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The surprising recent discoveries of quasicrystals and their approx-
imants in soft-matter systems poses the intriguing possibility
that these structures can be realized in a broad range of nanoscale
and microscale assemblies. It has been theorized that soft-matter
quasicrystals and approximants are largely entropically stabilized,
but the thermodynamic mechanism underlying their formation re-
mains elusive. Here, we use computer simulation and free-energy
calculations to demonstrate a simple design heuristic for assem-
bling quasicrystals and approximants in soft-matter systems. Our
study builds on previous simulation studies of the self-assembly
of dodecagonal quasicrystals and approximants in minimal systems
of spherical particles with complex, highly specific interaction po-
tentials. We demonstrate an alternative entropy-based approach
for assembling dodecagonal quasicrystals and approximants based
solely on particle functionalization and shape, thereby recasting
the interaction-potential-based assembly strategy in terms of
simpler-to-achieve bonded and excluded-volume interactions.
Here, spherical building blocks are functionalized with mobile sur-
face entities to encourage the formation of structures with low sur-
face contact area, including non-close-packed and polytetrahedral
structures. The building blocks also possess shape polydispersity,
where a subset of the building blocks deviate from the ideal sphe-
rical shape, discouraging the formation of close-packed crystals.
We show that three different model systems with both of these
features—mobile surface entities and shape polydispersity—con-
sistently assemble quasicrystals and/or approximants. We argue
that this design strategy can be widely exploited to assemble qua-
sicrystals and approximants on the nanoscale and microscale. In
addition, our results further elucidate the formation of soft-matter
quasicrystals in experiment.

colloids ∣ nanoparticles ∣ micelles

Until fairly recently, quasicrystals and their approximants have
been observed only in atomistic systems. Over the past

decade, there have been sporadic reports of quasicrystals and ap-
proximants in nanometer and micron-scale systems. Examples in-
clude holographically trapped (1) and laser-field-induced (2, 3)
quasicrystalline materials made of micron-sized spheres, self-as-
sembled quasicrystals and approximants formed by spherical den-
drimer micelles (4, 5), phase-separated star-triblock copolymers
(6), binary nanoparticle superlattices (7), spherical micelles of
phase-separated block copolymers (8, 9), and simulations of hard
tetrahedra (10). These reports pose an intriguing possibility that
these structures might be assembled in a broad range of systems.
In one such system, spherical dendrimeric micelles functionalized
with alkyl tails form a dodecagonal (12-fold) quasicrystal (DQC),
as well as other non-close-packed structures such as the body-cen-
tered cubic (bcc) and A15 crystals (11). In similar systems, various
types of block copolymer micelles arrange into quasicrystals with
12-fold, and possibly 18-fold, symmetry (9), as well as various
periodic approximants (8).

The dendrimer and block copolymer micelle systems in parti-
cular all share an important common feature: Their constituent
micelles exhibit a soft “squishy corona” in which terminal groups
avoid each other to minimize steric interactions. It has been pre-
dicted that this mechanism causes the system to adopt structures

that minimize surface contact area between neighboring micelles
(12, 13). The structure that minimizes surface contact area,
known as the Weaire–Phelan or A15 structure (14), is structurally
similar to a DQC, but, because DQCs do not minimize surface
contact area, other factors must contribute to their stability. It
has been suggested that entanglement of terminal groups may
give rise to three-body entropic effects that favor quasicrystals in
systems of monodisperse micelles (15, 16). In all these micellar
systems, entropic effects appear to play a predominant role in
stabilizing the quasicrystals and approximants, potentially distin-
guishing them from many of their atomistic counterparts in which
strong attractive interactions are present.

