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Summary

Haematopoietic stem cell transplantation (HSCT) is an immunological treat-
ment that has been used for more than 40 years to cure a variety of diseases.
The procedure is associated with serious side effects, due to the severe impair-
ment of the immune system induced by the treatment. After a conditioning
regimen with high-dose chemotherapy, sometimes in combination with total
body irradiation, haematopoietic stem cells are transferred from a donor,
allowing a donor-derived blood system to form. Here, we discuss the current
knowledge of humoral problems and B cell development after HSCT,
and relate these to the current understanding of human peripheral B cell
development. We describe how these studies have aided the identification of
subsets of transitional B cells and also a robust memory B cell phenotype.
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Haematopoietic stem cell transplantation

Haematopoietic stem cell transplantation (HSCT) follow-
ing high-dose treatment with cytotoxic drugs and some-
times total body irradiation (TBI) has become a common
clinical practice for treatment of malignant and non-
malignant diseases over the past 40 years. Today, HSCT is
the only curative treatment for certain inherited disorders,
including immune deficiencies, haemoglobinopathies and
bone marrow failure syndromes, and it is also used to treat
haematological and non-haematological malignancies.
Patients with malignant disease receiving HSCT are often
heavily pretreated with combinations of cytostatic drugs
and already have immune dysfunctions prior to transplan-
tation [1]. Patients transplanted for non-malignant diseases
have a wide range of immunodeficiency, ranging from a
total lack of adaptive immunity in severe combined immu-
nodeficiency (SCID) patients to essentially normal function
in patients with haemoglobinopathies. Before infusion of
stem cells, patients are conditioned with a regimen consist-

ing of high doses of cytostatic drugs and sometimes also
TBI to obtain a total (myeloablative conditioning) or a sub-
total myeloablation (reduced intensity conditioning). In
malignant disorders, an intense conditioning regimen con-
tributes to the eradication of remaining neoplastic cells,
while for non-malignant disorders a regimen that induces
tolerance to the graft is sufficient. The graft consists of
CD34+ stem cells obtained from related or unrelated
donors mixed with a smaller or larger number of mature
immune cells. Stem cells obtained from peripheral blood
contain larger number of haematopoietic cells and give
faster engraftment, but are also associated with an
increased incidence of graft-versus-host disease (GVHD)
[2]. The goal for the procedure is a haematopoietic system
that produces fully functional erythrocytes, thrombocytes,
myeloid cell lineages and lymphocytes. The first three
objectives are usually accomplished within the first months.
Lymphocyte numbers and functions are, however, impaired
for extended periods. Whereas the development of T cell
lineages after HSCT has been defined in considerable detail,
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less is known about B cell development and how it relates
to the impaired functional immunity.

The establishment of haematopoietic lineages
after HSCT

The production of different cell types from grafted haemato-
poietic stem cells follows a specific pattern [3,4]. The first cells
produced are granulocytes and other cells of myeloid lineages
[monocytes, macrophages and dendritic cells (DC)], eryth-
rocytes and thrombocytes. These early cells are sometimes
functionally impaired. Monocytes may not produce normal
amounts of interleukin (IL)-1 and neutrophil functions (e.g.
chemotaxis, phagocytosis and bacterial killing) may be
attenuated, in particular in patients developing GVHD [5,6].
In addition, subtype deficiencies have been described within
certain cell lineages. Myeloid DC and Langerhans cells are, for
example, usually found within the first 6 months, whereas
CD123+ plasmacytoid DC are rare even 1 year after transplan-
tation [7,8].

Cells of the adaptive immune system form slower than
innate cells after HSCT, and functional deficiencies can be
detected years after normal numbers of cells are reached
[3,4]. As the numbers of CD8+ T cells increase earlier than
CD4+ T cells, the CD4/CD8 ratio is initially reversed [9]. This
early expansion is dependent on homeostatic peripheral pro-
liferation of memory T cells, both of rare recipient-derived T
cells surviving the conditioning regimen and of donor-
derived co-transferred T cells, rather than from thymic pro-
duction [10,11].

