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Microbial degradation of substrates to terminal products is com-
monly understood as a unidirectional process. In individual enzy-
matic reactions, however, reversibility (reverse reaction and product
back flux) is common. Hence, it is possible that entire pathways
of microbial degradation are associated with back flux from the
accumulating product pool through intracellular intermediates into
the substrate pool. We investigated carbon and sulfur back flux
during the anaerobic oxidation of methane (AOM) with sulfate, one
of the least exergonic microbial catabolic processes known. The
involved enzymes must operate not far from the thermodynamic
equilibrium. Such an energetic situation is likely to favor product
backflux. Indeed, cultures of highly enriched archaeal–bacterial con-
sortia, performing net AOM with unlabeled methane and sulfate,
converted label from 14C-bicarbonate and 35S-sulfide to 14C-meth-
ane and 35S-sulfate, respectively. Back fluxes reached 5% and 13%,
respectively, of the net AOM rate. The existence of catabolic back
fluxes in the reverse direction of net reactions has implications for
biogeochemical isotope studies. In environmentswhere biochemical
processes are close to thermodynamic equilibrium, measured fluxes
of labeled substrates to products are not equal to microbial net
rates. Detection of a reaction in situ by labeling may not even indi-
cate a net reaction occurring in the direction of label conversion but
may reflect the reverse component of a so far unrecognized net
reaction. Furthermore, the natural isotopic composition of the
substrate and product pool will be determined by both the for-
ward and back flux. This finding may have to be considered in the
interpretation of stable isotope records.
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Microbial catabolic pathways and their rates in habitats and
cultures are frequently measured by adding isotopically la-

beled substrate and quantifying the rate of label appearance in the
product pool. Such label flux is usually regarded as unidirectional
and thus, assumed to represent the rate of substrate conversion.
However, in enzyme kinetics, like in chemical kinetics, the con-
cept of bidirectionality or reversibility of biochemical reactions is
a long-established feature (1–5).* Hence, if substrate is converted
to product through a multistep pathway and each reaction occurs
with a back reaction, some steady flux of the terminal product by
intermediate pools back to the substrate pool should occur. Such
back flux is measurable by isotope labeling of the product and
measuring label appearance in the vanishing substrate pool. This
finding would, in principle, be analogous to the established
measurement of isotope exchange to gain insights into basic en-
zyme mechanisms (1–5).
Like in enzymatically catalyzed single reactions, one expects

that the back flux through the entire chain (sequence) of indi-
vidual catabolic reactions should be more significant the less
exergonic the overall reaction becomes, because an individual
reaction within the sequence cannot be more exergonic (more
irreversible) than the overall reaction. A weakly exergonic ca-
tabolism (energy metabolism) is common in strictly anaerobic

microorganisms (6–11). Still, the possibility of product back flux in
anaerobes has been largely neglected and treated only in relatively
few labeling studies. The perhaps best-known example is the
conversion of added 14C-methane to 14C-carbon dioxide during
net methane formation by variousmethanogenic archaea (12–16).
The enzymatic key reaction of this back flux, the methyl carbon
exchange between added 13CH4 and its direct precursor 12CH3-
coenzyme M, was recently quantified in an enzymatic assay, with
all reaction partners present at equilibrium concentrations (that
is, without net methane formation or consumption) (17). Fur-
thermore, conversion of added 35S-sulfide to 35S-sulfate during
net reduction with lactate byDesulfovibrio has been observed (18).
The incorporation of added 14CO2 into the carboxyl group of
acetate during oxidation through the Wood–Ljungdahl (carbon
monoxide dehydrogenase) pathway in an anaerobe is an example
of partial product back flux (19, 20).
These studies indicate reversibility and operation close to ther-

modynamic equilibrium of specific substrate–product reaction
sequences within an overall catabolism (that encompasses elec-
tron acceptor and donor). Here, we show reversibility of an entire
anaerobic catabolism, including electron donor as well as the
electron acceptor, and present a refined quantitative data evalu-
ation to reveal the extent of back flux. The examined process is
the anaerobic oxidation of methane with sulfate (AOM) (1),

CH4ðgÞ þ SO2−
4 → HCO−

3 þHS− þH2O [1]

which is energetically characterized by (Eq. 2)

ΔG8  ¼  −16:6  kJ mol− 1;  
fHCO−

3 gfHS− g
fCH4ðgÞgfSO2−

4 g   ¼   102:9 [2]

and thus one of the least exergonic processes sustaining life
(ΔG in situ is often between −20 and −40 kJ mol−1) (21–23). It
should, therefore, be associated with noticeable reversibility. AOM
is of great environmental significance, because it counteracts
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methane release from marine sediments into the oxic biosphere
(refs. 24 and 25 and references therein). It is catalyzed by consortia
of phylogenetically distinct Euryarchaeota [anaerobic methano-
trophs (ANME groups)] and associated Deltaproteobacteria; the
latter are assumed to perform sulfate reduction (26–30). Labeling
studies using natural sediment samples with AOM activity pro-
vided hints of 14CO2 conversion to 14CH4 during net AOM by the
indigenous consortia (31–33). The mode of coupling, which does
not seem to involve conventional anaerobic intermediates such as
H2 or acetate, remains a matter of discussion (SI Text, Anaerobic
Oxidation of Methane as Enzymatically Catalyzed System and Fig.
S1) (21, 23, 34–37).
Axenic AOM consortia have not been isolated so far. To

clearly show reversibility of AOM and exclude microbial use of
substrates other than methane and sulfate, we used essentially
detritus-free marine AOM consortia that had been highly en-
riched by repeated transfer and growth with CH4 and SO4

2− as
the only added energy source.