Computer simulation studies of self-assembly have demon-
strated that quasicrystals can be assembled by an inverse-design
mechanism. In particular, pair potentials can be designed to make
close packing unfavorable, causing such systems to instead form
quasicrystals and approximants (17–19). These complex inter-
action potentials have yet to be realized in experimental systems
on the microscale or nanoscale, but we propose that a similar
effect can be achieved via shape polydispersity, where a subset of
the micelles deviate from the ideal spherical shape. Shape poly-
dispersity arises naturally in many micelle-forming systems, and,
in general, particle shape is a tunable parameter in many micro-
scale and nanoscale systems (20).

In this article, we introduce a design strategy based on the
ideas described above to direct the self-assembly of three-dimen-
sional DQCs and/or their periodic approximants in systems of
(approximately) spherical micelles or similarly shaped particles.
We study different types of nanoscale/microscale building blocks
with features that promote structures with low surface contact
area and suppress close packing. Structures with low surface
contact area are promoted by functionalizing spherical building
blocks with mobile entities connected to their surface, similar to
functionalized spherical dendrimers (5). Close packing is sup-
pressed by incorporating shape polydispersity into the system in
the form of particle asphericity. Both features are relatively com-
mon aspects of soft matter and related systems and should be
achievable experimentally; a schematic of our strategy is shown
in Fig. 1A. Applying this strategy in computer simulations, we
show three key results. (i) We verify the theoretical predictions
that interactions between terminal coatings can drive the system
to form surface-area minimizing structures (12, 13). (ii) We de-
monstrate that shape polydispersity can be used to suppress the
formation of close-packed structures. (iii) We show that three
different simulated micellar systems that possess both of these
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characteristics reproducibly form DQCs and/or approximants.
These models—a simplified model of a spherical micelle (MSM)
and two micelle-forming systems composed of tethered nano-
sphere (TNS) building blocks (21–24)—represent the only simu-
lated micellar systems currently known to form 3D quasicrystals
or approximants through self-assembly. Because the models are
closely related to experimental systems known to form DQCs
and/or approximants (4, 5, 8, 9), our results may provide pertinent
insight regarding their formation. In the future, the assembly
strategy that we employ may serve as a heuristic for expanding the
range of systems that assemble DQCs and approximants.

DQCs and Approximants
We first introduce definitions and terminology that will facilitate
our discussions in subsequent sections. A crystal is defined as a
structure with long-range positional order, as identified, for ex-
ample, by the presence of Bragg peaks in the diffraction pattern
(25). A quasicrystal is a quasi-periodic crystal; that is, a crystal
that lacks periodicity (26), but still exhibits diffraction peaks.

Quasicrystals sometimes (but need not) exhibit rotational symme-
tries that are incompatible with periodicity. Several types of
quasicrystals have been observed in experiment, but in this article
we focus on DQCs in particular because those are, to date, the
most commonly reported type of quasicrystal in soft-matter sys-
tems. DQCs are characterized by their long-range dodecagonal
rotational symmetry.

DQCs are polytetrahedral structures (27) of the Frank–Kasper
(FK) type (28). For the class of FK structures considered here,
ordered structures are distinguished by their “tiling” pattern, con-
structed by connecting the centers of neighboring 12-member
rings of particles (see Fig. 1 B–E). The structures are layered,
and, whether periodic or aperiodic in the plane, they repeat
periodically in the direction orthogonal to the plane (into the
page in Fig. 1). There are five valid tiles that can be arranged
to form structures with complete 12-member rings without disor-
der. These tiles take the shape of a square, a triangle, a rhomb, a
shield, and an asymmetric hexagon (18), and are illustrated in
Fig. 1B. Periodic arrangements of these tiles result in periodic
crystals, sometimes known as “approximants,” that are indistin-
guishable from DQCs locally (29). Three common approximants,
known as the A15, Z, and sigma structures, are shown in Fig. 1C.
Increasingly complex approximants, such as the structure de-
picted in Fig. 1D, can be constructed by inflation, whereby tiles
are sequentially replaced with smaller subtiles (30, 31).