Although this is a polyclonal proliferation, it is not com-
pletely antigen-independent – CD8+ T cell clones recog-
nizing viruses present in the body at the time of
transplantation, e.g. cytomegalovirus (CMV) or Epstein–
Barr virus (EBV) may expand rapidly [12–14]. During the
first months after transplantation a narrow and skewed rep-
ertoire of T lymphocytes with memory-like phenotype pre-
dominates. De novo production of naive cells from the
thymus starts later, particularly in adult patients [10].
Therefore, a dominance of oligoclonal T cells with a
memory phenotype is observed, sometimes for several years
[15]. The generation of naive T cells from donor cells in
thymus does not result in full immune reconstitution for at
least 1 year after transplantation and is compromised by
factors affecting thymic epithelial cells such as irradiation,
GVHD and age. Indeed, slow recovery of specific T cells has
been shown to have a significant impact on survival of the
patients [16].

B cells are rare in peripheral blood during the first months
after HSCT and reach close to normal levels within 6–12
months [17]. The CDR3 immunoglobulin (Ig)M spectra, i.e.
the distribution of B cells with different lengths of their
heavy chain V-D-J regions, are essentially normal with no
indication of homeostatic, oligoclonal proliferation within
3–6 months after transplantation [18,19]. Memory B cells

expressing CD27 do not expand and subnormal levels are
observed during the first 2 years after transplantation
[20–22]. Transfer of donor memory B cells that can be reac-
tivated after antigen re-encounter is well documented
[23,24]. Low numbers of recipient-derived B cells can also be
encountered during the first period after transplantation,
especially after reduced intensity conditioning [25]. Because
B cell-depleted and non-depleted bone marrow give similar
reconstitution in patients who underwent intense myeloab-
lative conditioning, pre-existing mature B cells do not seem
to play a major role long-term [17,26,27]. Although only
donor-derived B cells circulate in blood, the maintenance of
recipient-derived serum antibodies several years after trans-
plantation reflects the resistance and longevity of plasma
cells [28–30].

Immunological problems after HSCT

HSCT is associated with major immunological
complications. During the first weeks after transplantation,
high levels of inflammatory cytokines such as IL-7 and IL-15
induced by the myeloablative conditioning in combination
with lymphopenia induce expansion of donor-derived T
cells. The presence of specific antigens may favour prolifera-
tion of cells directed against mismatched histocompatibility
antigens in the host, leading to acute GVHD (aGVHD) [31].
The chronic form of GVHD (cGVHD) can appear later, and
donor-derived T cells processed in the thymus are then
involved [32]. A certain level of cytotoxic T cell-mediated
self-reactivity may still be beneficial in some cases, as the
so-called graft-versus-leukaemia reaction (GVL), which
reduces the risk of relapse, is mediated by cytotoxic T cells
and natural killer (NK) cells from the donor and prevents
relapse [33].

Another major problem after HSCT is the high incidence
of severe infections due to the immunocompromised state of
the patients [34]. At the very early pre-engraftment stage,
leukopenia in combination with mucosal membrane
damage induced by the conditioning regimen put the
patients at high risk for infections with bacteria and fungi.
Post-engraftment, newly produced cells of the innate
immune system confer some protection, but cellular immu-
nity is impaired. This stage is associated with viral infections,
in particular herpesvirus such as CMV, but fungal infections
are also common. At a later phase, cellular and humoral
immunity slowly recovers. In some patients this phase only
lasts for a year, while in others it may develop into a chronic
problem. The development of GVHD requiring treatment
with immunosuppressive agents interferes with immuno-
logical reconstitution. Recurrent infections with encap-
sulated bacteria, such as Haemophilus influenzae and
Streptococcus pneumonia, are common problems even late
after HSCT [35–37]. B cell-mediated immunity is important
in protection from these bacteria and a deficiency of the
humoral immunity is hence likely to be involved [38].
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Humoral immunity after HSCT