Results
Characterization of Enriched AOM Cultures. The sediment-free,
methane-consuming, and sulfide-producing enrichment cultures
were first characterized with respect to the occurring phylotypes
and unequivocal AOM activity to verify suitability for the isotope
back flux studies. The abundant cells were archaea (ANME-2
groups) and Deltaproteobacteria (95–99% of detectable cells
according to DAPI and specific 16S rRNA probing) (38, 39).
Specific (dry mass related) activities for methane consumption
and sulfide formation were ∼0.3 and 2.0 mmol g−1 d−1 in the
Hydrate Ridge (HR) and Isis Mud Volcano (MV) enrichment
cultures, respectively (39). Substrate labeling experiments with
14CH4 and

35SO4
2− and product label quantification performed in

this study yielded a molar ratio between formed CO2 and H2S of
0.96/1 (HR) and 1.07/1 (MV) in accordance with expression 1†

(Table S1). From previous chemical analysis of incubations
without methane, it is known that net methane production is
marginal (i.e., <0.05% of the AOM rate) (39). The rate of net
sulfide production without methane was<5% of the rate achieved
in the presence of methane (Table S2). This finding showed that
background methanogenesis and sulfate reduction with endoge-
nous compounds, residual detrital matter, or dead cell carbon
were essentially absent or very small, respectively. These cultures
were, therefore, ideal to study the flux of labeled inorganic carbon
and sulfide into the pools of methane and sulfate, respectively,
when these compounds were present as substrates.

Sulfur and Carbon Back Fluxes. For convenience, product label back
fluxes during net AOM were determined as rates relative to the
culture volumes (rather than to biomass). Increase in sulfide con-
centration yielded methane-dependent sulfate reduction rates of
190 μmol L−1 d−1 (MV) (Fig. 1A) and 120 μmol L−1 d−1 (HR) (SI
Text, TimeCourse Experiment withConsortia fromHydrate Ridge and
Fig. S2A). In experiments with labeled sulfide, the overall 35S ac-
tivity was constant during thewhole time series. Increasing amounts
of tracer were recovered in the 35SO4

2− pool of AOM-active sam-
ples. However, in contrast to constant sulfate reduction rates (Fig.
1A and Fig. S2A), label transfer from the sulfide to the sulfate pool
decreased during the course of the experiment because of the sig-
nificant dilution of the 35S-sulfide label with steadily forming un-
labeled sulfide (Fig. 1B and Figs. S2B and S3). This dilution was
taken into consideration by refined data evaluation (Materials and
Methods and SI Text, Calculation of Reverse Reaction Rate). The

determined rates of sulfur back flux were 7% and 13% (HR and
MV, respectively) of the AOM rate based on chemical quantifica-
tion (Figs. 1C and 2, Fig. S2C, and Table S2). The flux of 35S label
from the sulfide to the sulfate pool was negligible when AOM was
prevented by omission of methane (Fig. 1B and Fig. S2B).
The calculated ratesof the backfluxofdissolved inorganic carbon

(DIC; CO2, HCO3
−, and CO3

2−) to methane (DIC → CH4) were
3.2% and 5.5% (HR and MV, respectively) of the net AOM rate
(Fig. 2 andTable S1). Thisfinding is at least one order ofmagnitude
higher than the methane–carbon back flux (CH4 → DIC) during
net methanogenesis in methanogenic cultures (0.001–0.36%)
(12–14). The ratios between sulfur and carbon back fluxes were
2.2 and 2.4 (HR and MV, respectively) and thus, nearly identical
for the two enrichment cultures. We also measured the flux of 14C
label from the inorganic carbon pool to methane, whereas the net
oxidation reaction was prevented by omission of sulfate in the
presence of methane. Label from 14C-inorganic carbon still ap-
peared in the methane pool at rates of 2.4% and 2.3% (HR and
MV, respectively) of the AOM rate with sulfate (Table S1).

Discussion
As expected, our 35S- and 14C-labeling results clearly showed
substantial fluxes of sulfide back to sulfate and bicarbonate back
to methane during AOM, and they confirm the reversibility of an
entire catabolic process with low-energy yield. Such catabolic
reversibility is viewed from a more general kinetic and thermo-
dynamic perspective with respect to implications in the bio-
geochemical study of in situ catabolic rates and isotope patterns
of biologically redox-active elements.