In addition to periodic arrangements, nonperiodic arrange-
ments of tiles that fill the plane can also be constructed, resulting
in quasicrystals. Various methods can be used to construct the
tilings; methods such as inflation (31), projection (30), or match-
ing rules (32, 33) produce deterministic quasicrystals, whereas
random tilings (34) give rise to a range of similar quasicrystals
with the tiles reshuffled locally, characterized by local phason
fluctuations. Imperfect quasicrystals of either type may also exhibit
global phason strain whereby particular tiles or orientations of tiles
occur more or less frequently that in the ideal case, giving rise to
shifts and broadening of the diffraction peaks (35). Deterministic
quasicrystals are thought to be energetically stabilized, whereas
random-tiling quasicrystals are thought to be entropically stabi-
lized (34). Fig. 1E shows a typical random-tiling DQC (36) that
we envision might form in soft-matter systems, which are often sta-
bilized by entropy. The structure is composed mostly of squares
and triangles, and is locally similar to the sigma approximant. The
sigma approximant is the thermodynamically stable state for many
systems that form DQCs, and the two structures often arise in
nearby regions of parameter space (4, 5, 7). The experimental pro-
tocol may dictate whether a metastable DQC or a stable sigma
approximant is obtained. In the case of the simulations we perform
on model micelles, we are limited to relatively small, finite size
simulations, as discussed subsequently. As such our systems are
typically too small to unambiguously distinguish between quasi-
crystals and approximants, or identify phason strain. With this
caveat in mind, we refer to our assembled structures as quasicrys-
tals if they are composed of valid tiles for the DQC, exhibit strong
peaks in the diffraction pattern, and are not periodic (aside from
the trivial periodicity imposed by the periodic boundary conditions
on the scale of the sample).

Simulation Results
We begin by performing molecular dynamics simulations (37) of a
simplified MSM that considers only excluded volume interactions
between terminal groups on the micelle surface (Fig. 2A). Unlike
the truly minimal “fuzzy sphere” micelle model of ref. 12 that
treats intermicelle interactions with an effective pair potential,
our model treats these excluded volume interactions explicitly
through mobile spheres attached to the micelle surface. This
allows us to (i) study the self-assembly of the micelles and (ii)
directly measure the relative effect of entropy and energy in driv-
ing the stabilization of assembled phases. The MSM consists of a

Fig. 1. Assembly strategy and structure of the DQCs and approximants. (A)
Schematic of the proposed two-part strategy that uses functionalization and
shape to form DQCs. Particle functionalization (Left) promotes the formation
of structures with low surface contact area, and asphericity (Right) inhibits
the formation of close-packed structures. Particles colored red in the aspheri-
city schematic (Right) are meant to highlight where the crystal is disrupted by
the presence of aspherical particles (blue). (B) Valid tiles for the DQC. The
DQC and approximants can be described as a periodic stacking of plane-
filling arrangements of tiles in the z direction (out of the page). The gray
particles at the nodes of the tiles form layers at z ¼ 1∕4 and z ¼ 3∕4 and sit
at the centers of 12-member rings. The yellow particles and red particles form
layers at z ¼ 0 and z ¼ 1∕2, respectively. In the DQC, the gray particles form a
dodecagonal layer with 12-fold symmetry, and the yellow and red particles
form hexagonal layers rotated by 30° to obtain 12-fold symmetry. (C) Three
common DQC approximants. (D) A higher-order approximant generated
through the inflation method (see text). (E) A representative DQC random
tiling of squares, triangles, rhombs, and shields, adapted from ref. 36.
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noninteracting rigid scaffolding with 42 points on the surface of
a sphere, given by the vertex points of a two-frequency icosahe-
dral geodesic with diameter ¼ 5.27σ. With this diameter, the
average spacing between surface points is 1.5σ. Each surface
point anchors a small spherical particle with diameter σ. The
particles and surface points are attached by harmonic springs of
stiffness k that control the degree of surface particle mobility.
Surface particle mobility increases as k decreases, creating a
larger, “squishier” outer corona. Decreasing k can also be inter-
preted as increasing the radius of gyration of the surface coating,
if we consider the spheres to be dumbbell polymers anchored
to the surface (38). Excluded volume interactions between the
surface spheres are modeled by the purely repulsive Weeks–
Chandler–Andersen (WCA) potential (39) (see SI Text). Roughly
speaking, the MSM can represent many different nanoscopic
objects, including core-satellite nanoparticles (40–42), where
nanospheres are functionalized with an outer coating of smaller
nanospheres; spherical micelles composed of dendrimers (5, 12,
13) where the outermost layer of the dendrimer “tree” is functio-
nalized with oligomers or polymers; spherical block copolymer
micelles (8, 9) that possess an outer corona of polymers; or sphe-
rical micelles created from amphiphilic tethered nanoparticles
(21–23), as we discuss later.