Although mature B cells are efficiently depleted during con-
ditioning, the levels of circulating IgG antibodies drop slowly
[17,39]. This is due to the long half-life of IgG in serum [40]
and the survival of many plasma cells after myelodepletion
[30]. Eventually, specific plasma cells disappear, resulting in
loss of antibodies against antigens encountered before trans-
plantation [41,42]. Why plasma cells are lost relatively
quickly in HSCT patients compared to healthy individuals is
not clear, but may be due to cytotoxicity of the conditioning
regimen [43], damage to supporting cells in the bone
marrow such as eosinophils and stroma [44,45] or depletion
of plasma cells of recipient origin by donor-derived T cells
[30]. In addition, memory B cells may be needed to replenish
the pool of long-lived plasma cells [46,47].

Specific antibodies from long-lived plasma cells are
pivotal in sterile immunity after vaccination, through block-
ing of viruses, bacteria and toxins [48]. The loss of specific
antibodies after HSCT necessitates revaccination. Some vac-
cines, in particular from inactivated viruses and bacteria,
give protective responses within a year after grafting [49].
Others, especially carbohydrate-based vaccines, are not effi-
cient until much later [50,51]. Recipient-derived memory B
cells sometimes seem to survive the conditioning regimen
and give rise to transient monoclonal production of anti-
bodies [30] and functional memory B cells can also be trans-
ferred from the donor [23,52]. Thus, regimens where both
the donor and the recipient are vaccinated before transplan-
tation have been tested to improve post-transplantation
immune responses [53]. As a drawback to this phenomenon,
transfer of autoimmune diseases and allergies from the
donor has been documented [54].

Antibody subclasses emerge in a distinct order after
HSCT, with production of IgM antibodies within a few
months, followed by IgG1/IgG3, IgG2/IgG4 and finally IgA
[55]. This order recapitulates normal development during
the first year of life. Long-term antibody class deficiencies are
observed in some patients [56]. B cells from HSCT patients
show close to normal in vitro responses to polyclonal EBV
activation, while they respond to a lesser degree to pokeweed
mitogen (PWM) [57,58]. The in vitro response to PWM
requires T cells to be present, while EBV does not [59,60]. T
cells from HSCT patients have a decreased ability to support
B cell activation by PWM. Intrinsic deficiencies within the B
cell compartment that may hinder PWM responses have also
been demonstrated [57,58].

Thus, humoral deficiencies after HSCT are common and
can be life-long in some patients, due to intrinsic defects in B
cells as well as in supporting cells. Low numbers of naive
CD4+ T cells in blood have been documented years after
transplantation [15]. Follicular dendritic cells (FDC), a non-
haematological cell type supporting germinal centre forma-
tion, are also damaged [61,62]. These defects severely impair
the production of T cell-dependent antibody responses with

germinal centre reactions and B memory cell development.
From a clinical perspective, the most important problems
late after HSCT, even in the absence of cGVHD, are recurrent
infections with encapsulated bacteria and poor responses to
polysaccharide vaccines [34]. Antibody responses against
polysaccharides are initiated typically through T cell-
independent pathways, and intrinsic B cell defects may be
critically involved in causing these problems.

Human B cell differentiation stages and lineages
present in peripheral blood

The current model of human peripheral B cell development
involves five major consecutive stages: transitional B cells
that have just left the bone marrow but are still unable to
respond to antigen, naive B cells that are fully mature but
have not encountered antigen, germinal centre B cells in
lymphoid organs that are actively engaged in immune
responses, memory B cells that have encountered antigen
and survive for extended periods and plasma cells that
produce soluble antibodies (Fig. 1a). In mice, splenic mar-
ginal zone B cells (MZB) and peritoneal B1 B cells represent
separate lineages [63]. The presence or not of these in
humans will also be discussed below. Germinal centre cells
and fully mature plasma cells are only rarely present in blood
and have been covered in other recent reviews [64]. They will
therefore not be discussed further here.