Concept of Catabolic Back Flux. A catabolic pathway in cells of a
prokaryotic species or community represents a complex sequence
of many enzymatic reactions and intermediates (intercellular; in
communities, they are also extracellular). If the subsequent reac-
tions occur with reversibility and are viewed from the molecular
perspective (that is, regarding microstates stochastically) at a given
moment, the larger fraction of the enzyme molecules of each re-
action performs the forward reaction, whereas a smaller fraction
simultaneously performs the reverse reaction. The resulting mac-
rostate is a system with substrate uptake and reoutput and product
output and reuptake. For convenience, this finding is illustrated in
Fig. 3 for a simple overall reaction, A ⇌ P, with indication of the
rates (v) and label (*) added to the product pool; the unlabeled (•)
element is also indicated. Substrate reoutput (v−1) not only includes
the part derived from product (v*−1) but also substrate that
never reached the product side (v•−1). In a steady state, the sum of
the uptake rates must equal the sum of the release rates (i.e., v+1+
v−n = v−1 + v+n), which leads to the net rate v (Eq. 3):

vþ1 − v− 1 ¼ vþn − v− n ¼ v: [3]

The rates of substrate formation from product (v*−1) and product
formation from substrate (v•+n) are experimentally accessible by
isotope labeling. For better distinction, we designate these par-
ticular rates v•+n = f+ and v*−1 = f−. Net disappearance of sub-
strate, v= v+1 − v•−1 − f−, and mass conservation, v+1 −v•−1 = f+,
yield for the net rate (Eq. 4)

v ¼ fþ − f− : [4]

Hence, the net rate is expressed by three pairs of rates (Eqs. 3 and
4; for single enzyme shown in Fig. 3B), with f+, f−, and v being
experimentally accessible. During net reaction A → P, there are
the inequalities (5 and 6)

vþ1; vþn > fþ > v [5]

and

†Like with chemical quantification (21), such labeling experiments are not precise
enough to reveal the proportion of methane–carbon channeled into biosynthesis as
deviation from the 1:1 stoichiometry, because only around 1% of consumedmethane is
assimilated (38).
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fþ > f− : [6]

Flux Rates and Free Energy. Thermodynamic values such as free
energies are based on macroscopic time-independent equilibria,
and they cannot, in principle, predict reaction rates, which are
determined by molecular mechanisms. However, the actual free
energy change (more precisely, the change in chemical poten-
tial) and rate of a reaction are both determined (at constant
temperature) by concentrations (strictly speaking, by activities
in the case of chemical potentials). The thermodynamic and
kinetic treatment of a reaction must, therefore, meet each
other at equilibrium, where the free energy as well as the net
reaction rate (resulting from concentration-dependent forward
and back reaction) is zero. This connection‡ has been a basic
aspect in enzyme kinetics (1, 3–5, 40). A similar analytical
treatment of the connection between energetics and kinetics of
the here investigated microbial catabolic system is presently
impossible in view of its complexity and the largely unknown
enzymes and intermediates. To substantiate the initial argu-
ment that the reverse flux must increase relatively with de-
creasing free energy, we present this connection for a simple
enzymatic reaction, again formulated with one substrate, A, and
one product, P. Furthermore, only a lumped enzyme-bound
state, EA, appears in the reaction (Fig. 3 and SI Text, Thermo-
dynamics and Kinetics in Catabolism); kinetic constants are des-
ignated as k.
As for a reversible, two-step purely chemical reaction, for-

mulation of equilibrium conditions (SI Text, Thermodynamics
and Kinetics in Catabolism) yields k+1k+2/(k−1k−2) = [P]e/[A]e
(the parameters [P]e and [A]e indicate concentrations at equi-
librium). This leads to the Haldane relationship. Its common
formulation includes the experimentally accessible Michaelis
(composite) constants Km+ = (k−1 + k+2)/k+1 and Km− = (k−1 +
k+2)/k−2 for the forward and reverse reactions, respectively,
which are obtained through multiplying nominator and de-
nominator with k−1 + k+2. By designating k+2 = kcat+ and k−1 =
kcat− (catalytic constants for product and substrate formation,
respectively) and expressing the equilibrium constant, Ke,
through the standard free energy change, ΔG° (SI Text, Ther-
modynamics and Kinetics in Catabolism), the Haldane relation-
ship can be expressed as (Eq. 7)

kþ1kþ2

k−1k−2
¼ kcatþ=Kmþ

kcat−=Km−
¼ ½P�e

½A�e
¼ Ke ¼ e−ΔG8=ðRTÞ: [7]