In the absence of shape polydispersity, the MSMs tend to form
close-packed [face-centered cubic (fcc) or hexagonally close
packed (hcp)] arrangements for k > 5 (lower surface particle
mobility) and bcc structures for k ≤ 5 (higher surface particle

mobility); structures are identified using the algorithms described
in ref. 43. These results support the conjecture that increasing
surface particle mobility drives the system toward structures
with lower surface contact area (such as bcc), as we discuss in
detail in the following section. At these state points, sphere pack-
ing constraints favor the bcc structure over the surface-contact-
area-minimizing A15 structure. A bcc-ordered structure of 60
MSMs is shown in Fig. 2B for k ¼ 5.

We find a more dramatic change in the structural arrangement
of the MSMs when shape polydispersity is incorporated into the
system in the form of aspherical “dimer” micelles (see Fig. 2C).
We allow dimers to form in an unbiased manner by exploiting
the fact that at low k, surface particles are only loosely bound
to the surface sites on the scaffold, allowing theMSMs to overlap;
some of the MSMs become locked together into dimers when k
is increased. By slowly increasing from a highly disordered state
at k ¼ 2, we create systems with dimer fraction in the range
0.20 ≤ f dimer < 0.40, consisting of dimers with an average aspect
ratio of approximately 1.45∶1. This procedure roughly mimics the
process by which micelles are formed in amphiphilic soft-matter
systems, such as the tethered nanoparticle models that we discuss
later. In such systems, spherical micelles assemble from a disor-
dered mixture of individual building blocks as the system tem-
perature is reduced (22, 44) (see SI Text). In the MSM system,
increasing k has a similar effect to decreasing the temperature.

We find that systems with a mixture of spherical and dimer
MSMs consistently form FK structures (28). Fig. 2D shows a
typical sigma approximant formed by 60 MSMs at k ¼ 5 with
f dimer ¼ 0.24; sigma structures were reproducibly observed in
over 25 independent simulations where k was slowly increased
from 2 to 5. This approximant closely matches the expected result
for 60 particles interacting via the Dzugutov or Lennard–Jones–
Gauss pair potentials at densities that yield DQCs for larger
systems. The formation of the sigma structure is also consistent
with the observed experimental behavior of spherical dendrimer
(4) and block copolymer micelles (8). Three representative
independent simulations, each composed of 360 MSMs in rectan-
gular boxes with aspect ratio 1.28∶1.28∶1.00, are presented in
Fig. 2 E–G. Fig. 2 E–G show systems at k ¼ 4, 4.75, and 5, with
f dimer ¼ 0.39, 0.37, and 0.36, respectively. In all cases, we observe
finite-size DQCs that exhibit long-range rotational order of the
MSM center of mass but no periodicity aside from the trivial
periodicity imposed by the boundary conditions. Our simulations
are limited to smaller system sizes than typical point-particle
models (17, 19) because we must resolve timescales correspond-
ing to the microscopic motions of the surface particles that com-
prise the MSM, rather than the MSM centroid. Nevertheless,
the finite structures depicted in Fig. 2 E–G exhibit local indicators
of DQC ordering. The systems form unique tilings with different
configurations rather than any particular approximant. The sys-
tems also contain the entire range of valid tiles, rather than con-
taining squares and triangles exclusively like the sigma phase,
which often competes with DQCs for stability. Because DQCs
grow more easily than approximants (45), it is possible that the
DQC-like tilings are thermodynamically metastable relative to
a stable approximant. The structures do not rearrange or undergo
phason flips after solidification during the timescale of our simu-
lations.