Transitional cells

Developmentally, mouse transitional B cells are positioned
between bone marrow immature B cells and mature periph-
eral B cells. Induction of apoptosis following BCR receptor
signalling makes this stage an important checkpoint for
removal of autoreactive specificities [65]. Analogous cells
were described more recently in humans based on functional
characteristics and expression of several cell surface markers
[65–67]. Although rare in adult blood, making up fewer than
5% of the B cells, increased frequencies of transitional B cells
are found in cord blood, after bone marrow transplantation,
and in patients with systemic lupus erythematosus (SLE),
X-linked lymphoproliferative syndrome ((XLP) or common
variable immunodeficiency (CVID) [66,67]. When first
described in humans, transitional cells were divided into two
populations, T1 and T2, based on expression of transitional
markers [67,68] (Figs 1b and 2a). It was recently shown that
CD21 expression divides the T1 population into two. CD21low

T1 cells were suggested to be more immature than CD21+ T1
cells [69]. Because most anergic human B cells that have
encountered antigen down-regulate expression of CD21
[70], it is possible that CD21low T1 cells are anergic. An alter-
native definition of human transitional B cells is that they are
CD27-IgM+ and lack the ABCB1 transporter protein [71]
(Fig. 2b). Based on these two ways of defining transitional
cells, Palanichamy et al. found that cells lacking ABCB1 but
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otherwise conforming to the phenotype of naive cells were
enriched after B cell depletion with rituximab [72]. These
cells appeared to be at a stage between T2 and naive cells, and
were designated T3 cells. We found recently that T3 cells
can be divided further into two populations based on
CD45RBMEM55 expression (Fig. 2b; Bemark et al., submitted;
see below). Thus, in humans, three consecutive stages of
transitional cells are now recognized – T1, T2 and T3 – and
T1 and T3 cells can be divided further based on expression of
CD21 and CD45RBMEM55, respectively (Fig. 1a,b).

Naive cells

Naive cells constitute more than half of the blood B cells in
healthy adults [73]. They express low levels of IgM, high
levels of IgD and lack expression of CD27. In addition, they
are the only blood B cells that express the ABCB1 transporter
[71]. Activation requires binding of antigen to cell-surface
antibodies, CD40 signals from CD4+ T cells as well as cytok-
ine stimulation. After activation, some naive B cells will dif-
ferentiate to early IgM-producing plasma cells while others
enter B cell follicles, where they form germinal centres [74].
By regulating the class-switch recombination process, cytok-
ines derived from T cells present during B cell activation

determine which antibody class the B cells will produce.
After random mutagenesis and selection of high-affinity B
cell clones, mutated high-affinity class-switched B cells leave
the germinal centre to become long-lived memory cells or
long-lived plasma cells.

Memory B cells

Memory B cells are easier to activate than naive cells, and
induce specific IgG production rapidly after antigen
re-encounter [75]. Markers to distinguish naive B cells from
memory B cells with mutated antibody were lacking for a
long time. The discovery that CD27 was expressed on
mutated human peripheral blood B cells was therefore
important [73]. When the expression of both CD27 and IgM
is determined on B cells, two populations of similar sizes can
be identified: IgM- class-switched memory and IgMhigh

memory cells. The latter are sometimes separated further
based on high or low IgD expression. Whereas it is generally
agreed that the IgM- cells are class-switched post-germinal
centre memory cells, the origin of IgMhighCD27+ cells is
controversial. It is either argued that IgM+ memory cells are
bona fide memory B cells generated early during germinal
centre formation [76,77] or B cells diversified in the absence

