work we have proposed differential geometry based
solvation models.16, 17, 76 A key ingredient of these models
is that the interface, which separates the solvent domain
from the continuum domain, is described by the differential
geometry of surfaces. A variational framework is constructed
for the total free energy functional which consists of polar and
nonpolar contributions. The polar solvation energy was com-
puted by the Poisson-Boltzmann equation with partial charges
adopted from molecular mechanical force fields. Generally
speaking, partial charges in force fields are parameterized
for a certain class of molecules and may not be accurate for
others. Additionally, the fixed charge pattern cannot describe
the charge arrangement during the solvation process. This
drawback limits the accuracy and utility of our earlier solva-
tion models. The present work surpasses such a limitation by
incorporating quantum density into our earlier models.

We believe that solvation is subject to the fundamental
law of physics. As such, all the important state functions,
including the quantum density of the solute, must be deter-
mined by a multiscale total free energy functional, which has
the contribution from the quantum mechanical energy of elec-
trons at the finest scale. Therefore, we construct a new multi-
scale total free energy functional which includes the electron
kinetic energies and potential energies. Apart from the earlier
two governing equations, i.e., the generalized Poisson-
Boltzmann equation for the electrostatic potential and the
generalized Laplace-Beltrami equation for the solvent-solute
boundary, one additional governing equation, the Kohn-
Sham equation for electronic structures, is also derived
from the total energy functional by the Euler-Lagrange
variation. The solution of these three governing equations
gives rise to the desirable minimal free energy of solvation.

Numerical methods and algorithms are discussed for the
solution of three coupled partial different equations (PDEs).
The Poisson-Boltzmann and the Laplace-Beltrami equations
(i.e., a generalized Laplace-Beltrami equation) are solved in a
similar manner as that in earlier approaches.16, 17 The Kohn-
Sham equation is solved twice, one for the solute in vacuum
and another in solution. By means of the reaction field po-
tential, we can relate our Kohn-Sham Hamiltonian in both
situations to the standard one, so that existing computational
software packages can be utilized. The present work has de-
veloped a protocol to make use of SIESTA (Spanish Initiative
for the Electronic Structure of Thousands of Atoms), an effi-
cient linear scaling DFT package, for the solution of the elec-
tronic density. Appropriate iteration procedures are developed
to dynamically couple three governing equations and ensure
the convergence of the solution.

The present multiscale model is validated by the solva-
tion analysis of realistic molecules whose experimental sol-
vation free energies are available. We have particularly an-

alyzed the stability and consistency of the present model
when atomic partial charges in our previous Poisson solver
are replaced by the continuous density distribution. Note that
the Dirichlet to Neumann mapping technique was used in
our earlier Poisson solver to efficiently handle the charge
singularities.27 Whereas, such a technique cannot be utilized
in the present work. It turns out that the present approach is
able to deliver accurate solvation energies.

The present multiscale model is applied to three sets of
molecules. One of these sets is considered as a challenging set
for which many existing models do not work sufficiently well.
The present model shows an improvement upon our earlier
models16, 17 and outperforms an explicit solvation method.51

The computational efficiency of the present model can be a
concern, as quantum mechanical calculations are involved.
We demonstrate that for a molecule with about 60 atoms, the
computation of the present multiscale model can be finished
within an hour by using a two-processor personal computer.

A further improvement of the present multiscale solva-
tion model is to account for the solvent structure modifica-
tions due to solvent-solute interactions. This improvement
can be done with traditional integral equation methods or
liquid density functional theory.76 This aspect is under our
consideration.
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APPENDIX A: VALIDATION OF THE CANCELLATION
OF SELF-INTERACTION ENERGY

As described earlier, the use of the finite difference
scheme in the solution of the Poisson-Boltzmann equation
results in the artifact of self-interaction energy which needs
to be removed. Although it is common to assign the partial
charge at the center of each atom to mimic the effect of elec-
trostatic interactions, this approach also artificially introduces
self-interaction energy by using the finite difference scheme.
It is known that the cancellation of self-interaction energy
works fine with the partial charge formalism by computing
the PB equation twice. However, the direct use of the quantum
mechanical charge density in the PB equation gives differ-
ent outcomes. Because the magnitude of distributed nucleus
charges is much larger than that of partial charges, the direct
use of the quantum mechanic charge density leads to much
larger self-interaction energy in the finite difference scheme.
Therefore, the accuracy of the PB solver for the reaction field
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TABLE VII. Comparison of total electrostatic energy (kcal/mol) and electrostatic solvation energy (kcal/mol) obtained
with the partial charge approach and with the direct use of charge density.