We can further test our proposed strategy in systems where we
do not have explicit control over surface particle mobility or
shape polydispersity, but where these two key features instead
emerge naturally as a result of phase separation. We consider two
model TNS systems, mono-TNS (21, 22) and di-TNS (21, 23, 24),
both of which form roughly spherical micelles with mobile surface
entities. Schematics of the building blocks are shown in Fig. 3 A
and E, respectively, and the micelles they form are shown in
Fig. 3 D and G, respectively. The mono-TNS micelles have an
outer shell of mobile nanospheres that closely match the MSM

Fig. 2. MSM systems. (A) MSM monomer (white) extracted from a simula-
tion. (B) Sixty MSMs at k ¼ 5 with fdimer ¼ 0 (no dimers) in a bcc configura-
tion. (C) MSM dimer (cyan) extracted from a simulation. (D) Sixty MSMs with
k ¼ 5 and fdimer ≈ 0.24 in a sigma structure. (E–G) Systems with 360MSMs and
(E) k ¼ 4 and fdimer ≈ 0.39, (F) k ¼ 4.75 and fdimer ≈ 0.37, and (G) k ¼ 5 and
fdimer ≈ 0.36. In all cases, we plot time-averaged density isosurfaces of the
centers of mass of the micelles/dimers, rather than the micelles themselves,
to remove thermal noise and produce a clearer image (see SI Text). Systems
are viewed along the pseudo-12-fold-symmetry axis, as calculated using the
diffraction pattern, shown to the right of each panel. In all cases, systems are
colored-coded with monomer centroids shown in white/gray and dimer cen-
troids shown in cyan. Note, Eappears as a parallelogram because of the pro-
jection; all simulation boxes are square or rectangular cuboids. Additional
views of various self-assembled structures are included in the SI Text.
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model, whereas the di-TNS micelles have a shell of short poly-
mers, more closely resembling the spherical micelles formed
by block copolymers (8, 46, 47) and functionalized dendrimers
(5, 12, 13). These models are computationally expensive, and thus
only relatively small systems in terms of the number of micelles
are explored. Fig. 3B depicts density isosurfaces (48) of the ag-
gregating tethers for a system of 2,500 mono-TNS building blocks
that assemble into approximately 60 spherical micelles arranged
in a sigma approximant. Fig. 3C depicts isosurfaces for a system
of 5,000 mono-TNSs that self-assemble into approximately 120
spherical micelles arranged in an FK structure containing
squares, triangles, shields, and rhombs. The increasing complexity
of the tiling arrangement with system size indicates that the TNS
system may form a higher-order approximant or a DQC in the
infinite limit. The mono-TNS micelles naturally exhibit shape
polydispersity. Fig. 3D shows a histogram of the asphericity, as,
computed from the principle radii of gyration (44) of the micelles,
with representative micelles at various values of as depicted in the
Inset. For reference, as ¼ 0 corresponds to an ideal sphere, and
as ¼ 0.02 corresponds to the MSM dimer with aspect ratio 1.45∶1
shown in Fig. 2C. Fig. 3F shows a sigma structure formed from
2,000 di-TNS building blocks that self-assemble into approxi-
mately 60 micelles. The distribution of as for the di-TNS (plotted
in SI Text) is similar to that for the mono-TNS system. Two repre-
sentative di-TNS micelles at low and high as are depicted in

Fig. 3G. Overall, FK structures self-assembled from TNS building
blocks were reproducibly observed in 20 independent simula-
tions. Whether these systems form DQCs in the infinite limit
remains an open question that should be explored in the future
as computational power increases.