Bone 
marrow

Blood

Peripheral
lymphoid 

organs

Blood

T1

Immature

T2

T3

Naïve

GC

Plasma- 
blast

IgM
‘memory’

IgG/IgA
memory

Plasma
cell

Bone marrow
Mucosa

T1

T2

T3

Naïve

CD21lowT1

Plasma- 
blast

IgM
‘memory’

IgG/IgA
memory

IgM

high

high

low

high

low

–

–

high

high

low/–

IgD

low

int

high

high

high

high

–

–

low

high

low/–

CD5

high

high

low

–

–

–

–

–

–

+/–

CD10

+

+

low

–

–

–

–

–

CD20

high

high

+

+

+

+

+

+

+

–

CD24

high

high

int

low

low

low

low

int

int

CD38

high

high

int

low

low

low

low

–

–

high

CD27

–

–

–

–

–

–

–

+

+

+

high

ABCB1

–

–

–

–

–

+

–

–

–

CD27– IgG/IgA
memory

CD23

+/–

+

+

+

+

+

low

low

CD21

–/low

+

+

+

+

+

+

+

+

(a) (b)

CD45RBMEM55

–

–

–

–

+

–

+

+

+

+

+

CD21lowT1

M
Z

 l
in

e
a
g
e

B
1

 l
in

e
a

g
e

T3’ 
T3’

B1-like

CD43

–

–

–

–

–

+

–

+

+

B1-like

Fig. 1. Human B cell development. (a) When immature B cells leave the bone marrow, they go through distinct differentiation stages. Transitional

(T1, T2 and T3), naive and memory B cells as well as plasmablasts are found in blood. Black arrows indicate differentiation pathways well supported

by experimental data, grey arrows pathways less well-defined or only proposed pathways. Recent data suggest that immunoglobulin (Ig)M+CD27+
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based on expression of cell surface markers. The subtypes express or lack expression, as indicated. Blank spaces indicate that the expression of this

marker has not, to our knowledge, been described in the literature.
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of an immune response that are similar to cells found in the
marginal zone of the spleen [78,79] (see below). In addition
to these populations, other minor memory B cell popula-
tions have been described. These include CD27+IgM-IgD+

cells and CD27- class-switched cells [71,73,80]. Recently, our
group found that all memory B cell populations, but not
naive cells, express CD45RBMEM55, possibly making it a better
marker for memory B cells than CD27 [81].

Plasmablasts and plasma cells

Cells immediately preceding plasma cells in development,
so-called plasmablasts, home to bone marrow or mucosal
surfaces through the blood to develop into plasma cells. They
can be identified by their expression of high levels of CD27
and CD38 and lack of CD20. Normally, these cells represent
a minor population in peripheral blood, but after infection
or vaccination the number of antigen-specific plasmablasts
in blood increases rapidly and then disappears quickly [82].
Few fully mature plasma cells are found in blood.

Marginal zone and B1 B cells

The human subsets defined above, except for IgMhighCD27+ B
cells, are similar to developmental stages described for mouse
follicular B2 cells. In mice, two separate B cell lineages asso-
ciated with innate immunity exist; peritoneal B1 B cells and
marginal zone B cells (MZB), that have distinct developmen-

tal pathways [63]. These are sometimes referred to as innate-
like B cells, as they have a separate repertoire of unmutated
antibody specificities and respond to antigens in the absence
of T cell help. Mouse MZB share their early differentiation
with follicular B2 cells, but are selected during the transi-
tional stage to enter the marginal zone of the spleen. B1 B cells
are generated early during ontogeny and home to the perito-
neum where they form a self-renewing compartment [83]. If
these subsets are also present in humans has been debated,
specially whether human MZB and B1 cells are present
among the IgMhighCD27+ cells in blood.