A certain imprecision lies in the fact that concentrations (in ki-
netics) and activities (in thermodynamics) are treated here as
numerically equivalent.
Under nonequilibrium conditions, the net reaction rate v ≠ 0

results from the individual rates or fluxes (Eq. 3 or 4, re-
spectively), which are determined by the actual concentrations,
[A] and [P], and the kinetic rate constants, k+1, k+2, k−1, and k−2.
The latter again are connected by Eq. 7. [A] and [P] also de-
termine the actual free energy, ΔG < 0. This finding leads to
a connection between the flux ratio, f− and f+, and the actual free
energy (where the standard free energy, ΔG°, no longer appears;
derivation in SI Text, Thermodynamics and Kinetics in Catabo-
lism) (Eq. 8):

f−
fþ

¼ k−1k−2½P�
kþ1kþ2½A� ¼ ½P�

Ke½A� ¼ eΔG=ðRTÞ: [8]

With Eq. 4, the back flux can be also related to the net rate (Eq. 9):

f−
v

¼ 1
Ke½A�=½P�− 1

¼ 1
e−ΔG=ðRTÞ − 1

: [9]

Eqs. 8 and 9 express that forward and back flux catalyzed by an
enzyme at given substrate and product concentrations cannot vary

A
ct

iv
ity

 (k
Bq

)

B

Time (days)

10 15 200 5

0

2

8

10A

Time (days)

2010 150 5

0

1

2

3

4

5 C

y =  0.13x – 0.02
R2 =  0.96

0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

ln
[Sred]0

[Sred]

ln
[35

S re
d] 0

[35
S re

d] 0 
– 

[35
SO

4 
 ]

2–

+ CH4

− CH4

35SO4     (+ CH4)

Total 35S

35SO4    (− CH4)2−

2−   
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oxidation of methane. (A) Developing sulfide concentrations in the presence (•) and absence (○) of methane. (B) Development of 35S-activity in the sulfate
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‡Sometimes, this connection is somewhat erroneously termed thermodynamic constraint
of reaction kinetics or described as thermodynamics governing kinetics.
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independently of each other (because the kinetic constants cannot
vary independently) (Eq. 7). The equations also show that the back
flux relative to the forward flux or net rate becomes the more
relevant the closer the reacting system is to the thermodynamic
equilibrium. Marginal to essentially no back flux can only be
expected for strongly exergonic linear reaction sequences (very
negative ΔG).

Remarks on Back Flux Through an Entire Catabolism with Special
Reference to AOM. Accordingly, relevant product back flux is
expected in microbial cells or cell communities catalyzing cas-
cades of enzymatic reactions through a weakly exergonic cata-
bolism. A catabolism operating not far from the thermodynamic
equilibrium can only include reactions that are at least as close to
the equilibrium [that is, that cannot be strongly energy-dissipat-
ing (irreversible)]. The process in our experiments, AOM, is one
of the least exergonic catabolic processes. Under the incubation
provided in this study, the calculated free energy change (21) for
AOM is only −25 to −35 kJ mol−1. The range in natural habitats
is often −20 to −40 kJ mol−1 (22, 23). The free energy actually
dissipated by the in vivo catabolism is less negative than these
calculated values because of coupling to energy conservation.
Such coupling may be an important factor contributing to cata-

bolic reversibility and back flux. Largely irreversible, energy-
dissipating reactions during AOM are expected only in the
anabolism (biosynthesis).
Sulfur back flux was at least two times as fast as carbon back flux

during AOM. This finding shows that back fluxes (and forward
fluxes) of electron acceptor and electron donor are not necessarily
stoichiometrically coupled. This finding is in contrast to the ratio of
their net rates, which in a steady state must always reflect the
overall stoichiometry. Hence, the pathways of the electron accep-
tor and electron donor may be differently close to the equilibrium.
This finding is analogous to enzymatic reactions with two (or more)
substrates and two (or more) products, where isotope exchange
rates may differ between substrate–reactant pairs depending on
their mechanisms and individual rate constants (3, 4).
The extent of the relative reverse reactions in the 20 °C (293

K; MV) enrichment was higher than in the 12 °C (285 K; HR)
enrichment (Fig. 2). Because the equilibrium constant, Ke (T, p),
and hence also free energy change of a reaction (at given con-
centrations) are temperature-dependent, the extent of the re-
verse reaction relative to the forward or net reaction must be
generally influenced by temperature. A thermodynamic pre-
diction of this tendency is appealing. The equilibrium constants
at two different temperatures (indices 1 and 2; T2 > T1) can be
related to each other by (Eq. 10)

ln
Keð2Þ
Keð1Þ

¼ ΔH8

R

�
1
T1

−
1
T2

�
; [10]

where ΔH° is the standard enthalpy change of the reaction.¶

With ΔH° = −11.4 kJ mol−1 (assumed to be the same for 285,
293, and 298 K) for AOM, the ratio of the equilibrium con-
stant of AOM at the two temperatures in this study is Ke(293 K)/
Ke(285 K) = 0.88 (that is, <1). The extent of the reverse reactions
is inversely proportional to the equilibrium constants (Eqs. 8 and
9). Therefore, the extent of the reverse reactions of AOM at
higher temperature to the extent at a lower temperature should
be >1 (that is, reversibility should indeed increase with temper-
ature). Still, a more refined quantitative treatment is presently
not possible, because the catabolic reaction of AOM (1) is
composed of sequential and parallel reactions. The above ΔH° is
that of net AOM, whereas the enthalpies of the pathways of
carbon and sulfur that constitute AOM and were examined
separately as bulk reactions in this study are unknown.