Free-Energy Calculations
Having explored the self-assembly of the three micelle models,
we now perform free-energy calculations to investigate the ther-
modynamic basis underlying both aspects of our strategy for
DQC-like structure stabilization. The first aspect, the functiona-
lization of particles with mobile surface entities, is inspired by the
observation that soft-matter systems with relatively soft intermi-
celle interactions often form non-close-packed structures, as de-
scribed in the Introduction. For example, spherical dendrimeric
micelles functionalized with alkyl tails to create a “squishy coro-
na” are known to form non-close-packed structures such as the
bcc and A15 crystals (11). Ziherl and Kamien proposed that the
formation of the bcc and A15 structures is related to the Kelvin
problem, which involves finding the space-filling arrangement of
cells that minimizes surface contact area (12, 13). In this picture,
the dendrimeric micelles adopt structures with low surface con-
tact area in order to reduce steric interactions between terminal
polymer groups. The bcc and A15 crystals both exhibit low sur-
face contact area, with A15 representing the current best-known
solution to the Kelvin problem (14). It has been suggested (5) that
this mechanism may also stabilize the dendrimer DQC observed
in experiments (5). However, because minimizing surface area
alone favors the A15 structure rather than the DQC, other factors
must be important as well.

We calculate the Helmholtz free energy, F (49, 50), as a func-
tion of the surface particle mobility k for a system of mono-
disperse MSMs (i.e., without dimers); see SI Text for more infor-
mation. The value of F in Fig. 4A is shown relative to the value for
the hcp crystal, taken as a convenient reference state. Fig. 4A
illustrates that as k decreases (i.e., surface particle mobility in-
creases), F decreases more rapidly for the A15, dodecagonal
approximant (dod), and bcc structures than for the fcc and hcp
structures. Here, the value for the dod curve is the average of the
sigma phase and several higher-order square-triangle approxi-
mants to the DQC (31), all of which have nearly identical free
energies. For low k, bcc appears to be the stable state, consistent
with our MSM simulation results. For very low k (k < 3) the sys-
tem becomes disordered. The change in F as a function of k is
the strongest for the A15 structure, which minimizes surface
contact area, followed by the dod and bcc structures, respectively.
We note that the dod structure has a lower free energy than the
A15 structure over the entire range; however, at sufficiently low
k, the difference in free energy between bcc, A15, and dod is
indistinguishable. The change in F with k is entropically driven;
the difference in average potential energy hUi changes little, and
does not decrease with F (Fig. 4A, Inset). This serves as a direct
verification of the predictions of Ziherl and Kamien (12, 13).
Note that the Z structure (Fig. 1C) is omitted because it is not
stable in the parameter range under consideration. Although the
trends in entropy are as we expect, we find surface particle
mobility alone is not sufficient to stabilize DQCs or approximants
for the state points and model under consideration. Thus, as our
self-assembly simulations previously showed, a second mechan-
ism is needed to form DQC structures for this model.

The thermodynamic basis underlying the second aspect of
our strategy—shape polydispersity—can be understood in the
context of previous studies of both quasicrystal formation and
sphere packing. Systems of particles with short-ranged, spheri-
cally symmetric interaction potentials, such as hard spheres or
particles with short-ranged van der Waals interactions, modeled
by the Lennard–Jones (LJ) potential, tend to form close-packed
crystals in the solid phase (e.g., fcc and/or hcp). Although these