Weill and colleagues suggested in 2004 that non-class-
switched CD27+ human blood B cells are the circulating
counterpart of cells present in the splenic marginal zone
rather than memory cells generated in germinal centres [84].
Subsequently, the same group showed that these subsets may
diversify their antibody genes through somatic hypermuta-
tion in the absence of typical immune responses [85]. In
favour of a non-memory origin, mass sequencing of anti-
body genes did not reveal related sequences between IgM+

and IgM- CD27+ B cells in human blood, and found little
evidence for clonal expansion among IgM-CD27+ B cells
[79]. Reports have also suggested that the function of circu-
lating IgMhighCD27+ B cells and marginal zone human B cells
may be similar to the one described for MZB in mice, i.e. to
respond to polysaccharides in T independent response [78].
Mouse MZB are non-mutated, mainly sessile B cells, clearly
differentiating them from human circulating IgMhighCD27+ B

65

82

3·6
11

78

3·8

15

83

72

9·2
13

66

9·8

20

PB B cells CD27– B cells

C
D

2
7

C
D

2
4

C
D

1
0

(a)

Adult

9-year
child

T1

T2
NaïveT3

IgMIgG/IgA
Memory

CD45RB
MEM55

Transitional CD27–/Rho+

C
D

5

Rhodamine

52

1225

C
D

1
0

42 37

C
D

2
7

(b) PB B cells

Naïve

Memory

T1/T2 T1/T2

T3
35

T3´
23

T3
42

T3´
21

T1
T2

NaïveT3 Trans

CD27

IgM CD38 CD38

Fig. 2. Identification of peripheral blood B differentiation stages based on expression of surface markers. In (a) peripheral blood cells were stained

with antibodies against CD19, CD27, immunoglobulin (Ig)M, CD24, CD38 and CD10. To the left, CD19+ B cells were gated into IgM+CD27+,

class-switched memory B cells and CD27- cells. The CD27- cells were divided further into T1, T2 and T3/naive cells based on expression of CD24

and CD38 (middle panels) or CD10 and CD38 (right panels). Typical results obtained using peripheral blood from five adults and four children are

shown. In (b), peripheral blood cells were preincubated with the dye Rhodamine 123 followed by antibodies against CD19, CD27, CD5, CD10 and

CD45RBMEM55. CD19+ B cells were divided into naive, memory and transitional cells based on expression of CD27 and extrusion of the dye (upper

panel). The transitional cells could be divided further into T1/T2 cells expressing CD5 and CD10, and two distinct populations (T3 and T3′) that

lacked these based on expression of CD45RBMEM55 (lower panels). The data represent typical data from three different healthy donors tested.

TRANSLATIONAL MINI-REVIEW SERIES ON B CELL SUBSETS IN DISEASE

B cell development after HSCT

19© 2011 The Authors
Clinical and Experimental Immunology © 2011 British Society for Immunology, Clinical and Experimental Immunology, 167: 15–25



cells, and many groups still prefer to interpret them as
memory cells [76,77].

Unlike the situation in mice, only a small percentage of
cells isolated from the human peritoneum express B cell
markers, making up a population of less than 105 cells in
healthy adults [86]. Of these, some express CD5 [87], a
marker for B1 cells in mice, but it is questionable if these are
B1 cells, as the largest CD5-expressing human B cell popu-
lation is transitional cells. B cells in the human peritoneum
do not seem to contribute to mucosal IgA-producing plasma
cells, a feature associated with mouse B1 cells [88]. This does
not exclude the possibility of B1-like cells in other organs.
Griffins et al. described recently a small population of
unmutated IgM+ B cells present in both cord blood and
healthy adults that expressed CD27 together with CD43 and
shared functional characteristics with mouse B1 cells [89].
Although this is to be confirmed by other groups, it may
explain the importance of IgMhighCD27+ B cells in the
responses to encapsulated bacteria [38].