Microbial Substrate–Product Interconversion Without Net Reaction?
Enzymes continue catalyzing the forward and back reaction also
when the equilibrium is reached (that is, if the net reaction is
v = 0). This principle was recently applied to show methyl in-
corporation from 13CH4 into methyl-coenzyme M by the purified
terminal enzyme of methanogenesis (17). Hence, also multiple
enzyme systems like microbial cells should catalyze intercon-
version of substrates and products (that is, exchange of labeled
elements between them) in the absence of a net reaction. Indeed,
when in our experiments methane and inorganic carbon were
present whereas sulfate was essentially depleted so as to prevent
net AOM, carbon back flux was still observed, albeit at a lower
rate than during net AOM. However, if vice versa sulfate and
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Fig. 3. Depiction of forward and back flux during the net reaction A → P in
a steady state catalytic system with reversible but otherwise unknown in-
ternal reactions. Such a system can consist of an entire pathway (A) or
a single enzymatic reaction (B; E + A → EA → P + E) (Figs. S4 and S5). All
reactions, including uptake or binding and release, are reversible. Arrows
indicate rates (velocities). The forward (v+) and back (v−) rates correspond to
individual steps in a catalytic system. The index n refers to the number of
forward and backward fluxes (B; n = 2 for a single enzymatic reaction) (Fig.
S5). A description of abbreviations is given in Table S3. (A) Catalytic system:
the fate of substrate and product is followed by the different labels (A•, P*)
of the initial pools. Release of A and P includes both the returned fraction
that never reached the other side (v•–1, v*+n), and the fraction directly de-
rived from the other side (v•+n, v*–1). Forward (f+) and back (f−) flux are the
concentrations (amounts per investigated volume) of P• and A* most re-
cently derived per time from A• and P*, respectively. Hence, return to the
side of their origin with progressing reaction is neglected by examining
a short time interval (A* in A• and P• in P* remaining very dilute). (B) Vector
model for rates in a single enzymatic reaction (E + A → EA → P + E) (Fig. S5).
The sizes of rates are indicated by lengths of arrows. The same net rate (v) is
the difference of uptake (binding) and release of substrate (v+1, v−1) and
product (v+2, v−2) as well as the difference between forward and back flux
(f+, f−). The rate constants for a single enzymatic reaction, k+1, k−1, k+2, k−2,
and the actual concentrations determine v+1, v−1, v+2, v−2, respectively.
The vector model was calculated for the enzymatic reaction using (in rate
units): v+1 = 6, v−1 = 4, v+2 = 9, v−2 = 7; result: v = 2, f+ = 4.15, f− = 2.15 (Eqs.
S35 and S36).

¶Derived from the fundamental equation (Eq. S56) (Eq. 11)

∂
∂T

lnKe ¼ ΔH8

RT2 ; [11]

expressing that Ke = [A]/[P] increases with temperature for endothermic reactions (ΔH° >
0) and decreases for exothermic reactions (ΔH° < 0; Le Chatelier’s principle). If we assume
that ΔH° is temperature-independent within the small temperature range relevant in
the present study (285 and 293 K; that is, without consideration of heat capacities of
reactants and products), integration from Ke(1), T1 to Ke(2), T2 yields Eq. 10.
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sulfide were present without methane addition, sulfur label ex-
change was not observed. One explanation for the latter obser-
vation could be that sulfide back flux at low concentrations as
prevailing in this particular experiment is a first-order process,
allowing only marginal, barely detectable label back flux. An-
other explanation could be that arrest of the net reaction results
in the depletion or inactivation of a coreactant or another
component needed for an operative sulfur pathway. Forward and
backward fluxes through intact in vivo systems are certainly more
delicate than through a single enzymatic reaction, and under-
standing of the possibilities and conditions of substrate–product
interconversion through various microbial pathways requires
more detailed physiological investigations.

Consideration of Product Back Flux in Natural Habitats. Many envi-
ronmentally relevant and microbial-mediated chemical reactions
occur close to equilibrium conditions. Our findings have impli-
cations for studies of environmental processes at low-energy
yields (for instance, in anoxic systems such as AOM environ-
ments or the deep biosphere). Microbial catabolic activity in
natural habitats is often measured by examining the flux of added
isotope label from substrate to product pool rather than by de-
termining the net rate of product accumulation by chemical
quantification. Tracer conversion rates in the opposite of net
AOM or net methanogenesis have been reported from experi-
ments with marine sediments (31, 33), bacterial mats (32), and
methanogenic sludge (16, 41); however, these studies could not
exclude the possibility of co-occurrence of methanogenesis and
AOM. If back flux occurs, label flux from substrate will not be
identical to the microbial net rate. In most cases, this effect (5–
10%) will be hidden in the normal uncertainty and variability
of radiotracer measurements. However, highly accurate net
rate determination by isotope labeling would have to include
both forward and back flux measurement to yield the net rate.
Moreover, detection of a reaction in situ by labeling does not
necessarily indicate a net reaction occurring in the direction of
label conversion; it may represent the back flux during the op-
posite reaction and thus, a pseudoreaction; hence, dominance of
the opposite reaction would have to be excluded, which was
extensively discussed for methanogenesis vs. AOM (23). Never-
theless, as in biochemical studies of single enzyme reactions (17,
42), isotope probing of back fluxes at near equilibrium condi-
tions may provide means of probing catabolic mechanisms at the
community level.
Finally, reverse reactions are important also for the under-