Fig. 3. TNS systems. (A) Schematic of a mono-TNS building block, where the
eight tether beads (blue) of size σ aggregate and self-assemble spherical
micelles with a soft core surrounded by relatively hard “satellite” nanopar-
ticles (white) of size 2.5σ that act as mobile surface entities. (B) A simulation
snapshot of approximately 60 micelles formed by mono-TNS that arrange
into a sigma approximant, and (C) approximately 120 mono-TNS micelles
that form a DQC-like structure; for both systems, ϕ ¼ 0.275 and T ¼ 1.1.
(D) Histogram of asphericity, as, of the mono-TNS micelles in the sigma phase.
(E) Schematic of the di-TNS building block, where the four beads in the tether
(green) each of size σ aggregate and nanoparticles (white) of size 2σ are also
attractive; four bead tethers (purple) of bead size σ that do not aggregate
coat the outside of themicelle. (F) Approximately 60 di-TNSmicelles arranged
in a sigma approximant at ϕ ¼ 0.2 and T ¼ 1.2. (G) Representative di-TNS
micelles with different as. In all cases, for clarity, we show density isosurfaces
of the aggregating polymer tethers (i.e., the micelle core); additional views
of the structures are included in the SI Text.
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systems tend to locally favor polytetrahedral structures (51),
close-packed structures maximize the overall packing density and
hence maximize the entropy, and also often exhibit low potential
energy. Specialized interparticle potentials, such as the Dzugutov
(17) and Lennard-Jones-Gauss (19) potentials, have been con-
trived with features that help drive systems away from close-packed
structures. Like the standard LJ potential, the Dzugutov and
Lennard-Jones-Gauss potentials have an attractive well that en-
courages local polytetrahedral ordering. However, these specia-
lized potentials include an additional relative energy penalty for
adopting the characteristic interatomic spacings associated with
close packing, ultimately driving the system to form alternative
structures, such as bcc crystals, as well as DQCs and their approx-
imants under certain conditions (18, 19). We propose, as our
previous MSM simulations show, that shape polydispersity can
have a similar effect, driving the system away from close packing.
However, in contrast to the energetic repulsion of the Dzugutov
potential, the destabilizing effect, in this case, is entropic.

To explicitly quantify the effect of shape polydispersity, we per-
form free-energy calculations (52–56) for binary mixtures of soft
spheres and short, pill-shaped dimers, with particle interactions
modeled by the WCA potential (see SI Text). The dimers are
modeled by a rigid body of length 1.5σ consisting of two overlap-
ping soft spheres 0.5σ apart (see Fig. 4B), resulting in an aspect
ratio of 1.5∶1, similar to the aspect ratio observed in the simula-
tion of MSMs. Fig. 4B shows the Helmholtz free energy, F, as a
function of the dimer fraction, f dimer, for several structures at a
representative state point with number density ρ ¼ 0.9 and

T ¼ 0.25. The free energy is computed based on the standard
Einstein crystal thermodynamic integration (TI) method (54,
55), with an additional alchemical (56) TI step to compute the
free energy required to transform a given fraction of spheres into
dimers (see SI Text). As f dimer increases, the A15 and dod struc-
tures become increasingly stable relative to close-packed crystals,
and, to a lesser extent, the bcc crystal. We note that the dod phase
has a lower value of F than the A15 structure for all state points,
although the difference becomes minimal for high dimer fraction.

This difference in stability between the FK phases (A15 and
dod) and standard crystals can be traced to the tendency for di-
mers to adopt larger, more aspherical neighbor shells, which are
present in FK structures but not fcc, hcp, or bcc crystals. The first
neighbor shells of particles in FK structures form different types
of polyhedra, which may be icosahedral (coordination number
12), or take on higher coordination numbers Z, such as Z13,
Z14, or Z15 depicted in Fig. 4C. In Fig. 4D, we plot the probabil-
ity of observing dimers in Z12, Z14, and Z15 configurations for
the dod structure where we fix particle centroids but allow dimers
to rotate and swap positions with monomers. We observe that
dimers strongly favor Z15 coordination shells because these are
the largest and thus most accommodating. Dimers sit in Z14
arrangements as a second-best option and almost never occupy
Z12 structures, which are the smallest. We can gain additional
insight by examining the relative fraction of Z12, Z14, and Z15
within the three approximant structures, as shown in Fig. 4E.
Although the free energy of the A15 and dod phases are similar,
the A15 phase does not possess any Z15 arrangements, whereas
the dod phase has an appreciable fraction (approximately 0.13).
This difference may account for the widespread formation of
dod rather than the A15 structures in our three simulation models.
We note that although the Z phase has the largest fraction of
Z15 coordinations, it also possesses the largest fraction of the less
favorable Z12 coordinations, which may partially account for its
relative instability for this density and dimer size.