Thus, although it is not proven indisputably that humans
have B cell lineages distinct from follicular B cells, several
recent studies suggest that this may be the case. In particular,
these studies have suggested that such cells can be identi-
fied among circulating IgMhighCD27+ human B cells. The
IgMhighCD27+ population may hence not be homogeneous
but rather made up of several subtypes of cells with distinct

characteristics, possibly explaining some of the conflict-
ing data with regard to the origin and function of this
subtype.

CD45RBMEM55 is expressed differentially during B
cell differentiation

We demonstrated recently that CD45RBMEM55 is expressed
differentially during B cell differentiation [81]. Although
CD45 is expressed on all haematopoietic cells, it has three
exons, RA, RB and RC, which are expressed differentially in
many of them during differentiation as a consequence of
regulated splicing [90]. The splicing pattern of CD45 does
not change during peripheral human B cell development,
with the longest CD45RABC form being dominant at all
stages. However, the expression of the CD45RBMEM55 epitope
changes through developmentally regulated glycosylation in
human B cells, with high expression on essentially all CD27+

B cells but not on naive or transitional B cells [81]. The
CD45RBMEM55 epitope is also present on a minor population
of CD27- B cells that express high levels of IgM (Fig. 2b).
These cells are present in increased numbers in young
children and in cord blood, and constitute 25–50% of
all B cells even 1 year after HSCT, indicating that these are
immature B cells (Bemark et al., submitted). Interestingly,
these IgMhighCD27-CD45RBMEM55+ cells lack transitional cell

Table 1. Cell surface markers showing abnormal expression on B cells after haematopoietic stem cell transplantation (HSCT).

Antigen Number of cells* Comments References

mIgM A High levels of membrane bound IgM on B cells post-HSCT [98–100]

mIgD A Slightly increased levels of membrane-bound IgD post-HSCT [98]

Few mIgD- class-switched cells 1 year after transplantation [21]

CD1c + Increased numbers first year post-HSCT [97]

CD5 + Increased numbers first year post-HSCT [96–98,101]

Increased expression of IgM, CD20 and HLA-DR on CD5+ B cells [101]

Normal expression of CD11a, CD44, CD54 and CD62L on CD5+ B cells [102]

N Normal numbers first year post-HSCT [103]

CD10 + Increased numbers post-HSCT [95,104,105]

N Normal numbers post-HSCT [97,103,106]

CD11a - Decreased numbers of CD5- B cells that express CD11a 4 months after transplantation [102]

CD21 - Decreased numbers first half-year post-GSCT [27,93,98,99,105]

N Normal numbers of cells first 10 months post-HSCT [97,103]

CD23 - Low numbers first half-year post-HSCT, then normal or slightly increased numbers of cells [26]

+ Increased numbers of cells first 10 months, then normal numbers [97,103,104]

N Normal numbers early and late post-HSCT [98]

CD27 - Low numbers post-HSCT. Both IgM+ and class-switched cells affected [20,91–94]

CD38 + Increased numbers first half-year post-HSCT [97–99,106]

CD44 - Low numbers of CD5- B cells that express CD44 4 months after transplantation [102]

CD54 - Low numbers of CD5- B cells that express CD54 4 months after transplantation [102]

CD62L – Low numbers first 10 months [98,103]

Low numbers of CD5- B cells express CD62L 4 months after transplantation [102]

N Normal numbers post-HSCT [97]

HLA-DR N Normal numbers post-HSCT [97,106]

*The number of B cells in blood expressing the respective marker: A: all B cells; N: normal expression compared to healthy controls; -: decreased

percentage of B cells in blood compared to healthy control; +: increased percentage of B cells in blood compared to healthy control; HLA-DR: human

leucocyte antigen D-relayed; Ig: immunoglobulin.
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markers such as CD5 and CD10 but, in similar with transi-
tional cells, do not express ABCB1.