standing of stable isotope fractionation (43–45). So far, the re-
versibility of sequential individual catabolic reactions but not the
reversibility of an entire catabolism as a whole has been examined
in isotope fractionation studies (18, 43, 46–49) (i.e., at least one
step in a sequence of catabolic reactions was considered to be
unidirectional). This treatment allowed determination of isotope
effects according to a Rayleigh isotope fractionation equation.
However, if an entire sequence of catabolic reactions is reversible,
which it must be near equilibrium, the Rayleigh treatment is no
longer valid, because the isotope composition of the reaction
product (e.g., sulfide) affects the isotope composition of the re-
actant (e.g., sulfate). In the case of sulfate reduction, this effect
has recently been observed in laboratory culture experiments (50).
Our study and a recent study where discrepancies between bulk
sulfate reduction rates and 35S transfer from sulfate to sulfide were
found (51) show that isotope fractionation between a reactant and
a product under in situ conditions (e.g., AOM) may not be de-
termined solely by kinetic isotope fractionation but also by the
isotope composition of the product pool. A specific case of such
bidirectional isotope fractionation may be that absence of net
reaction could result in an equilibrium isotope fraction that
reflects the highest thermodynamic stability of the involved iso-
topologues. Recent studies on pure cultures of sulfate reducing

Bacteria indeed show that sulfur isotope fractionations approach
equilibrium isotope fractionation values (52), implying that iso-
tope exchange between product and substrate pools may, rather,
be the rule than the exception for metabolism under low-energy
condition. Refined measurements of isotope fractionations, which
may also depend on the type of microorganisms (39), would be
needed to explore the significance of the reverse reaction for
stable isotope signatures under different settings of environmental
and chemical parameters.

Materials and Methods
Origin, Enrichment, and Preparation of Cultures for Experiments. The in-
vestigated enrichment cultures originated fromanoxic sedimentof twomarine
methane seepareas, HR (CascadiaMargin,Oregon,NEPacific; 044° 34.2′N, 125°
08.7′W; August 2000) and Isis MV sediment (Eastern Mediterranean Sea; 032°
21.7′N, 031° 23.4′E; September 2003). Sediments had been sampled during the
R/V Sonne (SO-148/1, 2000) and R/V L’Atalante (NAUTINIL, 2003) expeditions,
respectively. The methane-consuming, sulfide-producing cultures were en-
riched in anoxic synthetic seawater medium (53), with methane and sulfate as
the only energy sources through repeated transfer (over some years) from
sediment. Thereby, loosely flocculating cell aggregates were propagated,
whereas the sediment matrix with detritus was continuously diluted out
(confirmed bymicroscopic survey andmicrobial staining). Consortia of Archaea
(ANME-2 groups) and Deltaproteobacteria were abundant (95–99% of de-
tectable cells according to DAPI and specific 16S rRNA probing) (38, 39). These
highly enriched consortia with their inherently slow growth (38) were avail-
able only in limited quantities and therefore, were used sparingly. Sub-
sequently, experiments with 14C-bicarbonate and 35S-sulfide labeling were
carried out at different times, and the batches available at one time differed
from the batches at another time with respect to cell density and volumetric
activity. Within an experiment at a given time, however, the same enrichment
batch was distributed equally to establish equal volumetric activities. Before
the radiotracer studies, cultures were allowed to settle; the sedimented
microorganisms were transferred to new medium with sulfate and sulfide
additions. Aliquots were then transferred to culture tubes incubated at their
temperature optima (HR, 12 °C; MV, 20 °C) (21, 39).

Incubation Experiments with 35S-Label. To measure the sulfate reduction rate
by labeling, resuspended enrichments were distributed in amounts of 1 mL
in 5-mL tubes. Tubes were completely filled (headspace-free) with anoxic
synthetic seawater medium that was saturated with unlabeled CH4 (under
a gas phase of 150 kPa). Tubes were sealed with elastic butyl rubber. Con-
trols were prepared with N2 instead of CH4 or with sterilized (20 g formal-
dehyde L−1) cultures. A solution of 35S-Na2SO4 (Amersham) was injected into
a 5-mL culture tube. The specific activity in the medium was 5.5 × 108 Bq
mol−1 (total sulfate concentration, 28 × 10−3 mol L−1, for rate determination
was assumed to be constant throughout the experiment). After 4 d, sulfide
was recovered by a standard chromium reduction distillation method using
a zinc acetate trap followed by scintillation counting. To preserve the settled
cultures, 4 mL supernatant culture medium were transferred anoxically to
20 mL zinc acetate solution (0.9 M) to stop the reaction and fix sulfide.
Radiolabeled 35S product (total reduced inorganic sulfur) was separated
from the radiolabeled reactant (35SO4

2–) by reduction with Cr2+ and cold
distillation (54). The radioactivity of both pools was quantified by scintilla-
tion counting (scintillation mixture; LumaSafe Plus; scintillation counter,
2900TR LSA; Packard).