We observe that for f dimer > 0.4, A15 and dod are more stable
than fcc, hcp, and bcc crystals. This implies that mixtures of sphe-
rical and pill-shaped colloids might produce DQCs or approxi-
mants. However, because many dimers are required to destabilize
crystal structures, in practice, these mixtures may remain liquid-
like, phase separate, or form other ordered structures not consid-
ered here. Along this same line, it is possible that, in specific
cases, systems may form DQCs or other FK structures based on
mobile surface particles alone; the entropic effect may be stron-
ger for terminal groups that are longer or more complex than the
one-bead model tested here; however, it seems likely that the A15
structure would still demonstrate the strongest entropic response
because of the minimal surface-area mechanism (12–14). Be-
cause asphericity is common in many micellar systems that also
have soft coronas, such as the previously discussed TNS micelles,
it may not be possible to completely separate these two aspects.
Our results suggest that even moderate levels of asphericity may
enhance the relative stability and/or range of stability of DQCs
and approximants for systems with squishy surface coatings.

Conclusions
Our results demonstrate a two-part, experimentally feasible as-
sembly strategy for forming 3D DQCs and their approximants
that can potentially be realized for a wide variety of systems. We
have introduced three models that form DQCs and/or approxi-
mants, including a simplified MSM and two tethered nanoparti-
cle models that resemble micelle-forming systems of dendrimers
(4, 5) and block copolymers (8, 9, 46). Our study lends strong
numerical evidence in support of the explanation for the stability
of the A15 structure in systems of dendrimer micelles (12, 13)
and its subsequent adoption to help explain the formation of the
spherical dendrimer DQC (5, 15, 16). Our results imply that
shape polydispersity, in addition to surface particle mobility, is

Fig. 4. (A) Helmholtz free energy per micelle, F, as a function of surface
particle mobility (controlled by the spring stiffness k) for monodisperse
MSMs. The Inset shows the potential energy per micelle U. (B) F as a function
of fdimer for the WCA sphere/dimer mixture. For parts A and B, the energies
and free energies are reported with respect to the hcp crystal for conveni-
ence. For all datapoints, error bars are smaller than the data labels. (C) De-
piction of three different FK polyhedra. (D) Probability of observing dimers
at the center of Z12, Z14, and Z15 structures in the dod phase as a function
of number density, ρ. (E) Fraction of Z12, Z14, and Z15 local structures in
A15, sigma and Z structures. Note, D and E) are color coded following the
convention in C.
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likely to play a role in stabilizing DQCs and approximants in mi-
cellar systems observed in experiment. In the future, our assembly
strategy may be employed to facilitate the design of systems that
can form DQCs at the nanoscale and microscale, including den-
drimers (4, 5, 11), surfactants, block copolymers (8, 9, 46), and
core-satellite nanoparticles (40–42). Our results also suggest that
mixtures of spheres and dimers (57–59) might, even without sur-
face particle mobility, stabilize DQCs or approximants under cer-
tain conditions, possibly providing a trivial design rule for forming
these structures. In addition to the implications regarding DQC
assembly, our results illustrate a powerful design approach for
assembling structures by controlling particle shape and function-
ality to mimic the key features of pair potentials (20). This paves
the way for future studies based on mapping complex interaction
potentials to packing models, which can potentially render cur-
rently unrealizable systems experimentally feasible, or expand

the breadth of unique structures to more general classes of
systems.

Materials and Methods
A full description of the simulation and free-energy methodologies is in-
cluded in the SI Text.
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