Development of B cell subtypes after HSCT

Some recent studies have investigated the development of B
cell subsets after HSCT following the classifications outlined
above. These have found low numbers of class-switched and
IgM+ CD27-expressing memory B cells in peripheral blood
for extended periods after transplantation [20,91–94].
In contrast, the number of transitional cells was high
[66,94,95]. Studies performed before the current schedule of
B cell stages, however, also determined the expression of
many cell surface markers on B cells (Table 1). These studies
can now be reconciled with the current understanding of B
cell development. Many of these early studies found
increased expression of CD5, CD38 and IgM and lowered
levels of CD62L expressing cells, all features of transitional B
cells. In addition, few class-switched cells were found, in line
with a delay in memory cell formation.

It should, however, be pointed out that phenotypic fea-
tures of transitional human B cells change after HSCT
(Fig. 3c; Bemark et al.; submitted). Although IgMhigh cells in
blood constitute the majority of B cells 1 year after trans-
plantation, fewer than half of these express other transitional
markers (Fig. 3a–c). Many IgMhighCD27- B cells instead
express CD45RBMEM55, identifying them as the T3′ popula-
tion described above. The slow development of CD27+ B cells
after HSCT is of interest (Fig. 3b). The establishment of
class-switched memory cells mimics the production of class-
switched antibodies in serum, and most probably the ability
to form germinal centres in peripheral lymphoid organs.
With the proposed role of IgM+CD27+ B cells in response to
encapsulated bacteria, their slow occurrence may be linked
to infections after HSCT. Furthermore, the suggestion that
IgMhighCD27+ B cells are from a separate lineage to follicular
B cells indicate that these lineages may establish slowly or not
at all after HSCT.

Interestingly, many phenotypic changes encountered on B
cells after HSCT are more pronounced in patients develop-

ing GVHD, and the B cell reconstitution is, in this case, also
delayed [91–94,96–99]. Thus, monitoring of phenotypic
changes on B cells following HSCT may not only give clues
about the maturity of the immune system, but may also give
early indications if GVHD is developing.

Concluding remarks

HSCT patients provide a rare opportunity to study early
peripheral cell development through consecutive blood

�
Fig. 3. Subtyping of B cells in children who have undergone hae-

matopoietic stem cell transplantation (HSCT). (a) In healthy adults,

the CD19+ B cells can be divided into immunoglobulin (Ig)M-
highIgDlowCD27+ and IgM-IgD-CD27+ memory cells and IgMlowIg-

DhighCD27- naive cells, with few cells being IgMhighCD27-. In

paediatric patients who have undergone HSCT, IgMhighIgDhighCD27-

B cells is a major population even 1 year after transplantation when

normal numbers of B cells has been reached in blood. In (b) are

shown the mean frequency of CD27+ B cells and IgMhighCD27+ B

cells in healthy children (n = 9), healthy adults (n = 3) or children

who have undergone HSCT 1 year prior to the analysis (n = 10). (c)

Few of the IgMhighCD27+ B cells express markers typical for transi-

tional cells in healthy controls (n = 4) or paediatric HSCT patients

(n = 4).
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samples from a single donor during reconstitution, allowing
refinement of our knowledge of B cell subset development
and complexity. Deficiencies associated with poor B cell
responses can result in long-term problems. Therefore,
monitoring the development of B cell subsets may prove
clinically relevant, giving insights into how deficiencies
develop and to tailor the care of the patients. Such measure-
ments could, for example, monitor infection sensitivity,
development of GVHD, determine when vaccinations are
best performed and track responses to vaccines or infections.
Absolute and relative frequencies of immature, naive, class-
switched memory B cells or plasma blasts in blood are can-
didates for such predictions. In addition, as the true identity
of IgMhighCD27+ B cells is now being unravelled, measure-
ments of these may give insights into why some HSCT
patients experience repeated infections with encapsulated
bacteria. Few recent clinical studies have been performed
where the presence or absence of B cell subtypes in HSCT
patients are linked to clinical problem, and future studies
that address these issues are therefore called for.
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