35S-sulfide for labeling experiments was freshly generated from 35S-
Na2SO4 by bacterial reduction. Desulfovibrio vulgaris (DSM 2119) was in-
cubated in a 20-mL tube containing 10 mL anoxic freshwater medium (53), H2

gas (with 20%CO2; 150 kPa total pressure) as electron donor, and 5× 10−3mol
L−1 Na2SO4 with an adjusted label activity of 1.25 × 1011 Bq mol−1. After
complete reduction of sulfate, the culture was mixedwith anoxic H3PO4 (5mL
at 1 mol L−1). A slow N2 stream was passed through the solution and head-
space, through anoxic citrate buffer (10 mL at 0.1 mol L−1, pH 4), and finally,
through anoxic solutions of ZnCl2 (15 mL at 0.4 mol L−1) to trap sulfide. The
collected ZnS suspension (a total of 75 mL) was acidified with H3PO4 (60 mL at
1 mol L−1) under an N2 headspace in an anoxic 156-mL vial to release labeled
sulfide. The preparation through a gas phase and citrate buffer avoided
transfer of other sulfur species that may have been present as impurities in
the Desulfovibrio culture.

Labeled H2S gas in N2 was withdrawn in portions of 0.2 mL (6–9 kBq),
injected into the headspace of 16-mL incubation vials with 10 mL medium
and culture suspension, and for 24 h, equilibrated with the aqueous phase.
Then, methane (200 kPa) was injected, and samples were incubated on

E1488 | www.pnas.org/cgi/doi/10.1073/pnas.1106032108 Holler et al.

www.pnas.org/cgi/doi/10.1073/pnas.1106032108


a rotary shaker. After 0, 3, 6, 8, 11, 15, and 19 d, four culture tubes (repli-
cates) were used for analysis; 8 mL culture medium (biomass was main-
tained) were transferred to an anoxic zinc acetate solution (0.25 mol L−1; 6
mL per tube) to fix sulfide. Total 35S was determined in 100-μL aliquots from
the ZnS suspension. 35SO4

2− was determined after thorough removal of ZnS
by centrifugation (15 min, 2,500 × g) and ultrafiltration (Anotop 25 mem-
brane filter, 0.02-μm pores; Whatman). Removal of ZnS was verified in fil-
trate aliquots by acidification with HCl (7 mol L−1; 0.5 mL per mL), purging
with N2, and scintillation counting.

To analyze possible formation of 35S-thiosulfate from labeled sulfide,
unlabeled thiosulfate (final concentration of 1 mmol L−1) was added to fil-
trate aliquots. Sulfate and thiosulfate were separated by an ion chromato-
graph (Waters) equipped with an IC-Pak anion exchange column (50 × 4.6
mm) and conductivity detector. The eluent was isophthalic acid (1 mmol L−1,
pH 4.5) in 10% aqueous methanol (10%, vol/vol; flow rate = 1.0 mL min−1).
The separated fractions were checked for 35S. However, 35S-thiosulfate was
not detectable. Resulting samples with 35S-label were mixed with LumaSafe
Plus (Lumac LSC) and analyzed by liquid scintillation counting (TR-2900;
Caberra-Packard).

Incubation Experiments with 14C-Label. Resuspended enrichments were pre-
pared similar to the sulfate reduction labeling experiment (see above).
Controls were prepared with N2 instead of CH4 or without sulfate or with
sterilized (20 g formaldehyde L−1) cultures. CH4 oxidation and back flux were
measured by injecting 14CH4 (American Radiolabeled Chemicals) or 14C-
NaHCO3 (Perkin-Elmer), respectively, from aqueous solutions with high spe-
cific activity. Final specific activities in the medium were 6.5 × 108 Bq mol−1

for CH4 (total concentration = 1.5 × 10−3 mol L−1) and 4.5 × 108 Bq mol−1 for
inorganic carbon (total concentration = 30 × 10−3 mol L−1). After 4 d of in-
cubation, 4 mL culture medium were fixed by transfer to 6 mL NaOH (0.6
mol L−1) in a sealed glass vial (20 mL). Total methane was determined using a
5890A gas chromatograph (Hewlett Packard) equipped with a stainless steel
Porapak-Q column (183 m × 3.2 mm, 80/100 mesh; Agilent) and flame ioni-
zation detector. Radioactivity of carbonate or methane was determined after
separating both fractions. Methane was stripped off with air, oxidized at 850
°C with CuO, and trapped in 2-phenylethylamine base solution. Through
acidification, carbonate was transferred into gaseous phase and again trap-
ped in 2-phenylethylamine (55). Trap solutions were mixed with Ultima Gold
XR (Perkin-Elmer) and analyzed in a 2900TR LSA liquid scintillation counter
(TR-2900; Canberra-Packard).