Partial Charge approach Charge density approach

Compound Vacuum Solution �Gp Vacuum Solution �Gp

glycerol triacetate 2443.64 2456.10 −12.46 704426.41 704439.14 −12.73
benzyl chloride 210.88 215.93 −5.04 341037.68 341043.97 −6.29
m-bis(trifluoromethyl)benzene 1472.87 1476.12 −3.25 669772.11 669774.74 −2.63
N,N-dimethyl-p-methoxybenzamide 1068.47 1077.68 −9.21 533551.77 533563.01 −11.24
N,N-4-trimethylbenzamide 866.22 873.91 −7.69 396325.28 396335.07 −9.79
bis-2-chloroethyl ether 315.5 319.77 −4.23 478232.71 478239.05 −6.34
1,1-diacetoxyethane 1754.93 1763.19 −8.25 471728.52 471736.99 −8.47
1,1-diethoxyethane 613.59 618.04 −4.45 332415.49 332421.71 −6.22
1,4-dioxane 316.81 322.47 −5.65 286515.14 286521.15 −6.00
diethyl propanedioate 1726.22 1734.06 −7.84 434796.12 434805.20 −9.08
dimethoxymethane 517.65 522.18 −4.55 258225.34 258230.45 −5.11
ethylene glycol diacetate 1768.99 1777.45 −8.46 434943.17 434952.17 −9.00
1,2-diethoxyethane 484.14 488.46 −4.32 343486.83 343493.67 −6.85
diethyl sulfide 133.21 135.59 −2.39 223784.37 223788.70 −4.32
phenyl formate 876.50 884.3 −7.85 328961.95 328968.86 −6.91
imidazole 944.38 955.65 −11.27 199535.85 199549.02 −13.16

potential and the solvation calculation heavily depend on the
cancellation procedure. To our knowledge, with the direct use
of the quantum charge density in the PB equation, no numer-
ical test has been done for the impact of self-interaction, nei-
ther has the performance of the artifact energy cancellation
been examined. To validate our approach, we test 16 small
molecules whose partial charges can be obtained from the lit-
erature. The details of structure data and parameter setting are
described in Sec. IV. In particular, a uniform grid size 0.25 Å
is applied to the computation with the partial charge approach.
However, in quantum calculation the grid dimension is the
same both in the PB solver and in SIESTA. It is automati-
cally generated in SIESTA by setting the MeshCutoff equal to
125 Rydberg. Therefore, the grid size in the present simula-
tion is no longer uniform and varies with different molecules.
Take the water molecule as an example, when cutoff energy is
125 Rydberg, the grid size is hx × hy × hz = 0.1190 Å
× 0.1192 Å× 0.1182 Å, which is fine enough for the sol-
vation calculation. Table VII lists the total electrostatic ener-
gies both in vacuum and in solution for these 16 molecules,
together with the electrostatic solvation free energies which
are the difference between the total electrostatic energies in
vacuum and in solution. It is found that, as expected, the
self-interaction energies with the quantum charge density are
much larger than those with the partial charge treatment. The
former is hundreds of times larger than the latter. However,
through the cancellation, the electrostatic solvation free ener-
gies are very close to each other. It can be concluded that most
of the self-interaction energy artifact can be removed in the
present finite difference scheme with either the fixed partial
charge source or the charge density source. Therefore, the di-
rect use of the quantum charge density in the PB solver with
the finite difference scheme is validated. Note that although
the total electrostatic energies vary under different mesh cut-
off energies, the resulting electrostatic solvation free energies
show convergence.

APPENDIX B: VALIDATION OF DATA TRANSLATION
AND UNIT CONVERSION

In this section, we demonstrate the reliability of data
translation and unit conversion between the PB solver and
SIESTA by comparing the results from the current calcula-
tions with those from the literature. As stated before, the so-
lution of the PB solver depends on the input of the quantum
charge density from SIESTA. The polarization of electron
cloud, in turn, requires the input of the reaction field poten-
tial obtained from the solution of the PB solver. Therefore,
the reliability of charge density data passed into the PB solver
can be tested by the solution of the PB equation. Meanwhile,
the validity of reaction field potential values is illustrated via
the change of the solute self-energy due to the polarization of
electrons. For comparison, results by Wang et al.75 are used
because of the similarity in energy decomposition in the sol-
vation analysis. In their work, they studied the polarization of
electron cloud during the solvation process as well. A quan-
tum mechanical calculation based on density functional the-
ory and the Poisson-Boltzmann equation was implemented.
Finally, by chemical analysis the solvation free energy was
also decomposed into an electrostatic solvation free term, a
change term in the solute self-energy and a nonpolar term.
The software UHBD together with a pre-determined solvent
excluded surface were used for the solution of the PB equation

TABLE VIII. Comparison of solvation energy components between present
results (OSMQ) and those of Wang et al. (Ref. 75) for three small molecules.

�Gp (kcal/mol) �GQM (kcal/mol) Gnp (kcal/mol)

Compound OSMQ Wang et al. OSMQ Wang et al. OSMQ Wang et al.

Water −7.55 −7.36 0.86 1.01 0.39 0.59
Methanol −6.18 −5.53 0.63 0.77 0.57 0.77
NH3 −5.12 −6.77 0.87 0.92 0.46 0.63
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in their work.75 Table VIII displays the comparison in solva-
tion free energy components for three small molecules which
are water, NH3 and methanol. It is evident that the results of
solvation components from two different methods are compa-
rable to each other. This consistency proves the appropriate
data translation process used in different forms of computa-
tion domains, as well as the correct unit conversion between
the PB solver and SIESTA.
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