Additional Analyses. Sulfide was determined colorimetrically using the
methylene blue formation reaction in a miniaturized assay (56).

Determination of Reverse Reaction Rate. In catabolic conversion of substrate
product with reversibility, A ⇌ P, forward and back flux (in the Introduction)
are f+ and f− (moles volume−1 time−1). When product label, P*, is added,
appearance of A* reveals the back flux. If the label is a radioisotope with
noticeable decay, error in label quantification is avoided by measuring ra-
dioactivity in all samples at the same time after the experiment; the specific
isotope decay rate is independent of the chemical composition. The in-
finitesimal concentration d[A*] formed during an infinitesimal time dt
depends on f+ and f−, heavy isotope discrimination in each direction (α−, α+;
≥1), and the proportion of label in total product and substrate (brackets
indicate concentrations) (Eq. 12):

d½A∗� ¼ f− dt
1
α−

½P∗�
½P� − fþdt

1
αþ

½A∗�
½A� : [12]

Treatment is simplified by assuming that α−, α+ ∼ 1 and that the label pro-
portion in the reactant pool remains very low ([A*]/[A] << [P*]/[P]), and
therefore, return by f+ can be neglected. Eq. 12 then yields (Eq. 13)

d½A∗� ¼ f− dt
½P∗�
½P� : [13]

P* is increasingly diluted by steadily forming unlabeled P (SI Text, Calculation
of the Reverse Reaction Rate and Fig. S3). If an increase Δ[A*] is measured
after a short enough incubation time, Δt, during which [P*]/[P] remains es-
sentially constant, Eq. 13 can be simplified and rearranged to (Eq. 14)

f− ¼ Δ½A∗�
Δt

½P�
½P∗�0

¼ Δ½A∗�
Δt

½P�0 þ ½P∗�0
½P∗�0

: [14]

[P]0 is the initial product concentration, and [P*]0 is the initial label con-
centration. If [P*]0 << [P]0, Eq. 14 is simplified to (Eq. 15)

f− ¼ Δ½A∗�
Δt

½P�0
½P∗�0

[15]

Such treatment is similar to the common determination of substrate fluxes in
habitats by labeling and measuring product label (57, 58). We applied Eq. 15
to evaluate 14C back fluxes in the methane–bicarbonate system. Back flux of
inorganic carbon during AOM was determined, and 14CH4 recovered from
14C-bicarbonate after 4 d of incubation (endpoint measurement), applying
Eq. 15 with Δ[A*] = [14CH4], [P]0 = 0.031 mol L−1, and [P*] = [H14CO3] added
(Cinorg calculated from added NaHCO3/CO2 buffer). A high concentration of
Cinorg was initially added as NaHCO3 (30 mmol L−1; a common natural buffer
for cultivation of AOM consortia and many other anaerobes). Based on the
net AOM rate derived from methane-dependent sulfide formation, Cinorg

increased during incubation from 30 (initial) to ≤30.4 mmol L−1.
In contrast to the concentration of bicarbonate, the concentration of

sulfide was low at the beginning (<0.5 mmol L−1). This concentration is
advisable for cultivation of anaerobes, because sulfide can be inhibitory.
However, now dilution of product label during AOM was significant, and [P]
in Eq. 13 is expressed as a function of time. Assuming that the net rate, v, of
A → P is largely independent of [A] (zero-order behavior, which is common
in many microbial batch incubations) and that cell growth is negligible
during incubation, the experimental data follow a straight-line fit with the
slope f−/v when displayed according to (derivation in SI Text, Calculation of
the Reverse Reaction Rate) (Eq. 16)

ln
½P∗�0

½P∗�0 − ½A∗� ¼
f−
v

ln
½P�
½P�0

: [16]

Assuming the aforementioned prerequisites (negligible isotope fraction-
ation, concentration-independent rates, and label concentration in the sul-
fate pool remaining low), we applied Eq. 16 with [P*]0 = [H2

35S] added and
[A*] = [35SO4

2−], [P] = [Sred], and [P]0 = [Sred]0 (Sred is chemically quantified
sulfide). It has to be noted that the label concentration in the sulfate pool
increases to the end of the incubation experiment to a level where label flux
from the sulfate pool to the sulfide pool may no longer be negligible; ap-
plication of Eq. 16 would then result in underestimation of the back flux.
Chemical isotope exchange of 35S between sulfide and zerovalent sulfur
(e.g., elemental S or polysulfide S) (59) would dilute the specific activity of
the sulfide pool (i.e., the effect would be the same). However, the linear
trends for the data plotted in Fig. 1C and Fig. S2C indicate that the effect of
such a label flux to the end of the experiment is within the error of the
determined back fluxes (Table S2).
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